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Quantum Optimal Control for Mixed State Squeezing
in Cavity Optomechanics

Daniel Basilewitsch, Christiane P. Koch,* and Daniel M. Reich

The performance of key tasks in quantum technology, such as accurate state
preparation, can be maximized by utilizing external controls and deriving their
shape with optimal control theory. For non-pure target states, the performance
measure needs to match both the angle and the length of the generalized
Bloch vector. A measure based on this simple geometric picture that
separates angle and length mismatch into individual terms is introduced and
the ensuing optimization framework is applied to maximize squeezing of an
optomechanical oscillator at finite temperature. The results herein show that
shaping the cavity drives can speed up squeezed state preparation by more
than two orders of magnitude. Cooperativities and pulse shapes required to
this end are fully compatible with the current experimental technology.

1. Introduction

The ability to precisely control quantum systems is a prerequisite
for harnessing quantum effects for quantum technology. Quan-
tum optimal control provides a set of tools for deriving protocols
to implement key tasks such as the preparation of non-classical
states or the generation of entanglement.[1] This approach can be
used to determine, for example, the minimum time to carry out
a given task with desired accuracy, even if the dynamics is not
amenable to an analytical solution.[2–4] Recent examples include
the fast and accurate preparation of a circular state, that is, a Ryd-
berg state with maximum projection angular momentum quan-
tum number, for quantum sensing,[5] and the determination of
the fastest universal set of gates for quantum computing with
superconducting transmon qubits.[6]

Fast control protocols are particularly important for open quan-
tum systems for which the interaction with the environment
cannot be neglected.[7] An obvious control strategy is to “beat”
the decoherence resulting from the interaction with the envi-
ronment. For quantum systems with Markovian, that is, mem-
oryless dynamics, this is often the only option.[8] In contrast,
strongly coupled environmental modes giving rise to significant
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system–environment correlations and non-
Markovian dynamics are not necessarily
detrimental but can also be exploited for
control.[9,10]

An alternative approach to controlling
open quantum systems consists in engi-
neering driven dissipative dynamics in such
a way that the desired target state becomes
the steady state of the ensuing open sys-
tem evolution.[11] This approach is particu-
larly promising when the timescale of de-
coherence is comparable to or faster than
that of the coherent evolution. Driven dissi-
pative evolution is inherently robust against
noise—a rather favorable feature in view
of experimental implementation. In this

context, preparation of non-classical states[12–16] and generation
of non-equilibrium quantum phases[17,18] have successfully been
demonstrated with trapped atoms and ions as well as supercon-
ducting qubits. For the example of trapped ions, determining the
key parameters of the driven dissipative dynamics by quantum
optimal control is predicted to allow reaching the fundamental
performance limits.[19]

Another platform ideally suited for implementing driven
dissipative dynamics is cavity optomechanics,[20,21] where a
mechanical resonator is coupled to an optical or microwave
cavity. Optomechanical systems are promising candidates for
quantum-enhanced sensing, coherent light–matter interfaces,
and fundamental tests of quantum mechanics. In particular,
the cavity drive can be employed to generate arbitrary quan-
tum states of the mechanical oscillator,[20] including strongly
squeezed states. These states are useful in applications such
as quantum information processing,[22] atomic clocks[23] or,
most prominently, quantum-enhanced sensing[24,25] where they
allow to increase sensitivity of, for example, gravitational wave
detectors.[26,27] Squeezed states can be generated in various
physical platforms.[28] In cavity optomechanics, driven dissipa-
tive evolution can be used to produce substantially squeezed
states.[29,30] While the preparation of the mechanical resonator in
a pure quantum state remains amajor goal of cavity optomechan-
ics, interesting non-classical states can be realized also at finite
temperature.[30–32] This is true in particular for squeezed states
since there is a trade off between squeezing strength and purity.
Cavity drives for state preparation in cavity optomechanics are

typically taken to have constant amplitude.[20] On the other hand,
pulsed excitation has recently been shown to allow for probing
the resonator state withminimal heating.[33] This raises the ques-
tion whether explicitly time-dependent amplitudes of the cavity
drives can also be used to improve state preparation protocols.
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Here, we specifically ask by how much, at a given non-zero tem-
perature, suitable pulse shapes can speed up the preparation of
the mechanical oscillator in a squeezed state.
To derive the pulse shape of the cavity drives, we employ op-

timal control theory (OCT) which needs to target a mixed steady
state, due to finite temperature. Standard optimization function-
als, defined originally for pure target states, cannot be used in
this case; and alternative formulations using, for example, the
Hilbert–Schmidt distance need to be employed.[34] We give an
intuitive, geometrical explanation for the failure of the standard
functionals by visualizing the dynamics on the generalized Bloch
sphere. This picture is also useful to elucidate the requirements
an optimization functional targeting mixed states need to fulfill.
Using this geometric interpretation, we furthermore refine the
functional based on the Hilbert–Schmidt distance[34] to one that
seeks to match the target state’s Bloch vector angle and length
separately. We employ both functionals to optimize the prepara-
tion of a mechanical resonator in a squeezed state and compare
their performance.
The paper is organized as follows. The framework of quantum

OCT is presented in Section 2. In Section 2.1, we briefly review
Krotov’s method,[35] our optimization algorithm of choice, in Sec-
tion 2.2 we illustrate the failure of standard functionals, and in
Section 2.3 we construct target functionals based on Bloch vec-
tor angle and length. Section 3 is dedicated to the application of
this methodology to preparing a squeezed state at finite temper-
ature in cavity optomechanics. We introduce the model and con-
trol problem in Section 3.1, present our results in Section 3.2,
and discuss the performance of various target functionals in Sec-
tion 3.3. Finally, Section 4 concludes.

