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Abstract. We combine a quantum dynamical propagator that explicitly accounts for quantum mechanical
time ordering with optimal control theory. After analyzing its performance with a simple model, we apply it
to a superconducting circuit under so-called Pythagorean control. Breakdown of the rotating-wave approx-
imation is the main source of the very strong time-dependence in this example. While the propagator that
accounts for the time ordering in an iterative fashion proves its numerical efficiency for the dynamics of
the superconducting circuit, its performance when combined with optimal control turns out to be rather
sensitive to the strength of the time-dependence. We discuss the kind of quantum gate operations that the
superconducting circuit can implement including their performance bounds in terms of fidelity and speed.

1 Introduction

The interaction of matter with electromagnetic fields
provides access to study the structure and dynamics
of quantum systems. Quantum control takes this con-
cept one step further, asking how external fields can
be used to steer the dynamics in a prespecified, desired
way. Optimal control theory [1,2] is a set of methods
to derive the shape of the electromagnetic fields that
accomplish a given task in the best possible way. Its
application ranges from nuclear magnetic resonance [3],
driven electron dynamics [4–7], or photoinduced chem-
ical reactions [8] all the way to quantum information
science [9–11] (see Ref. [1] for a more comprehensive
overview). Very often, optimal control calculations yield
pulse shapes which vary very strongly as a function of
time. This results in non-negligible effects of quantum
mechanical time ordering, due to the non-commutativity
of an explicitly time-dependent Hamiltonian with itself at
two different instances of time.

While one might naively argue that these effects van-
ish for sufficiently small time steps, such an argument
overlooks the accumulation of error that accompanies
the partitioning of a given overall propagation time into

? Contribution to the Topical Issue “Special issue in honor
of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira,
A. Rubio, and M.A.L. Marques.

a These two authors contributed equally.
b e-mail: christiane.koch@uni-kassel.de

ever smaller steps. In contrast, a propagation method
that explicitly accounts for time ordering will allow to
accurately assess the impact of time ordering on quan-
tum optimal control. At the same time, the propagation
scheme needs to be numerically efficient since optimal
control algorithms require many propagations to derive
suitable pulse shapes. Generally, semi-global methods
offer the best compromise between accuracy and efficiency.
They are based on splitting the overall domain of integra-
tion into small sub-intervals and solving the differential
equation of interest with a spectral method, i.e., a global
approximation, within the small interval. In the spatial
domain, these approaches are typically summoned under
the term finite element discrete variable representation.
An equivalent approach in the time domain is given by
the iteratively time ordering propagator introduced in ref-
erence [12]. In a nutshell, it is based on rewriting the
action of the explicitly time-dependent part of the Hamil-
tonian onto the system state as an inhomogeneity such
that the homogenous Schrödinger equation with explicitly
time-dependent Hamiltonian becomes an inhomogeneous
Schrödinger equation with time-independent Hamilto-
nian. The formal solution of the resulting inhomogeneous
Schrödinger equation can be determined using a spectral
method [13], similarly to the Chebyshev propagator [14]
for the (homogeneous) Schrödinger equation with time-
independent Hamiltonian. Such a propagator that explic-
itly accounts for time ordering is capable of efficiently
computing arbitrary time-dependencies of the quantum
system up to a very high precision [12]. This is in contrast
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to more commonly used propagation methods such as the
Chebyshev propagator with a piecewise constant (PWC)
approximation of the Hamiltonian’s time-dependence.
Moreover, the iterative time ordering approach is not
limited to the conventional time-dependent Schrödinger
equation (TDSE) but can also be extended to other forms
of the equation of motion, be it non-linear or non-unitary
[15,16].

Having a highly accurate while still efficient propagation
method for explicitly time-dependent problems at hand,
we can assess the role of time ordering in quantum opti-
mal control theory. To this end, we merge the iteratively
time ordering propagator [12,15,16] with a gradient-based
quantum optimal control algorithm, namely Krotov’s
method [8,17–20]. Compared with other optimal control
variants, Krotov’s method comes with the advantage that
monotonic convergence is guaranteed for a wide range
of control problems [20], including non-linear equations
of motion, a non-linear interaction with the control or
“unusual” target functionals that are useful in the context
of quantum information [10,11]. Note that a combination
of iterative time ordering and quantum optimal control
holds the promise of reducing the dimension of the con-
trol search space, when using a PWC representation of the
external field. A smaller control space dimension should
speed up convergence of the local iterative optimization.
We first test the new algorithm for a simple control prob-
lem, the quantum harmonic oscillator under frequency
control, and then apply it to quantized superconducting
circuits. These are one of the most promising physi-
cal platforms for quantum information processing. Unlike
qubits encoded in atoms or ions, the rotating wave approx-
imation is not well justified in this case. In other words,
the external fields driving the dynamics of superconduct-
ing circuits often exhibit a very strong time-dependence.
This makes them a suitable test case for our algorithm.

The paper is organized as follows. We present the
iteratively time ordering propagator and its combination
with Krotov’s method for optimal control in Section 2.
Section 3 analyzes the performance of the propagator as
well as its combination with Krotov’s method for the har-
monic oscillator. The application of the new method to
a superconducting circuit is presented in Section 4. We
conclude in Section 5.

2 Numerical methods

We briefly recall the iterative time ordering (ITO) quan-
tum propagator [12,15,16] in Section 2.1 and detail its
implementation in Appendix A. In Section 2.2, we dis-
cuss how to combine iterative time ordering with Krotov’s
method for quantum optimal control [17,20].

2.1 Quantum dynamics with iterative time ordering

The basic idea of the ITO quantum propagator is to
rewrite the equation of motion as an inhomogeneous first
order ordinary differential equation (ODE). The formal
solution of this ODE can be constructed by expansion
into orthogonal polynomials, similar to the Chebyshev

[14] or Newton propagator [21] for the standard time-
dependent Schrödinger equation with time-independent
Hamiltonian. Since the inhomogeneity depends on the
solution of the ODE that one seeks, it must be determined
iteratively in a self-consistent loop.

