7 Quantenmechanik in drei Dimensionen

Übungen, die nach Richtigkeit korrigiert werden:

Aufgabe 7.1: Rotator

Betrachten Sie einen drei-dimensionalen "Rotator", d.h. ein System mit nur Rotationsfreiheitsgraden. (Ein Beispiel für ein Rotator ist ein Teilchen dessen Bewegung auf eine Kugelfläche beschränkt ist.) Der Rotator hat Drehimpuls l=1, so dass der Zustandsraum durch die Basis-Zustände $|l,m\rangle$ der drei gemeinsamen Eigenzustände von $\hat{\boldsymbol{l}}^2$ und \hat{l}_z aufgespannt wird, wobei l=1 und $m=0,\pm 1$. Der Rotator befinde sich im Zustand

$$|\psi\rangle = \frac{1}{2}(|1,1\rangle + \sqrt{2}|1,0\rangle + |1,-1\rangle).$$

- (a) Berechnen Sie die Erwartungswerte der z-Komponente des Drehimpulses l_z und deren Quadrat l_z^2 .
- (b) Wie gross ist die Wahrscheinlichkeit dafür, bei einer Messung der z-Komponente des Drehimpulses den Wert 0 zu finden?
- (c) Berechnen Sie den Erwartungswert der x-Komponente des Drehimpulses. Hinweis: Benutzen Sie die Operatoren $\hat{l}_{\pm} = \hat{l}_x \pm i\hat{l}_y$.

Übungen, die nach Aufwand korrigiert werden:

Aufgabe 7.2: Drei-dimensionaler harmonischer Oszillator

Betrachten Sie den dreidimensionalen harmonischen Oszillator,

$$\hat{H} = \frac{1}{2m} \left(\hat{p}^2 + m\omega^2 \hat{r}^2 \right).$$

- (a) Berechnen Sie die Energie-Eigenwerte für den drei-dimensionalen harmonischen Oszillator und ihre Entartung.
- (b) Berechnen Sie die Wahrscheinlichkeitverteilung P(r) für den Abstand $r=(x^2+y^2+z^2)^{1/2}$ zum Ursprung x=y=z=0 im Grundzustand.

Aufgabe 7.3: Parität

Beweisen Sie, dass die Kugelflächenfunktionen $Y_{lm}(\theta, \phi)$ Eigenfunktionen des Paritätsoperators sind zum Eigenwert $(-1)^l$.

Aufgabe 7.4: Drehung zweiatomiger Moleküle

Drehungen eines zweiatomigen Moleküls können durch ein vereinfachtes Modell beschrieben werden, in dem man das Molekül durch zwei Teilchen mit den Massen m_1 und m_2 , die durch einen festen Abstand a voneinander getrennt sind, beschreibt.

(a) Zeigen Sie, dass im Ruhesystem des Massenmittelpunkts die Gesamtenergie H des Systems sich auf die kinetische Rotationsenergie reduziert,

$$H = \frac{l^2}{2\mu a^2},$$

wobei \boldsymbol{l} das Drehimpulsmoment des Zwei-Teilchen-Systems ist und $\mu = m_1 m_2/(m_1 + m_2)$ die reduzierte Masse.

(b) Welche Werte kann eine Messung der (quanten-mechanischen) Rotations-Energie geben?