2. Quantum Optimal Control Theory

Quantum control assumes that the dynamics of a quantum sys-
tem can be steered, typically by a set of external driving fields
{Ek(t)}. How to choose the external drives in the best possible way
is the subject of quantum OCT.[1] Optimality is sought using an
optimization functional:

J [{Ek}, {ρ̂l }] = D
[{

ρ̂l (T )
}]+ ∫ T

0
dt g
[{Ek(t)}, {ρ̂l (t)}, t] (1)

where {ρ̂l (t)} is a set of forward propagated states, D[{ρ̂l (T )}] is
the figure or merit at final time T and g captures additional costs
or constraints at intermediate times, for instance by restricting
the field spectra or by penalizing population in certain subspaces.
A control problem is tackled by choosing i) an appropriate opti-

mization functional J and ii) an appropriatemethod tominimize
J . While J captures the physics of the problem, the choice of the
method is relevant as well, since it often determines whether a so-
lution can be found in practice. Gradient-based techniques hold
the promise of faster convergence than gradient-free methods.[1]

However, they require the ability to determine the derivatives of
the functional with respect to the states. Whether this is feasible
or not depends on the choice of the functional. In the following,
we focus on Krotov’s method,[35,36] a gradient-based algorithm,
but our considerations are valid for any gradient-based method
requiring functional derivatives.

The general idea of any gradient-based method is to find an
extremum of the total functional (1) using gradient informa-
tion with respect to changes in the control fields {Ek(t)}. The ex-
tremum condition together with the requirement to fulfill the
dynamical equations leads to two equations of motion—one for
the states {ρ̂l (t)} and one for the so-called co-states {χ̂l (t)}. While
the former corresponds to the usual forward propagation in time
starting at the initial condition {ρ̂l (0)}, the latter can be inter-
preted as a backward propagation in time, starting at {χ̂l (T )}. This
“initial” condition for the backward propagation contains infor-
mation about the physical final time target encoded by the func-
tional D. The optimization algorithms then tries to match both
forward and backward propagated states, thus ensuring approach
toward the target {ρ̂l (T )} at final time, which in turn minimizes
functional (1).

2.1. Gradient-Based Optimization with Krotov’s Method

Krotov’s method[35,36] is a sequential optimization technique with
built-in monotonic convergence. A possible choice of the func-
tional g is[37]

g
[{Ek(t)}] =

∑
k

λk

Sk(t)

(Ek(t)− E ref
k (t)

)2
(2)

where E ref
k (t) is a reference field (taken to be the field from

the last iteration), Sk(t) ∈ (0, 1] a shape function to smoothly
switch Ek(t) on and off, and λk a parameter that controls the step
size. Using Equation (2), the update equation for the field Ek(t)
becomes[38,39]

E (i+1)
k (t) = E ref

k (t)+ Sk(t)
λk

× Im

⎧⎨
⎩
∑
l

〈
χ̂
(i )
l (t) ,

∂L[{Ek′ }]
∂Ek

∣∣∣∣{
E (i+1)
k′ (t)

}ρ̂(i+1)
l (t)

〉⎫⎬
⎭ (3)

where 〈Â, B̂〉 ≡ Tr{Â†B̂} is the Hilbert–Schmidt overlap and
L[{Ek}] the field-dependent generator of the dynamics, for exam-
ple, the Liouvillian of a Lindbladmaster equation.[7] {ρ̂(i+1)

l (t)} are
forward propagated states,

d
dt

ρ̂
(i+1)
l (t) = − i

�
L
[{

E (i+1)
k

}]
ρ̂
(i+1)
l (t) (4a)

with initial conditions

ρ̂
(i+1)
l (0) = ρ̂l (0) (4b)

whereas the co-states {χ̂ (i )
l (t)} are solutions of the adjoint equa-

tion of motion

d
dt

χ̂
(i )
l (t) = i

�
L†
[{

E (i )
k

}]
χ̂
(i )
l (t) (5a)

and their “initial” condition (at final time T ) is determined by the
target functional

χ̂
(i )
l (T ) = −∇ρ̂l (T )D

∣∣
{ρ̂(i )
l ′ (T )}

(5b)
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The superscripts (i + 1) and (i ) in Equations (3)–(5) indicate the
current and previous iteration in the optimization procedure,
respectively. The choice of D[{ρ̂l (T )}] enters via Equation (5b),
where the derivative of functional D with respect to ρ̂l (T ) needs
to be evaluated. For a detailed derivation of Krotov’s method in
the context of quantum control see ref. [38].

2.2. Failure of Overlap-Based Functionals for Mixed State Targets

State transfers, where a set of initial states {ρ̂l (0)} must simulta-
neously be transferred into a set of target states {ρ̂trg

l }, represent
a standard control problem. Solving this problem requires a re-
liable measure D(ρ̂l (T ), ρ̂

trg
l ) for the state distance between for-

ward propagated state ρ̂l (T ) and target ρ̂
trg
l . For two pure states

�1, �2, a standard choice is[37]

Dre(�1, �2) = 1− Re{τ } or (6a)