No matter what is the specific physical system at hand,
its time evolution is described by a first order (in time)
differential equation. Most commonly, the equation of
motion is linear in the state of the system. This is true
for both closed and open quantum systems. In the first
case, the time-dependent Schrödinger equation has to be
solved,

∂

∂t
|ψ(t)〉 = − i

~
Ĥ(t) |ψ(t)〉 = − i

~
Ĥ0 |ψ(t)〉+ |φ(t)〉 , (1)

where, for convenience, we have separated the explicitly
time-dependent part,

|φ(t)〉 = − i

~
Ŵ(t) |ψ(t)〉 .

Similarly for open quantum systems, the Liouville von
Neumann equation reads

∂

∂t
ρ̂(t) = − i

~
[Ĥ(t), ρ̂(t)]

+
N2−1∑
k=1

γk

(
L̂kρ̂(t)L̂

†
k −

1

2
{L̂
†
kL̂k, ρ̂(t)}

)
= L(t)ρ̂(t) = L0ρ̂(t) + σ̂(t), (2)

where the explicitly time-dependent part of the generator
is captured by σ̂(t),

σ̂(t) = V(t)ρ̂(t),

and where we have assumed the Lindblad form [22]. How-
ever, the equation of motion may also depend non-linearly
on the state of the system. Famously, it does so in time-
dependent functional theory [23–25]. Another example
is dynamics in the mean-field approximation, such as
the Gross–Pitaevskii equation in case of a Bose–Einstein
condensate,

i~
∂

∂t
|ψ(t)〉 =

(
p̂2

2m
+ V̂ + g|ψ(t)|2

)
|ψ(t)〉

= Ĥ0 |ψ(t)〉+ |φ(t)〉 . (3)

Here, we have separated out the non-linear term, in anal-
ogy to the explicit time-dependence in equations (1) and
(2)

|φ(t)〉 = Ŵ(ψ, t) |ψ(t)〉 .

Equations (1)–(3) have in common that they can all
be written in the form of an inhomogeneous first order
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differential equation [15],

d

dt
u(t)= G(t)u(t) = G0u(t) + s(u(t), t). (4)

Here, the operator G0 acting on the state u(t) is time-
independent and the inhomogeneity s(u(t), t) contains the
entire time-dependence as well as any non-linearity of the
generator. Since s(u(t), t) depends on the not-yet-known
solution of the equation of motion, u(t), equation (4) is
solved iteratively, until self-consistence is reached [12]. To
obtain the best possible convergence of the self-consistent
loop, the inhomogeneity should be as small as possible.
This can be achieved by optimally splitting the genera-
tor G(t) into time-dependent and time-independent parts,
i.e., by taking the time-independent part at the mid-
point of each time interval, G0 ≡ G((tn + tn+1)/2) (as
in the PWC approximation). The time-dependent part is
the “correction” to G(t), i.e., Gtd(t) ≡ G(t)−G0. Denot-
ing the step in the self-consistent loop by k, k ≥ 1,
equation (4) becomes

d

dt
u(k)(t) = G0u

(k)(t) + s(u(k−1)(t), t), (5)

which requires a guess state u(0)(t) for the first step. The
choice of u(0) will be discussed below.

Provided the inhomogeneity s can be written as a
Taylor polynomial, equation (5) can be solved based
on Duhamel’s principle. The latter links the solution of
an inhomogeneous ODE to the homogeneous solution
uhom(t) = U(t)u0 by

uinhom(t) = uhom(t) +

∫ t

0

U(t− τ)s(τ) dτ. (6)

In our case, the homogeneous solution is simply given by

U(t) = exp(G0t),

since G0 is time-independent. In order to obtain the
required form for the inhomogeneity, we first interpolate s
as an orthogonal polynomial of a given order M [12,15,16].
The “detour” via orthogonal polynomial yields a global
approximation of s in the time interval and thus much
better convergence than directly evaluating s in terms of a
Taylor series [21]. Note that this observation applies to the
comparison with any propagation method which converges
only polynomially in the time step and for which the error
is distributed non-uniformly. This includes in particular all
propagation schemes constructed from the Taylor and the
Magnus expansion [26]. Here, we choose Newton polyno-
mials for our global approximation because they open up
the possibility to increase M on the fly, due to their recur-
sive definition. For the time being, we use constant M and
Chebyshev–Gauss–Lobatto (CGL) sampling points,

τj =
δt

2

(
1− cos

(
j − 1

M − 1
π

))
, j = 1, . . . ,M. (7)

For a polynomial inhomogeneity s, the integral in equa-
tion (6) can be solved analytically, yielding the formal
solution of equation (5), that is,

u(k)(tn + τ) = fM (G0, τ)v
(k)
M +

M−1∑
m=0

τm

m!
v(k)m , (8a)

with

v(k)m = G0v
(k)
m−1 + s

(k)
m−1, v

(k)
0 = u(k)(tn), (8b)

and

fM (z, t) =

{
1
zM

(
exp(zt)−

∑M−1
m=0

(zt)m

m!

)
z 6= 0

tM

M ! z = 0
. (8c)

The indices k and n in equations (8) denote the cur-
rent iteration and time interval, respectively, with τ ∈
[0, δt]. sm are the coefficients of the Taylor-like polyno-
mial obtained by interpolating the inhomogeneity. The
function fM will be computed using a spectral method,
analogously to evaluating exp(G0t) by expansion into
Chebyshev or Newton polynomials [14]. For more details
see references [12,15,16] as well as Appendix A.

We now discuss how to choose the starting point u(0) of
the iteration, cf. equation (5). The proper choice of u(0) is
of high importance to the convergence as well as the stabil-
ity of the iterative process. We require knowledge of u(0) at
the M interpolation points tn + τj , j = 1, . . . ,M , in each
time step, [tn, tn + δt] to evaluate sm. In the following, we
discuss three choices for the initial guess.

