2 Complex Vector Spaces

Exercises graded according to correctness:

Problem 2.1: Complex vector space

Let us consider the following vector in a two-dimensional vector space

$$\boldsymbol{e} = c \left(\begin{array}{c} i \\ 1 \end{array} \right)$$

- (a) Choose the constant c as a positive real number in such a way that ||e|| = 1.
- (b) Find a vector e', so that e und e' form an orthonormal basis for the vector space.
- (c) Compute $\hat{P}_{\boldsymbol{e}}\boldsymbol{a}$, where $\hat{P}_{\boldsymbol{e}}$ is the projection onto \boldsymbol{e} and $\boldsymbol{a} = \begin{pmatrix} 3\\ 0 \end{pmatrix}$.

Exercises graded according to efforts:

Problem 2.2: Complete set

Let \hat{A} and \hat{B} be two linear operators in a three-dimensional complex vector space. In the standard basis $\{e_1, e_2, e_3\}$, these two operators are represented as the matrices

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Are the two operators \hat{A} and \hat{B} hermitesch?
- (b) Do the two operators \hat{A} and \hat{B} commute?
- (c) The operator \hat{A} alone does not form a "complete set". Please explain.
- (d) The operator \hat{B} alone does not form a "complete set". Please explain.
- (e) Taken together, the operators \hat{A} and \hat{B} form a "complete set". Find an orthonormal basis for the vector space consisting of common eigenvectors of \hat{A} and \hat{B} .

Problem 2.3: Dirac notation

Let V be a three-dimensional complex vector space with the basis $\{|1\rangle, |2\rangle, |3\rangle\}$.

(a) A linear operator \hat{A} can be represented either using the Dirac notation or as a matrix. Which matrix representation corresponds to the operator

$$\hat{A} = |2\rangle\langle 1| - |3\rangle\langle 2|?$$

- (b) Compute $\hat{A}|2\rangle$.
- (c) The matrix representation of the linear operator \hat{B} is

$$B = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Find the representation of this operator in the Dirac notation.

(d) Show that $\hat{B} = \hat{P}_{|1\rangle}$ is the projection onto the basis vector $|1\rangle$.

Problem 2.4: Square integrable functions

A function F(x) is called "square-integrable", if the integral

$$||F||^{2} = \int_{-\infty}^{\infty} dx |F(x)|^{2}$$

is finite. In this case ||F|| is called the "norm" of the function F. Which of the following functions is square-integrable in one spatial dimension?

- (a) $F(x) = e^{ax}$, for a > 0,
- (b) $F(x) = e^{-ax^2 + ibx}$, for a > 0 and real b,
- (c) $F(x) = \Theta(x)\Theta(1-x)$, where $\Theta(x)$ is the "Theta Funktion", $\Theta(x) = 1$ for x > 0 and $\Theta(x) = 0$ for x < 0.