Dsm(�1, �2) = 1− |τ |2 (6b)

where τ = 〈�1 | �2〉 ∈ C, |τ | ≤ 1, is the complex overlap in
Hilbert space. Both functionals rely on τ to serve as a distance
measure in state space, and any OCT algorithm that minimizes
Dre or Dsm necessarily maximizes Re{τ } or |τ |, respectively.
Equations (6) cannot, however, simply be generalized to non-pure
states. For density matrices ρ̂1, ρ̂2, the overlap in Liouville space,
τ = 〈ρ̂1, ρ̂2〉 ∈ R, defined in terms of the Hilbert–Schmidt over-
lap, becomes real, and minimizing Dre, Dsm implies maximizing
τ . Unfortunately, τ is no longer a reliable measure for closeness
once ρ̂1, ρ̂2 are bothmixed.
We illustrate the problemwith the simplest example of a quan-

tum system, a qubit. Representing the qubit state in the canonical
basis, {|0〉, |1〉}, consider

ρ̂(α) =
(

α 0
0 1− α

)
, ρ̂ trg =

(
β 0
0 1− β

)
(7)

where 0 ≤ α, β ≤ 1. Both states are equivalent iff α = β and
τtrg ≡ 〈ρ̂(β), ρ̂ trg〉 = β2 + (1− β)2. However, for pure states such
as ρ̂(1) or ρ̂(0), τ = β or τ = 1− β. This results in τ > τtrg for
β ∈ ( 12 , 1) or β ∈ (0, 1

2 ), respectively. Thus, pure states maximize
τ and thus the figure of merit (6) despite being obviously differ-
ent from the target ρ̂ trg. Moreover, for the completely mixed state
ρ̂ trg = diag{0.5, 0.5}, we find τ = 〈ρ̂(α), ρ̂ trg〉 = 1

2 for all α. In this
case, τ is not even able to indicate differences at all.
The ill-definedness of the overlap-based functionals (6) in case

ofmixed target states is easily demonstrated by a toy control prob-
lem. Consider a qubit whose dynamics is determined by a purely
dissipative master equation,[7]

i�
d
dt

ρ̂(t) = L[u(t)]ρ̂(t)
= i�u(t)

[
σ̂−ρ̂(t)σ̂+ − 1

2

{
σ̂+σ̂−, ρ̂(t)

}] (8)

where σ̂−(σ̂+) are the standard lowering (raising) operators and
u(t) ≥ 0 is a time-dependent, controllable decay rate. We choose
the initial state of the qubit to be ρ̂(0) = |1〉〈1|. Thus, we can
reach any diagonal state ρ̂(T ) = α(T )|0〉〈0| + (1− α(T ))|1〉〈1|
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Figure 1. Optimization results for a qubit, where the dynamics is gov-
erned by Equation (8). The initial state is ρ̂(0) = |1〉〈1|, the target state
ρ̂trg = diag{0.6, 0.4} and the initial field u(t) = 0.01 with total propaga-
tion time T = 1. a) Final-time functionals Dre and Dsm, cf. Equation (6),
as a function of the number of iterations. b) Population α(T ) in |0〉 at final
time. The horizontal line indicates the respective population of the target
state ρ̂trg. c) Trace distance Dtr, cf. Equation (11), between the propagated
state ρ̂(T ) and the target state ρ̂trg.

with α(T ) > 0, since α(T ) can be controlled by appropriately
choosing u(t) for t ∈ [0, T ]. Figure 1 presents optimization re-
sults for a mixed state target, ρ̂trg = 0.6|0〉〈0| + 0.4|1〉〈1|, em-
ploying the functionals (6). Figure 1a shows the monotonic de-
crease of both functionals over the number of iterations, as ex-
pected for Krotov’smethod, while Figure 1b plots the correspond-
ing final time ground state population α(T ). The optimization
starts with a fairly low ground state population, α(T ) ≈ 0, due
to the non-optimal, that is, too small, guess field u(t). The decay
rate is increased during optimization such that α(T ) ≈ 1 after
convergence is reached. This result maximizes the overlap since
τopt ≡ 〈ρ̂opt(T ), ρ̂ trg〉 > 〈ρ̂ trg, ρ̂ trg〉 ≡ τeq with ρ̂opt(T ) = |0〉〈0|, and
thus realizes smaller values of the functionals Dre and Dsm. How-
ever, this is not what the optimization is supposed to achieve.
Figure 1c shows the trace distance Dtr (a reliable measure for the
closeness of states, as wewill discuss in Section 2.3) between ρ̂(T )
and ρ̂ trg as a function of the number of iterations. A minimum
is observed at the correct value α(T ) = αtrg = 0.6. The increase
of Dtr as the iterative algorithm proceeds, which is due to further
minimization of Dre and Dsm, illustrates that the optimization
misses the desired target.
This observation can be fully generalized to N-level systems

with a simple geometric picture.[40] By choosing a basis of trace-
less, Hermitian N × N matrices, {Âi }, with 〈Âi , Â j 〉 = δi, j , we
can write ρ̂ as

ρ̂ = 1
N

1̂N + r · Â (9)

where r = (a1, a2, . . . )� is the generalized Bloch vector, contain-
ing the expansion coefficients for matrices Â = (Â1, Â2, . . . )�.
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Figure 2. Bloch vectors r 1, r 2, r trg, rmax in a generalized Bloch sphere.
The outer sphere indicates pure states while the inner spheres correspond
to mixed states. rprj1 , rprj2 are the projections of r 1, r 2 onto r trg.