(i) Take u(0)(t) to be constant and equal to the value at
the beginning of the time step: u(0)(tn+ τj) := u(tn).
This is the zeroth order approach, where we make
use of the fact that the solution at the time tn has
already been obtained in the calculation for the pre-
vious time step. This definition of the guess at each
time grid point is the simplest possible approach
and requires no additional calculations. However, it
turns out to be the worst in terms of accuracy and
leads to the largest number of iterations required for
convergence.

(ii) Compute u(0) as solution to the homogeneous
ODE [12]: u(0)(tn + τj) := uhom(tn + τj) where uhom
is the solution to equation (4) when setting s :=
0. It can be computed by one of the well-known
quantum propagators for time-independent gener-
ators [21]. In other words, we use the solution
obtained by a PWC approximation, and improve
upon it iteratively. Since this approach needs mul-
tiple matrix–vector operations to determine u(0), it
is more costly than option (i) regarding both CPU
time and memory. As it is a better guess, less iter-
ations are required. However, due to high numerical
costs, it is still not the best option.

(iii) Extrapolate the time-dependence of the full solu-
tion u from the previous time step [16] by evaluating
equation (8a) for τj shifted by δt, i.e., u(0)(tn+τj) :=
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utn−1
(tn + τj). The idea is that, for a sufficiently

smooth overall solution utn−1
in [tn−1, tn], it should

provide a good initial guess for the adjacent inter-
val [tn, tn+1]. For small enough δt, this choice of the
guess should, on average, be the most accurate one.
As for the computational cost, no additional matrix–
vector operations are necessary. This can be seen by
inspection of equation (8a): all matrix and vector
components stay the same under extrapolation of
t = tn−1 + τj to t = tn + τj ; only the value of the
parameter time changes. Hence, only scalar coeffi-
cients have to be recalculated, which is negligible
in terms of CPU time. On the downside, however,
the vector containing the coefficients of the spec-
tral approximation of fM as well as vm have to be
stored for all τj in order to be able to compute the
extrapolation efficiently, making this the most mem-
ory consuming method. Still, if the memory can be
spared, it is by far the most efficient of the three
choices and recommended to be used.

2.2 Quantum optimal control with iterative time
ordering

Quantum optimal control theory (OCT) provides methods
to compute controls, i.e., external fields {Ek} interacting
with the quantum system, that steer the system’s dynam-
ics in a desired way [1]. A cost functional, defined here for
a single field E(t),

J [E ] = JT [|ψ(T )〉] +

∫ T

0

g[E(t), |ψ(t)〉 , t] dt, (9)

has to be minimized. JT is the final-time functional,
indicating the figure of merit, and

g [E(t), |ψ(t)〉 , t] = ga [E(t), t] + gb [|ψ(t)〉 , t] ,

encodes the intermediate-time costs. Here, we use Kro-
tov’s method [17–20], a gradient-based sequential opti-
mization algorithm with guaranteed monotonic conver-
gence. With the choice

ga [E(t), t] =
λa
S(t)

(E(t)− Eref(t))2 ,

the extremum condition on the functional J with respect
to E yields the following equation for the “new” field [19]

E(i+1)(t) =Eref(t)

+
S(t)

λa
Im

〈
χ(i)(t)

∣∣∣∣∣ ∂Ĥ∂E
∣∣∣∣∣E(i+1)

ψ(i+1)

∣∣∣∣∣ψ(i+1)(t)

〉
.

(10a)

Here, i denotes the iteration step in the optimization pro-
cess. The subscripts of ∂Ĥ/∂E indicate that the derivative
may depend on both the state and on the control field
and has to be evaluated at the current iteration. The ref-
erence field Eref is often chosen as E(i), i.e., the “old” field,

to yield a direct update formula for ∆E(i) = E(i+1) −E(i).
The equation of motion together with its initial condition,

∂

∂t
|ψ(i+1)(t)〉 = − i

~
Ĥ(E(i+1)) |ψ(i+1)(t)〉 , (10b)

|ψ(i+1)(0)〉 = |ψ0〉 , (10c)

are an input to the algorithm, whereas the extremum
condition on J with respect to the state yields

∂

∂t
|χ(i)(t)〉 = − i

~
Ĥ
†
(E(i)) |χ(i)(t)〉

+∇〈ψ| gb|ψ(i)(t), (10d)

|χ(i)(T )〉 = −∇〈ψ| JT |ψ(i)(T ). (10e)

Equation (10a) assumes that JT depends at most quadrat-
ically on the state |ψ(T )〉 which is the case, e.g., for
expectation values. For more complicated dependencies
of JT on the state, a second term appears in the rhs of
equation (10a) [20].

Equations (10) are a set of non-linear coupled equa-
tions whose numerical evaluation is not trivial. A common
approximate solution is based on the discretization of
the time grid [19]. It consists in using the known state
|ψ(i+1)(tn)〉 instead of the required but unknown state
|ψ(i+1)(tn+1)〉 to obtain the updated pulse at the next
time step, E(i+1)(tn+1). With the ITO propagator, we
no longer rely on such an approximation to calculate the
(effectively) non-linear propagation. However, when solv-
ing the equations of motion in Krotov’s method with the
ITO propagator, two self-consistent loops have to be com-
bined. The control loop counts the updates of the field
and is indexed by the superscript (i), cf. equation (10a).
Within one step of the control loop, we employ a time dis-
cretization, i.e., we evaluate equation (10a) for 0 < tn ≤
T . This loop over n is a regular loop, not involving any self-
consistency. For a given control iteration i and time step
tn, the ITO loop with index k improves upon an initial
guess to determine the true state, cf. equation (8a). Since
equation (10a) requires knowledge of the “new” state, at
control iteration i+ 1, the loop over (i) has to be the out-
ermost loop. However, determination of the “new” state
|ψ(i+1,k)(tn+1)〉 within the innermost (ITO) loop over k,
requires knowledge of field E(i+1,k)(tn+1) in order to eval-
uate the Hamiltonian. In fact, it does not only at the
sampling points of the global time grid tn, but also within
each time interval δt, i.e., for all tn + τj . In other words,
the inhomogeneity now involves two unknowns that must
be determined self-consistently – the field E(i+1,k)(tn + τj)