Then, the Hilbert–Schmidt overlap of two states ρ̂1, ρ̂2 becomes

τ = 〈ρ̂1, ρ̂2〉 = 1
N

+ r 1 · r 2 = 1
N

+ |r 1||r 2| cos(θ ) (10)

where |r 1|, |r 2| are the lengths of the respective Bloch vectors and
θ is the angle between them. Hence, maximization of τ means
maximizing |r 1|, |r 2| and minimizing θ .
Figure 2 illustrates the behavior of the overlap geometrically,

comparing two states ρ̂1, ρ̂2 with Bloch vectors r 1, r 2 to the tar-
get state ρ̂trg with r trg. Here, we assume r 1 ‖ r 2 and |r 2| > |r 1| >

|r trg|. In this case, the angles θ1, θ2 of r 1 and r 2 with r trg are
identical but the purer state r 2 has the larger projection onto r trg
and thus yields τ2 ≡ 〈ρ̂2, ρ̂ trg〉 > 〈ρ̂1, ρ̂ trg〉 ≡ τ1. This contradicts
the expectation that ρ̂2 should be further away from ρ̂ trg than
ρ̂1—a fact that is evidently not captured by the functionals (6).
Moreover, the simple geometric picture of Figure 2 demonstrates
that the state maximizing τ is always the pure state ρ̂max with
rmax ‖ r trg and θ = 0. This readily explains the optimization re-
sults of Figure 1.

2.3. A Bloch Vector-Based Functional for Mixed State Targets

Before inspecting specific measures for the closeness of two
mixed states to replace an overlap-based functional (6), we sum-
marize the desirable properties that a distance measure should
satisfy for use in OCT. Let SH be the space of density matrices
over the Hilbert spaceH. A function D, which quantifies the dis-
tance of two states ρ̂1, ρ̂2 ∈ SH, should fulfill

1. ∀ρ̂1, ρ̂2 ∈ SH : D(ρ̂1, ρ̂2) ∈ R

2. D(ρ̂1, ρ̂2) = inf
ρ̂′
1,ρ̂

′
2∈SH

D(ρ̂ ′
1, ρ̂

′
2) ⇔ ρ̂1 = ρ̂2

These two conditions provide the minimal framework for suit-
able state-to-state optimization functionals. The first property en-
sures that an order relation can be established. This is essential
since it allows the optimization algorithm to quantify improve-
ment in terms of a decrease of the function value. The second
property guarantees that the minimal value identifies the desired
state uniquely.[41]

Evidently, the second property is not met by the overlap-based
functionals Dre and Dsm. However, there exist various distance
measures satisfying the two properties,[42,43] for instance, the
trace distance,[44]

Dtr(ρ̂1, ρ̂2) = 1
2
‖ρ̂1 − ρ̂2‖tr, ‖ρ̂‖tr = Tr

{√
ρ̂†ρ̂
}

(11)

the Bures distance, based on the Uhlmann fidelity,[45,46]

DBures(ρ̂1, ρ̂2) =
√
1− Tr

{√√
ρ̂1ρ̂2

√
ρ̂1

}
(12)

the Hellinger distance,[47]

DHellinger(ρ̂1, ρ̂2) =
√
1− Tr

{√
ρ̂1
√

ρ̂2

}
(13)

the Jensen–Shannon divergence,[48]

DJS(ρ̂1, ρ̂2) =
√
E
(

ρ̂1 + ρ̂2

2

)
− 1
2
E (ρ̂1)− 1

2
E (ρ̂2) (14)

with E (ρ̂) = Tr{ρ̂ ln(ρ̂)} the von Neumann entropy,[49] and the
Hilbert–Schmidt distance,[50]

DHS(ρ̂1, ρ̂2) = 1
2
Tr
{
(ρ̂1 − ρ̂2)

2} (15)

to name just a few. Note that DHS appears in a slightly modi-
fied version to match the definition in ref. [34], and some of the
other measures have been adapted to satisfy D ∈ [0, 1]. Although
measures (11)–(15) fulfill the two properties, there is still one
caveat left: With regard to gradient-based optimization almost all
of them suffer from the fact that no closed analytical expression
for their derivatives with respect to ρ̂1 or ρ̂2 exists.When resorting
to numerical evaluation of the derivatives, the required spectral
decomposition results in accuracy problems due to the presence
of square roots, respectively logarithms, of the state. This prob-
lem becomes particularly severe in the common case that sev-
eral eigenvalues of the density matrix are close to zero, rendering
most of the aforementioned functionals impractical for applica-
tion in gradient-based optimization.
A notable exception is the Hilbert–Schmidt distance (15),

which therefore has already found use in gradient-based OCT.[34]

Motivated by the simple geometric picture of state mismatch, cf.
Figure 2, one can also easily understand, why DHS, in contrast to
Dre or Dsm, is reliable. In terms of Bloch vectors, it reads

DHS(ρ̂1, ρ̂2) = 1
2
|r 1 − r 2|2 (16)
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where DHS = 0 is only attainable in case of identical Bloch vec-
tors.
While the Hilbert–Schmidt distance mixes “angle” and

“length” mismatch in a single term, one might wonder whether
splitting up both contributions into two separate terms, say Dangle

and Dlength, allows for amore targeted optimization.We therefore
define

Dsplit(ρ̂1, ρ̂2) = α1Dangle(ρ̂1, ρ̂2)+ α2Dlength(ρ̂1, ρ̂2) (17)

where α1, α2 ≥ 0 are numerical parameters that allow to weight
the contributions individually, and

Dangle(ρ̂1, ρ̂2) = 1
π 2

arccos2
(

d12√
d11d22

)
(18a)

Dlength(ρ̂1, ρ̂2) = N
N − 1

(√
d11 −

√
d22
)2

(18b)

where we have used di j ≡ 〈ρ̂i , ρ̂ j 〉 − 1/N = r i · r j . In the Bloch
representation, we find the simpler form

Dangle(ρ̂1, ρ̂2) = θ 2

π 2
(19a)

Dlength(ρ̂1, ρ̂2) = N
N − 1

(|r 1| − |r 2|)2 (19b)

from which it is clear that both terms quantify angle and length
mismatch individually. Measure (17) fulfills all required proper-
ties and can easily be derivedwith respect to ρ̂1 and ρ̂2. The deriva-
tives read.[51]