and the state |ψ(i+1,k)(tn + τj)〉.
Our approach to resolve this mutual dependence con-

sists in updating the field E(i+1,k)(tn + τj) alongside

the state |ψ(i+1,k)(tn + τj)〉 within the ITO loop. In
more detail, the ITO loop, cf. equation (8a), is ini-
tialized by choosing an initial guess for the state,
|ψ(i+1,k=0)(tn + τj)〉, just as in the original ITO prop-
agator. Unlike in this case, where the field is assumed
to be known, E(i+1,k=0)(tn + τj) is now calculated

from |ψ(i+1,k=0)(tn + τj)〉, using equation (10a). This
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is the input for the actual ITO loop that calculates
|ψ(i+1,k=1)(tn + τj)〉 from equation (8a). The updated

state |ψ(i+1,k=1)(tn + τj)〉, in turn, yields E(i+1,k=1)(tn +
τj) which is the input for the next step of the ITO

loop, resulting in |ψ(i+1,k=2)(tn + τj)〉 and so forth. This
procedure of conjointly updating the field and the state
within the time interval [tn, tn+1] is repeated until self-
consistency is reached. The algorithm then advances to
the next time step tn+2.

Our ansatz can be motivated as follows. Recalling
the Krotov update equation (10a), the underlying prob-
lem is analogous to the one treated in the derivation
of the propagation algorithm: what prevents solution of
equation (10a) in closed form is the (implicit) presence
of the lhs of the equation also in the rhs, since the
state |ψ(i+1)(t)〉 is propagated under the updated pulse
E(i+1)(t). Similarly, in case of the ITO propagator, the
solution |ψ(t)〉 is present in the inhomogeneity. One can
thus think of treating the non-linearity of the control
equations (10) as an inhomogeneity that needs to be
determined self-consistently. The most balanced way to
determine the interdependent field and state is to do it in
the interleaved fashion described above.

One may wonder whether self-consistent determination
of the field is really necessary. A simple alternative would
be to calculate E(i+1,k=0)(tn + τj) only once at the ini-
tialization stage of the ITO loop (from the guess for the
state) and omit updating it. This turns out to not work at
all. In other words, the estimate E(i+1,k=0)(tn + τj) is not
sufficiently close to the true field, and without knowledge
of the true field, convergence of the state to the correct
one is not possible either.

The ITO approach to Krotov’s method in quantum
control is a quite natural one, since it is closer to the
time-continuous original, derived for classical mechanics
applications [17]. In quantum control, the update equation
was discretized in order to numerically solve it [18,19]. The
discretization is still required for the global time interval
[0, T ], in order to get a sequential update scheme that
evaluates the “new” field at each time tn. However, we
no longer need an approximation for the time interval
[tn, tn+1], i.e., on the small scale of a single time step
δt. Instead of replacing the actually required state by the
known one from the previous time step [19], the update
formula (10a) is now solved in its continuous form by itera-
tively converging it. Just as the ITO propagator, Krotov’s
method is now solved semi-globally with respect to the
time steps.

3 Numerical benchmark: harmonic oscillator

In this section we analyze both the propagator alone as
well as its application in OCT with respect to their numer-
ical performance. Of particular interest is the efficiency,
i.e., the quality of the solution per numerical effort.

3.1 Benchmarking the ITO propagator

In order to determine the accuracy of a propagation, we
require a physical system with external driving that has

an exact analytical solution. A system which matches this
requirement without being numerically trivial is the lin-
early driven harmonic oscillator (HO). The Hamiltonian
reads

ĤHO(t) =
p̂2

2m
+

1

2
mω2x̂2 + E(t)x̂, (11)

where x̂ and p̂ denote the position and momentum oper-
ators, respectively, and m and ω are mass and frequency
of the oscillator. We assume a driving field of the form

E(t) = E0 sin2 (πt/T ) cos (ωLt) . (12)

In addition to the time-dependence of the envelope, there
are fast oscillations with frequency ωL. This parameter
allows us to control the strength of the time-dependence
of the calculations.

The analytical solution of the driven HO (11) is known
for the case that the system is initially prepared in an
eigenstate of the undriven HO such as the ground state
Ψ0(x) = 〈x|0〉 [27]. One first has to compute

z(t) = − exp (iωt)

∫ t

0

E(τ) exp (−iωτ) dτ, (13)

the expectation values for position and momentum are
then associated with the imaginary and real parts

〈x(t)〉 = Im(z(t)), 〈p(t)〉 = Re(z(t)).

For our choice of pulse, equation (12), the integral in
equation (13) can be solved analytically.

We will analyze the numerical stability and efficiency
of the ITO propagator in terms of two parameters, the
size of the time step, δt, and the expansion order of the
inhomogeneity, M . For the ITO propagator, δt has to be
chosen carefully, as a bad choice compromises the conver-
gence behavior. M corresponds to the number of sampling
points τj in each local time grid, i.e., within the interval
[t, t+ δt]. Since M determines the accuracy of the approx-
imation of the inhomogeneity, it affects how well the
solution is improved in each iteration. As a consequence, it
potentially has a large impact on the required number of
iterations. Hence, a good choice of M is imperative both
for efficiency and stability of the propagator.

We analyze the numerical effort as a function of both
parameters in Figure 1. The upper panel shows the num-
ber of iterations Niter required to reach an accuracy of
10−12 as a function of the number of time steps nt (which
is inversely proportional to δt for fixed T ) and the order M
of the inhomogeneity. The lower panel displays addition-
ally the elapsed CPU time TCPU for that computation.1

A direct correlation between the required number of iter-
ations and the CPU time is observed: in Figure 1b, two
sharp bends occur – the first one at the point where 2
iterations begin to suffice to reach convergence, at roughly
nt = 700; prior to that, on average, 2 to 3 iterations were

1 The computer used for all computations is an Intel Core i7-5930
@ 3.50GHz system with 32GB RAM and a 64-bit Linux OS.
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Fig. 1. Analysis of the ITO propagator’s numerical efficiency:
mean number of iterations per time step Niter and elapsed CPU
time TCPU vs. the total number of time steps nt (a, b) and the
expansion order M (c, d). The system parameters (cf. Eqs. (11)
and (12)) are m = ω = 1, E0 = 10−3, ωL = 5, T = 100 with
M = 8 (a, b) and nt = 900 (c, d); the desired accuracy is
ε = 10−12.

required. Between nt = 700 and 1900, there is a plateau
in the required number of iterations, since the increase of
nt, i.e., decrease of δt, did not suffice to reach convergence
within less iterations, although the accuracy (per itera-
tion) was increased. During this plateau, the increased
number of time steps thus only leads to a larger numerical
effort, as can be seen in the CPU time. The second bend
is the larger one, at nt = 1900, where the propagator first
was able to reach convergence within one single iteration,
for some of the time steps, leading to Niter between 1 and
2. Further decrease of this quantity due to decrease of δt
rapidly improved the CPU time, until – again – a plateau
is reached at Niter = 1. At this point, a further decrease of
δt is not reasonable, since it can only increase the numer-
ical effort without any gain, because <1 iteration is of
course not possible.

A similar relation between TCPU and Niter can be
observed in Figures 1c and 1d. For constant δt, an increase
in M leads to higher CPU times up to the point where the
number of iterations is noticeably reduced below 3. The
effort decreases then, until Niter = 2 is reached. Inter-
estingly, Niter increases again when further increasing
M . This is counter-intuitive, since a higher order should
decrease the number of iterations. However, for too high
orders M numerical instabilities occur in the interpolation
of the inhomogeneity in orthogonal polynomials. In fact,
for M > 16 the procedure does not converge at all. Fail-
ure to reach convergence happens, of course, also for too
small M since then the inhomogeneity is not represented
accurately enough. Between these two limits, the curve
in Figure 1d shows only a weak dependence on the order
M , indicating a surprisingly low impact of this parameter
on the efficiency. This can be explained as follows: larger
M increases the cost of each iteration while, at the same
time, decreasing the average number of iterations, Niter.
The two effects approximately cancel out in the end, lead-
ing to an almost constant dependence of TCPU on M . In
conclusion, M should be chosen carefully in accordance

Fig. 2. Comparison of iterative time ordering and the PWC
approximation using the Chebyshev propagator: (a) number
of Chebyshev coefficients nc, (b) ITO expansion order M , and
(c) elapsed CPU time TCPU vs. desired accuracy ∆ε. The sys-
tem parameters are as in Figure 1, except for ωL = 1.001,
corresponding to near-resonant driving, and T = 1000.

with the time step size, with M = 8 representing a good
starting point.

We now address the question of how iterative time
ordering compares to the PWC approximation. For the
latter, we employ the Chebyshev propagator [14] where,
for a given δt, the number of coefficients nc required in
order to reach machine precision are calculated. Hence,
the time-independent problem is solved with maximal
precision and the only inaccuracy is due to the PWC
approximation. In other words, there is only one free
parameter, which also determines precision – δt or the
number of time steps nt.

Figure 2 compares the CPU time required to reach
a certain accuracy for the two propagation approaches.
The accuracy corresponds to the maximal deviation of
the numerical solutions from the analytical one. For the
Chebyshev propagator and the PWC approach, we contin-
uously increased nt, respectively decreased δt, in order to
continuously improve the quality of the PWC approxima-
tion. Figure 2a shows the number of required Chebyshev
coefficients nc within each time step δt. We observe a
strong decrease of nc (as δt decreases from left to right)
from about 300 to 5 in the end. For the ITO propagator,
the number of time steps was set constant to nt = 4000,
and only the order M was varied, between 3 and 12,
as shown in Figure 2b. This leads to accuracies between
6× 10−5 and 5× 10−14. Larger inaccuracies could not be
realized with the ITO propagator. The lower limit is close
to, but above machine precision and is due to accumula-
tion of errors. Accumulation of errors is of course also –
and especially – a problem for the PWC approach, where
up to 10 million time steps were required to achieve the
higher accuracies. The smallest error that can realized in
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Fig. 3. Comparison of the ITO (dashed) and PWC
(dash-dotted) propagators when used in Krotov’s method:
(a) number of iterations Niter and (b) number of matrix–vector
operations required to reach a certain value of the functional
JT . The considered system is the HO as in equation (14) where
the frequency is controlled (T = 2, δt = 0.01, M = 5).

the PWC approach amounts to about ∆ε ∼ 10−11; fur-
ther decreasing δt does not push the error to below this
value. In contrast, the ITO propagator avoids the accumu-
lation of errors and allows for realizing errors much closer
to machine precision over the complete propagation time
interval.

The CPU time increases almost linearly with the accu-
racy for the PWC propagations in the double-logarithmic
plot as well, corresponding to an approximately cubic
dependence. For the ITO propagator, the increase in
CPU time with the accuracy is significantly weaker. The
required CPU time varied from 2.84 to 5.01 s for ITO
and from 0.53 to 199 s for the PWC approximation. An
interesting point is at about ∆ε = 10−5, where the two
curves nearly intersect. If an accuracy higher than this
value is required, the ITO propagator easily outperforms
the PWC approach; the higher the accuracy, the more
obvious this is. For lower accuracies, however, the PWC
approach remains the best choice, being both stable and
very fast. It should be noted that this threshold of ∆ε
cannot be generalized, since it depends on the strength
of the time dependence of the problem at hand. While
no rigorous measure to quantify the strength of the time
dependence has, to the best of our knowledge, so far been
brought forward, it is increased (decreased) in our example
in Figure 2 by increasing (decreasing) ωL or E0 in equa-
tion (12). As a consequence, the threshold of ∆ε decreases
(increases) accordingly.