∇ρ̂1Dangle(ρ̂1, ρ̂2) = − 2
π 2

arccos
(

d12√
d11d22

)
ρ̂2 − d12

d11
ρ̂1√

d11d22 − d212
(20a)

∇ρ̂1Dlength(ρ̂1, ρ̂2) = 2
N

N − 1

√
d11 − √

d22√
d11

ρ̂1 (20b)

3. Application: Generation of Mixed State
Squeezing

3.1. Model and Control Problem

We follow ref. [29] and consider a mode of an optical cavity and
one of a mechanical resonator, coupled via radiation pressure.
The optical cavity is driven by two lasers at the mechanical side-
bands, ω± = ωcav ± �, where ωcav and � are the frequencies of
cavity and mechanical resonator, respectively. In the linearized
regime, theHamiltonian describing the joint system of cavity and
resonator reads[29]

Ĥ = −�d̂†
(
G+b̂† + G−b̂

)
+H.c.

− �d̂†
(
G+b̂e−2i�t + G−b̂†e2i�t

)
+H.c.

(21)

where d̂ (b̂) are the annihilation operators for photons (phonons).
G+ (G−) are effective optomechanical coupling rates, given by

the optomechanical coupling constant times the amplitude of the
lasers driving the blue (red) sideband of the cavity. To account for
decay, we use the quantum optical master equation:[7]

i�
d
dt

ρ̂(t) = Lρ̂(t) (22)

=
[
Ĥ, ρ̂(t)

]
+ i�

3∑
l=1

(
L̂l ρ̂(t)L̂

†
l − 1

2

{
L̂†
l L̂l , ρ̂(t)

})

to describe the system’s dynamics. The Lindblad operators are
given by

L̂1 = √
κ d̂ (23a)

L̂2 =
√

�M(nth + 1) b̂ (23b)

L̂3 =
√

�Mnth b̂† (23c)

with κ and �M the photon and phonon decay rates, respectively,
and nth describing the thermal occupancy of the mechanical
resonator.[29]

Equation (22) models the driven dissipative time evolution
with steady state ρ̂ th. In other words, the optomechanical sys-
tem will end up in ρ̂ th, independent of the initial state ρ̂(0), if
one waits sufficiently long, that is, ρ̂(0) → ρ̂ th for t → ∞. The
reduced steady state of the resonator alone is obtained by taking
the partial trace over the cavity mode, ρ̂ th

res = Trcav{ρ̂ th}. An appro-
priate choice of couplingG− and relative strengthG+/G− < 1 re-
sults in squeezed thermal steady states of the resonator,[29] where
the squeezing strength is quantified by the expectation value 〈X̂2

1〉
of the mechanical quadrature, X̂1 = (b̂ + b̂†)/

√
2. It was found[29]

that larger squeezing of ρ̂ th
res is usually accompanied by lower pu-

rity and vice versa. The generation of strongly squeezed states
comes thus at the expense of lower purity.
Note that the purity of ρ̂ th

res, as well as that of ρ̂
th is in general de-

termined by κ, �M, and nth, in addition to G+ and G−. In cavity
optomechanics, the joint effect of these parameters is captured
by the cooperativity, C = 4G2

−/(κ�M). It serves as figure of merit
for any optomechanical system, quantifying the exchange of pho-
tons and phonons, that is, the coupling between optical cavity and
mechanical resonator.[20,52]

If the laser drives operate continuously, the time T it takes to
reach ρ̂ th with sufficient accuracy is essentially determined by the
cooperativity C and the optomechanical coupling rates G+, G−.
Assuming cavity and resonator to be initially in thermal equilib-
rium, wemay askwhether it is possible to accelerate the approach
of the steady state by suitably shaping the drives. To this end, we
consider time-dependent driving strengths of the blue and red
sideband tones. This results in time-dependent effective coupling
rates G−(t) and G+(t). We will use optimal control theory as out-
lined in Section 2 to determine shapes of G−(t) and G+(t) that
allow for a faster approach to the steady state compared to the
constant drives of ref. [29].
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3.2. Speeding up the Approach of the Steady State

The assumption of thermal equilibrium initially corresponds, for
the cavity, to the ground state,[53] ρ̂cav(0) = |0〉〈0|, whereas the ini-
tial state of the resonator is characterized by the thermal occu-
pancy nth, for which we choose nth = 2.[54] Cavity and resonator
decay rate are taken from the experiment reported in ref. [30], that
is, κ/2π = 450 kHz, �M/2π = 3Hz. The target state for the opti-
mization is given by the state obtained with the time-continuous
protocol of ref. [29] after 15 ms which is virtually identical to the
steady state. For the given parameters, the squeezing strength in
the steady state, 〈X̂2

1〉ZPF/〈X̂2
1〉, amounts to approximately 5.7 dB

which is beyond the 3 dB limit. Constant values for G− and G+,
cf. ref. [29], are taken as a guess pulse for starting the iterative
optimization. In detail, we choose G+ and G− such that C = 100
andG+/G− = 0.7, since this balances well squeezing andmixed-
ness of the associated steady state. In the calculations, Nres = 40
and Ncav = 4 levels for resonator and cavity mode turn out to
be sufficient to prevent reflection due to the finite Hilbert space
size. Fast oscillating terms in Equation (21) have been neglected,
which is, given our choice of C, in accordance with ref. [29].
Figure 3 compares the dynamics of the time-continuous pro-

tocol of ref. [29] (blue solid lines) to those induced by opti-
mized drives, using several target functionals and a total time
of 1 ms. The joint state purity and resonator squeezing are an-
alyzed in Figure 3a,d, respectively. Moreover, Figure 3b shows
the difference (G2