3.2 Benchmarking Krotov’s method for quantum
optimal control with iterative time ordering

We now determine the numerical effort required to reach
a certain quality of the optimization result. The system
to be controlled is once again the HO, this time described
by a slightly different Hamiltonian,

Ĥfreq(t) =
p̂2

2
+

1

2
x̂2E(t), (14)

i.e., we set ω = m = 1. Equation (14) represents an exam-
ple which is controllable, in contrast to equation (11),
which is uncontrollable due to the equidistant energy lev-
els. The control function E(t) effectively represents the
frequency (or rather its square) of the harmonic poten-
tial which alters the system’s eigenstates. We begin in the
ground state |ψ0〉 of the HO for ω = 1 and seek to transfer
it into the ground state of a HO with ω = 1/2, by varying
the harmonic potential’s frequency via E(t). The effort is
measured in terms of number of iterations Niter and per-
formed matrix–vector operations to reach a given fidelity
or final time functional value,

JT [ψ(T )] = 1− | 〈ψ(T )|ψtarget〉 |2. (15)

JT measures the difference between the final state |ψ(T )〉
and the target state |ψtarget〉.

The results of the benchmark are shown in Figure 3. The
improvement per control iteration is very similar for both
methods up until around JT ≈ 10−6 with ITO incurring a
higher numerical cost. When continuing the optimization
towards even more accurate controls, the PWC method
could decrease JT further to around 10−8, whereas ITO
reached a value of nearly 10−14. Again, being a more costly
method than PWC, ITO requires a larger number of oper-
ations for an equal amount of iterations, cf. Figure 3b. In
contrast to the PWC approximation with which Krotov’s
method breaks down at around JT = 10−8 since the errors
in the time propagation do not allow for further improve-
ments of the control, Krotov’s method with the ITO
propagator can reach the control target with essentially
arbitrary (i.e., close to machine precision) accuracy.

The solutions are found to be identical up to slight vari-
ations which are due to the higher accuracy of the ITO
propagator and account for the difference in the fidelities
beyond JT ≈ 10−6. We conclude that, for the HO, the
combination of Krotov’s method with iterative time order-
ing allows for more accurate control solutions. However,
this will turn out to be not a general feature, as we show
below. The higher accuracy comes at the price of a larger
numerical effort which increases linearly for exponentially
smaller errors.

4 Pythagorean control of a superconducting
qudit under strong driving

A more realistic application for the previously introduced
propagator occurs in the dynamics of superconducting
qubits, where driving fields are often rapidly oscillating
in time. Here, we consider a superconducting qubit under
Pythagorean control [28,29].

4.1 Model

Quantized superconducting circuits can encode informa-
tion in their lowest few energy eigenstates, since the
dynamics can be confined experimentally to these rele-
vant levels [30]. For the lowest eigenstates, the “qubit”
can be modeled by an anharmonic ladder, not necessar-
ily ending after two (qubit) levels. Therefore, we use the
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term qudit in the following. The Hamiltonian for a driven
N -level qudit reads

Ĥ(t) = Ĥ0 + Ĥ1(t), (16)

with drift Hamiltonian (~ = 1)

Ĥ0 =
N−1∑
n=0

εn |n〉 〈n| , εn = nω0 −
β

2
n(n− 1),

where εn is the eigenenergy for eigenstate |n〉 of Ĥ0.
The parameter ω0 defines the base energy difference
between adjacent levels of the qudit and β determines its
anharmonicity. The control Hamiltonian is given by

Ĥ1(t) =
N−2∑
n=0

√
n+ 1 [|n〉 〈n+ 1|+ H.c.] E(t),

where E(t) is the external control field and H.c. denotes
the Hermitian conjugate.

As experimentally demonstrated in reference [29], pop-
ulation inversion between non-adjacent levels of the four-
level system can be realized using so called Pythagorean
couplings [28]. The corresponding external field is given
by [29]

E(t) =
V01√

1
cos (ω01t) +

V12√
2

cos (ω12t)

+
V23√

3
cos (ω23t) , (17)

with ωij = εj − εi and Vij the driving strength of transi-
tion ωij . Transforming equation (16) into the interaction
picture yields (see Appendix B for details)

Ĥint(t) =
1

2



0 V01 0 0 0 . . . 0
V01 0 V12 0 0 . . . 0
0 V12 0 V23 0 . . . 0
0 0 V23 0 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
...

. . . 0
0 0 0 0 0 . . . 0


+ Ĥrot(t)

≡ Ĥinf + Ĥrot(t). (18)

The first, time-independent term Ĥinf matches exactly
the requirements for Pythagorean control [28], while the

second, time-dependent term Ĥrot(t) contains co- and
counter-rotating terms due to the rotating frame, cf.
Appendix B. We neglect this term for a moment and
assume Hamiltonian (18) to be entirely given by Ĥinf.
In this case, the control scheme has been derived ana-
lytically [28]. In order to achieve population inversion
between |0〉 and |2〉 (which we will consider in the fol-
lowing), the driving strengths Vij must be scaled by a

Table 1. The parameters for the Pythagorean controlled
qudit, taken from reference [29].

Qudit frequency ω0/2π 6.73 GHz
Anharmonicity β/2π 0.12 GHz
Relaxation time T1 230 ns
Dephasing time T2 120 ns
Rabi frequency Ωrabi/2π 47.6 MHz
Field parameters p, q 0.86

primitive Pythagorean triple [28],

(V01, V12, V23) = Ωrabi

(
p2 + q2

2
, pq,

p2 − q2

2

)
, (19)

with p, q odd integers. For practical purposes, since the
total magnitude of all Vij can be scaled by an experimen-
tally accessible parameter (the Rabi frequency Ωrabi), we
allow p, q to take non-integer values.

Unfortunately, the additional term Ĥrot(t) in equa-
tion (18) vanishes only in the unphysical limit of infinite
anharmonicity β. We will analyze deviations below. To
account for dissipative effects due to the interaction of the
superconducting circuit with its environment, we employ
a Lindblad master equation [22]

i
∂

∂t
ρ̂(t) = [Ĥ(t), ρ̂(t)] + LD [ρ̂(t)] ,

LD [ρ̂(t)] = i
2∑
k=1

(
L̂kρ̂(t)L̂

†
k −

1

2
{L̂
†
kL̂k, ρ̂(t)}

)
,

with Lindblad operators [31]

L̂1 =
N−2∑
n=0

√
n+ 1

T1
|n〉 〈n+ 1| , L̂2 =

N−1∑
n=1

√
2n2

T ∗2
|n〉 〈n| ,

where T1 is the population relaxation time and T ∗2 the pure
dephasing time. The parameters of Table 1 are used in
the following and the qudit ladder is truncated at N = 10
levels, which was observed to suffice.

4.2 Numerical considerations for the ITO propagator

Figure 4 proves that the ITO propagator also works for
more complex systems than the HO; here for the qudit
under Pythagorean control. The respective population
dynamics (obtained with ITO) is depicted in Figure 5.
Since an analytical solution for the dynamics is not avail-
able in this case, we compare propagations using a PWC
propagator (with an increasing number of time steps) to a
single propagation using ITO. Here, we assume that any
PWC propagator converges to an accurate time-ordered
solution provided the time discretization is sufficiently
fine. We quantify the mismatch between both simulations
by taking the time-average of the function

Pmis(t) = max
n=0,...,N−1

∣∣PPWC
n (t)− P ITO

n (t)
∣∣ , (20)
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Fig. 4. Average population mismatch when comparing prop-
agations using the PWC method against a single propagation
using ITO. The total propagation time is T = 150 ns. Shown
is the time-averaged maximal population mismatch, cf. equa-
tion (20). All simulations using the PWC propagator are
compared against the same ITO propagation with nt = 50,000
constant time steps and M = 12.

with PPWC
n (t), P ITO

n (t) the populations in the nth level
obtained with PWC or ITO propagation, respectively. As
can be seen in Figure 4, the mismatch of the population
dynamics between PWC and ITO propagation decreases
linearly with increasing number of PWC time steps nt
in a double logarithmic plot. Since we assume increas-
ing accuracy of the PWC propagation for increasing nt,
Figure 4 clearly confirms that ITO holds its precision
promise. Hence, in the following, we will assume that any
propagation using ITO is accurate to at least O

(
10−9

)
.

The results of Figure 4 already indicate the strong
time-dependence of Hamiltonian (16). Commonly, the
time-dependence of Hamiltonians can be reduced drasti-
cally by applying a rotating wave approximation (RWA).
This has exemplarily been done for the interaction Hamil-
tonian (18), cf. equation (B.7). Whether an RWA is a rea-
sonable approximation depends, in general, on the actual
system and problem, as well as the desired accuracy. How-
ever, ITO provides an excellent method for examining the
quality of any RWA, since inaccuracies originating from
numerical propagation are drastically diminished. When
repeating the dissipation-free propagations of Figure 5
(dashed lines) with the RWA-Hamiltonian (B.7), the
average inaccuracy of the population dynamics becomes
P̄mis = 1.3× 10−3. The RWA thus turns out to be a poor
approximation. Comparing the solid and dash-dotted lines
in Figure 5 reveals moreover that, in addition to the anhar-
monicity, also dissipation results in deviations from the
ideal dynamics and hampers perfect population inversion.
Experimentally, reference [29] observed even more drastic
discrepancies to Pythagorean control for high intensity.
We therefore analyze the dynamics under such strong
driving below.

4.3 Dynamics under strong driving

Figure 6a shows the final population in the four states
|0〉, |1〉, |2〉, |3〉 after a fixed propagation time of T = 60 ns,

Fig. 5. Population dynamics in the qudit subspace
{|0〉 , |1〉 , |2〉 , |3〉}. The dash-dotted lines represent the ideal,

non-dissipative case using only Ĥinf, cf. equation (18). The
dashed (solid) lines show the non-dissipative (dissipative) pop-
ulation dynamics under Hamiltonian (16). The dissipative
dynamics corresponds to the convergence analysis in Figure 4.

obtained with fields of various intensities. Since the field is
entirely determined by p and q, cf. equation (19), the field
intensity increases from the lower left to the upper right
part within each panel. For the ideal, non-dissipative case,
depicted in the upper row of Figure 6a, a regular pattern
can be observed. In comparison, the middle row shows
the results obtained with Hamiltonian (16). To empha-
size the differences, dissipation has been neglected for
the moment. We can clearly identify two different regions
within each map. On the one hand, for weak field intensi-
ties, the ideal pattern is reproduced fairly well when taking
the finite anharmonicity into account. On the other hand,
for strong field intensities, the ordered structure visible
in the upper row vanishes completely. When including
dissipation, all maps become blurred (lower row), since
the dissipation spreads the population across all levels.
Nevertheless, the discrepancy between weak and strong
field intensities appears with and without dissipation, i.e.,
the underlying effect is not related to dissipation. The
solution to the puzzle can partly be found in Figure 6b,
where the final population outside of the subspace L =
span {|0〉 , |1〉 , |2〉 , |3〉} is shown. In the ideal case (upper

row), no population can leave L, since Hamiltonian Ĥinf in
equation (18) contains no coupling elements to any states

|n〉 with n > 3. In contrast, Ĥrot(t), respectively Hamilto-
nian (16), does indeed contain such couplings. As visible
in the middle and lower panels of Figure 6b, the popula-
tion leakage out of subspace L is rather small for weak
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Fig. 6. Final populations after applying the field (17) for T = 60 ns. The upper row corresponds to the ideal, non-dissipative

case of equation (18) with only Ĥinf. The middle (lower) row shows the propagation results with Hamiltonian (16) neglecting
(including) dissipation. All simulations are performed using the ITO propagator. Part (a) shows the final population in states
|0〉 , |1〉 , |2〉 , |3〉 as indicated on top of the four columns, part (b) the final population outside of the subspace {|0〉 , |1〉 , |2〉 , |3〉}.

fields but increases rapidly for strong fields. Moreover,
in addition to pure loss of population from subspace L
at final time, the operator Ĥrot(t) will also increasingly
influence the dynamics at intermediate times. In order to
examine the impact of the operator, while neglecting, at
the same time, loss of population from L, we truncate
the qudit ladder at N = 4. Note that this is definitively
a bad approximation, since Figure 6b has already shown
the levels |n〉 with n > 3 to contribute significantly to the
dynamics. Nevertheless, repeating the simulation of the
middle row of Figure 6 withN = 4 (data not shown) yields
a similar match for weak field intensities, or mismatch
for strong field intensities, respectively, compared to the
ordered structure of the ideal case. This shows that even
without loss of population from the subspace L, the oper-
ator Ĥrot(t) compromises the ideal population inversion of
Pythagorean control.