−(t)− G2
+(t))

1/2, which determines an effective
cooling rate into the squeezed state while Figure 3c shows the
ratio G+(t)/G−(t), an effective rate determining the squeezing
strength of the final steady state, cf. ref. [29]. Pulses optimized
using DHS or Dsplit result in an acceleration of the thermal-
ization process, cf. the blue solid versus purple double-dashed,
brown dotted, and green dashed-double dotted lines in Figure 3a.
These lines all converge to the proper joint state purity. Similarly,
the resonator squeezing reaches the desired value for the corre-
sponding curves in Figure 3d and does so significantly faster for
all optimized pulses.
Inspection of Figure 3b,c allows us to unravel the control strat-

egy. It consists, independently of the target functional, in an
increase of the effective cooling rate (G2

−(t)− G2
+(t))

1/2 in or-
der to speed up the cooling into the (squeezed) steady state. In
general, ramping up G− and G+ will always accelerate the co-
herent part of the dynamics, since the norm of the Hamilto-
nian (21) determines the timescale of the system’s coherent dy-
namics. However, ramping up the coupling also changes the
steady state of the driven dissipative dynamics. Thus, the increase
of (G2

−(t)− G2
+(t))

1/2, which is in our case in fact achieved by in-
creasing bothG−(t) andG+(t), needs to be balanced by amodula-
tion of G+(t)/G−(t) to ensure steering the system toward the cor-
rect target state. Interestingly, the optimizations with both DHS

(purple double-dashed lines) and Dsplit (green dashed-double dot-
ted and brown dotted lines) find almost identical control fields.
This is not guaranteed due to non-uniqueness of the control so-
lution in most cases and indicates that we explore comparable
optimization landscapes[55,56] despite the different functionals.
Note that the optimized control fields of Figure 3b,c only re-

quire a slow modulation of the drive amplitudes while keeping
their frequencies constant. This makes them experimentally fea-
sible with existing technology—such slowmodulations can easily
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Figure 3. Comparison of the time evolution obtained with time constant
(blue solid lines) and optimized drives, using the target functionals indi-
cated in the legend: a) joint state purity, b,c) optimized effective cooling
rate (G2−(t) − G2+(t))1/2 and squeezing rate G+(t)/G−(t), respectively, d)
squeezing strength 〈X̂21〉 compared to the zero-point fluctuations 〈X̂21〉ZPF
in dB, that is, 10 · log10{〈X̂21〉ZPF/〈X̂21〉}. “Dsplit (adapt)” represents an opti-
mization using an adaptive choice for the weights of angle and length, cf.
Equation (24).

be realized by arbitrary waveform generators allowing for ampli-
tude modulations on timescales down to subnanoseconds[57] or
even significantly more complex pulse shapes, see for example,
ref. [58] for one example.
Another concern that often arises in the context of experimen-

tal feasibility of optimal control protocols is robustness with re-
spect to noise in the controls. We therefore examine whether
our optimized drives are robust with respect to amplitude noise.
To this end, we apply 0.2, 0.5, and 1.0% constant noise to the
optimized field shapes[59] by rescaling the field amplitudes ac-
cordingly. We obtain for the final trace distance Dtr with respect
to the targeted squeezed steady state an average of 3.7× 10−4,
9.2× 10−4, and 1.8× 10−3, respectively. This needs to be com-
pared to Dtr = 4.8× 10−6 for the original optimized fields and
to Dtr = 2.6× 10−2 which one would obtain under the evolution
with constant drives up to that point in time. The increase of the
absolute error, of the order of 10−4 − 10−3, is not surprising giv-
ing the order of the noise which is 10−3 − 10−2.
Figure 4a provides a closer look at the asymptotic squeezing

dynamics of Figure 3d, showing that only pulses optimized with
DHS and Dsplit reach the correct squeezing at final time, cf. the
purple double-dashed and brown dotted lines. In contrast, the
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Figure 4. a) The relevant part of the squeezing dynamics as shown in Fig-
ure 3d. b) A similar dynamics as in (a) but for an optimization with final
time 5 ms (optimized fields and dynamics not shown).

fields optimized with Dre and Dsm (red dashed and dark blue dot-
dashed lines in Figure 3) fail to steer the system toward a state
with the correct purity. Instead, they act in order to increase the
purity at final time T as much as possible, failing to reach, how-
ever, completely pure states which are not attainable due to the
finite temperature (nth > 0). Figures 3 and 4a thus illustrate once
more that the target functionals Dre and Dsm should not be used
for non-pure target states.
Interestingly, the dynamics shown in Figure 4a all result in

a comparable squeezing with the final values 〈X̂2
1〉ZPF/〈X̂2

1〉 ob-
tained with Dre and Dsm even beyond the intended steady state
squeezing of roughly 5.7 dB, cf. the red dashed and dark blue
dot-dashed lines in Figure 4a. This indicates a larger squeezing
to be possible than the one set by the steady state with its cor-
responding tradeoff between squeezing strength and purity. The
apparently “good” optimization results with respect to the final-
state squeezing obtained with Dre and Dsm in Figure 4a can be
explained by the fact that squeezing of any state is mainly de-
termined by its direction on the generalized Bloch sphere. Here,
the optimization benefits from the fact that Dre and Dsm try to
match the final state directions. However, this is not always the
case, as illustrated in Figure 4b showing the squeezing dynam-
ics for a similar optimization as in Figure 3 but with a final time
of 5 ms. Note that for the constant protocol of ref. [29], the opti-
mal relation G+/G− of driving strengths which maximizes the
squeezing strength can be estimated by nth and the cooperativ-
ity C. However, this estimation is no longer easily possible for
shaped driving fields since they give rise to time-dependent co-
operativities C(t).
If the state preparation errors obtained with the optimized

fields after 1ms are not yet sufficient, it should be possible to con-
tinue approaching the steady state using the original protocol[29]

of constant drives. This is examined in Figure 5 which shows
the evolution of the trace distance Dtr, cf. Equation (11), under
constant drives and optimized fields from Figure 3b,c, switched
back to constant drives at T = 1ms. Dtr continues to decrease
for times larger than the switching time, that is, the final time
used in the optimization. A monotonous decrease of Dtr across
the switching time, as observed in Figure 5, is expected for the
fields optimized with Dsplit and DHS. It does not need to be the
case, however, for the fields optimized with Dre or Dsm. Here, the
state at the switching time, although already closer to the target
state than with constant driving, is still comparatively far from
the steady state. Nevertheless, upon subsequent propagationwith
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Figure 5. Dynamics of the trace distance Dtr, cf. Equation (11), under the
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vertical line) all optimized fields are extended by the constant fields of the
original, time-independent protocol.
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Figure 6. a) Peak and average cooperativity C, calculated from the opti-
mized fields G−(t), required to achieve a state preparation error of at most
Dtr < 10−4, as function of the total optimization time T (employing DHS
for all optimizations). The horizontal line indicates the static cooperativ-
ity used in the experiment reported in ref. [30]. b) Minimal time against
required cooperativity to reach a steady state with Dtr < 10−4 for the orig-
inal, time-constant protocol of ref. [29]. Note that each point in (b) corre-
sponds to a different steady state while all points in (a) correspond to the
same steady state.

constant drives, Dtr is further improved in all cases. Figure 5 thus
provides another illustration of the speed up in preparing the
squeezed steady state.
Finally, Figure 6 answers the question by how much the

approach of the steady state can be accelerated. The price for
speed-up is cooperativity, or, in other words, laser intensity, as
illustrated by Figure 6a. It shows the peak and average coopera-
tivity C, determined by the optimized field G−(t), as a function of
the total optimization time T . Given an experimental bound on
the cooperativity C, one can thus easily determine the required
time T to reach the target state. Taking the experimental value
of the cooperativity reported in ref. [30], we find a speedup of
at least two orders of magnitude, see Figure 6a, compared to
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Figure 7. Convergence behavior of optimization algorithm for the target
functionals used in Figure 3. The weighting of the two terms in Dsplit was
chosen as α1 = α2 = 1/2, cf. Equation (17), for the green dashed double-
dotted line, while it was adapted after each iteration for the brown dotted
line (see text).

the original protocol employing constant drives.[29] Conversely,
fixing a certain duration T determines the required cooperativity
or laser power. Durations as short as T = 0.07ms are feasible,
while the state preparation errors are still sufficiently small with
Dtr < 10−4 for all points in Figure 6a. Moreover, the optimized
pulse shapes corresponding to the data from Figure 6a all look
quite similar to the ones presented in Figure 3b,c.
Both peak and average cooperativity of the optimized field

increase with decreasing duration, as one would expect for reach-
ing the same target in less time. We observe an almost perfect
power law dependence of the cooperativity C as a function of the
duration T in Figure 6a. This power law should be compared to
the intrinsic scaling of the system due to its non-linearity which
is shown in Figure 6b. Note that each point in Figure 6b corre-
sponds to a different steady state while all points in Figure 6a
correspond to the same steady state, namely the one used as
benchmark in Figure 3 after 15 ms. The similar scaling observed
in Figure 6a,b thus indicates the system non-linearity to be
the defining feature even in the case of time-dependent and
optimized drives.
Note that the short fields with cooperativities C ≈ 104 approach

the regime where the rotating wave approximation starts to break
down.[29] Hence, we chose not to examine shorter, respectively
stronger fields in Figure 6.

3.3. Performance of Optimization Functionals

The convergence behavior of the optimization algorithm for
the various target functionals used in Figure 3 is inspected in
Figure 7. The functional value of Dre and Dsm rapidly approaches
a plateau which indicates that the optimization got stuck and no
improvement with respect to the guess pulses could be realized.
In contrast, optimizations with DHS (purple double-dashed line)
and Dsplit (green dashed-double dotted and brown dotted lines)
show an improvement of several orders of magnitude. For the
optimizations with Dsplit, we have used two different variants. For
the green dashed double-dotted line constant, equivalent weights
α1, α2, cf. Equation (17), have been used, while for the brown dot-
ted line we have employed an automated update scheme for the
weights after each iteration. In the latter case, we have adjusted
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the weights for the next iteration i + 1:

α
(i+1)
1 =

D(i )
angle

D(i )
angle + D(i )

radius

, α
(i+1)
2 = D(i )

radius

D(i )
angle + D(i )

radius

(24)

using values of the current iteration i . This effectively causes the
dominating term to become preferentially minimized within the
next iteration. Although breaking strict monotonic convergence
of Krotov’s method over multiple iterations, due to optimizing a
different functional in each iteration, it yields better convergence
in our example. The plateau of DHS at ≈10−10, starting at itera-
tion ≈50, is not of physical origin but caused by the propagation
accuracy; choosing a finer time discretization would probably al-
low the optimization to reach even smaller values.
Note that the scaling parameters λk , cf. Equation (2), have been

individually chosen for the different functionals in all optimiza-
tions shown in Figure 7.[60] The necessity of different scalings is
readily explained by the co-states χ̂l (T ), since their norm influ-
ences the magnitude of the field updates, via Equation (5b). Due
to different norms for different functionals, the optimization pa-
rameters λk must usually be adjustedwhen switching functionals
if one wants to maintain field updates of similar magnitude.
In the same context, one might naively conjecture from Fig-

ure 7 that, because DHS yields smaller functional values than
Dsplit, DHS yields better optimization results. However, such a
statement would in general be wrong. As discussed above in Sec-
tion 2.3, the accuracy with which the target state is reached is not
uniquely assessed by a singlemeasure. A small value of DHS does
not necessarily imply a similarly good value for any other dis-
tance measure. Figure 8 therefore displays the value of several
reliable distance measures for the final state obtained with the
fields optimized using DHS and Dsplit and compares it with the
non-optimized protocol, that is, constant driving (blue line). We
indeed observe that the optimization with DHS (purple double-
dashed line) yields the smallest state-preparation errors also for
all other distance measures in Figure 8.
This does not need to hold in general, however, since the ab-

solute value of any distance measure D is not to be confused
with relative physical closeness of two states. While the mea-
sures D considered in Figure 8 are all known to be reliable, they
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assess state mismatches differently for D > 0. For instance, if
D(ρ̂2, ρ̂ trg) > D(ρ̂1, ρ̂ trg) > 0 for two states ρ̂1, ρ̂2, a desired target
state ρ̂ trg, and ameasure D does not imply the same to be true for
another measure D̃. In other words, two reliable measures can
still disagree on which of two states is closer to the target even
though they both correctly assess when a state becomes identical
to the target.
For the presented problem, the performance of the Hilbert–

Schmidt distance DHS compared to the split-functional Dsplit is
slightly better, cf. Figures 7 and 8. Nevertheless, Dsplit contains in-
formation about angle and length mismatch of the Bloch vectors
individually and thus provides more insight into the dominating
source of mismatch which DHS cannot provide. While this infor-
mation was not of relevance here it could certainly be of interest
for other optimization problems.

4. Conclusions

We have studied how to speed up evolution toward a squeezed
steady state in a driven optomechanical system, consisting of
cavity and mechanical resonator coupled via radiation pressure.
To this end, we have replaced the constant drives of the origi-
nal protocol[29] by time-dependent pulses and derived the corre-
sponding pulse shapes using quantum optimal control theory.
To the best of our knowledge, our work is the first to apply quan-
tum optimal control to cavity optomechanics. Further potential of
quantum optimal control for this popular experimental platform
is highlighted by a recent proposal suggesting to couple the cavity
additionally to a two-level system in order to drive themechanical
oscillator into a Fock state.[61]

Our control solutions for accelerating the approach of a
squeezed steady state consist in increasing the effective optome-
chanical coupling at intermediate times. At final time, the value
of the constant coupling is resumed, ensuring approach of the
proper steady state. We find the cooperativity corresponding to
the increased optomechanical coupling due to the optimized
fields to grow polynomially with decreasing protocol duration,
for both average and peak value. Limiting the maximum coop-
erativity to that of the experiment reported in ref. [30], a speed
up of more than two orders of magnitude is possible, compared
to the protocol using constant drives. The required pulse shapes
correspond to simple modulations and are feasible with current
technology using, for example, arbitrarywave formgenerators. In
view of using the squeezed state, for example in quantum sens-
ing, such a speed up will be important tominimize the detrimen-
tal influence of decoherence.
Since the steady state balances quantum mechanical purity

and resonator squeezing, the control problem targets a non-pure
state, and caremust be takenwhen defining the target functional.
In particular, functionals based on state overlaps fail when both
states—the true state and the target state—are mixed. A possi-
ble remedy consists in replacing the overlap by a (modified) dis-
tance measure.[34] We have visualized the failure of overlap based
functionals by examining the state vectors on the Bloch sphere:
While the overlap only seeks to match the angle, a reliable fig-
ure of merit needs to match both angle and length of the vectors.
This geometric picture provides the intuition for defining an al-
ternative target functional, based on matching angle and length

of the Bloch vectors separately. We have successfully employed
this target functional as an alternative to a functional based on the
Hilbert–Schmidt distance,[34] obtaining fairly similar solutions to
the control problem at hand.Moreover, we observe that optimiza-
tion with both functionals not only leads to a minimization of the
respective distance measure that is being employed but also to a
reduction of any other distance measure that can be used to as-
sess the state preparation error.
Our results of accelerated state preparation are relevant when

exploiting squeezed states, for example in quantum sensing.
Moreover, our Bloch vector based target functional should be use-
ful, in general, to estimate quantum speed limits.[62] While the
mismatch in Bloch vector angles quantifies rotation (i.e., unitary)
errors, that in Bloch vector length estimates dissipative errors. If,
for a given system, one can find an expression for the evolution
speed of Bloch vector angle and length, this would allow to deter-
mine separate quantum speed limits for the unitary and dissipa-
tive parts of a system’s evolution. One could thus decide which
of the two sets the overall speed limit.
Our results also give rise to an interesting further question in

the context of squeezed state preparation. Incidentally, we have
found fields that, while not resulting in the correct steady state,
produce larger squeezing than expected for the steady state, with
higher purity. This suggests to directly maximize the squeezing
at final time, irrespective of the state at that time, instead of tar-
geting a specific squeezed state as we have done here. Such an
optimization is possible by taking the expectation value of the
relevant quadrature as target functional. It would allow to exam-
ine the conditions for avoiding the trade-off between purity and
squeezing to which the steady state is subject to[29] and, more
generally, determine the ultimate limit of quantum mechani-
cal squeezing.
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