Interestingly, the deviation from the ideal population
inversion in Pythagorean control, caused by intense
driving fields, gives rise to much richer dynamics in terms
of implementable operations, i.e., quantum gates, on the
subspace L. As has be shown in reference [28], Ĥinf allows

only for quantum gates Ô ∈ SO(4) = SU(2)⊗ SU(2). One
can interpret the four-level qudit as consisting of two
virtual qubits by assigning one of the four two-qubit basis
states to each of the qudit states |0〉, |1〉, |2〉, |3〉. In this
picture, it is the “non-local” operations that are missing
in the ideal case, as they are element of SU(4) \ SO(4).
According to reference [29], we choose the four Bell states
{|Φ±〉 , |Ψ±〉} as two-qubit basis. Figure 7a shows the von
Neumann entropy S [32], as a measure of entanglement

between the two virtual qubits, for the final states of
Figure 6a (middle row). As can be seen, weak fields are
not able to change the amount of initial entanglement.
This perfectly agrees with the observations in Figure 6,
since weak fields yield good agreement with the prediction
of Pythagorean control. Thus, the implemented quantum
gates are operations Ô ∈ SO(4), at least roughly so.
For strong field intensities, the implemented quantum
gates become entangling, as the change in S indicates.
The gate concurrence C [33] can be used in order to
quantify the entangling power of these quantum gates. It
ranges from C = 0 (non-entangling) to C = 1 (maximally
entangling) and is shown in Figure 7b (gray background
shading) for the final states of Figure 7a, respectively
Figure 6a (middle row). As can be seen, strong field
intensities create maximally entangling gates for almost
all combinations of p and q.

We now analyze the implemented quantum gates. To
this end, we perform a Cartan decomposition, which
separates each gate into its local and non-local content
[34]. The non-local content unambiguously determines the
entangling power of each gate. It is given by three real
numbers, the local invariants g1, g2, g3 [35]. We call two

gates Ô1, Ô2 ∈ SU(4) locally equivalent and say they are

in the same equivalence class [Ô1], if they only differ by

local operations k̂1, k̂2 ∈ SO(4), i.e., Ô1 = k̂1Ô2k̂2. It is
straightforward to calculate the local invariants for all
final gates of Figure 7 and compare them against equiv-
alence classes of common entangling two-qubit gates, cf.
right column of Figure 7. For strong field intensities, we
find various regions, where the implemented gates are
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Fig. 7. (a) The von Neumann entropy S for the final states of Figure 6 (middle row). (b) The gate concurrence (gray shading
in the background) for the implemented quantum gate. The colored areas indicate where the implemented gates are close to
the respective local equivalence classes listed on the right.

close to a specific equivalence class of entangling two-qubit
gates. This shows, that depending on the field parame-
ters p, q for Pythagorean control, a large set of entangling
two-qubit gates can be realized. Note that the check
for closeness to an equivalence class is rather loose with
|g − gec| ≤ 0.1, g = (g1, g2, g3) and gec corresponding to
one of the triples shown on the right side of Figure 7. More-
over, to counter the loss of population from the subspace
L, which makes the actually implemented quantum gates
non-unitary within L, a singular value decomposition has
been applied in order to get the closest approximate uni-
tary operation on L. Therefore, the characterized gates
are not accurate in terms of necessary gate fidelity for
quantum computing [36]. Nevertheless, they are still a
hint towards the qudit’s natural evolution and, in par-
ticular, they emphasize the large amount of gates, which
are accessible by varying p, q. Since gate generation in
Figure 7 is limited to the analytical pulse (17), it is nat-
ural to ask whether the gate fidelities can be improved
when optimizing the pulse.

4.4 Pythagorean control using Krotov’s method with
ITO

We first check how Krotov’s method with ITO, as
described in Section 2.2, performs for the qudit under
Pythagorean control. We consider two control problems.
First, in order to compare with Section 3.2, the control
problem is a state-to-state transition. Specifically, we seek
to achieve population inversion from |0〉 to |2〉 where it
would not occur naturally. The target functional is again
given by equation (15). Second, in order to obtain a deeper
understanding of Figure 7, the control problem consists in
implementing a predefined two-qubit gate Ô at final time
T . To this end, the figure of merit JT in the optimization
functional (9) is taken to be [19]

JT [{Ψn(T )}] = 1− 1

4
Re

{
3∑

n=0

〈
n
∣∣∣ Ô† ∣∣∣Ψn(T )

〉}
. (21)

Fig. 8. The same comparison as in Figure 3, but for the qudit
under Pythagorean control with the goal of realizing popula-
tion inversion from |0〉 to |2〉 that does not occur naturally (p =
q = 0.5 for the guess pulse, T = 150 ns, δt = 0.001 ns, M = 6)
(exchanged figure by optimization with correct functional).

The set {|Ψn(t)〉} corresponds to the forward propagated
initial states {|n〉}, given by the states from the sub-
space L = span{|0〉 , |1〉 , |2〉 , |3〉}. This control problem is
significantly more challenging than a state-to-state opti-
mization. In terms of control complexity, it is equivalent
to optimizing simultaneously four state-to-state optimiza-
tions, one for each state in the logical basis [37,38].

For the first control problem, Figure 8 compares the
performance of Krotov’s method when used with the
Chebyshev propagator in the PWC approximation and
the ITO propagator, respectively. While the optimization
requires the same amount of iterations to reach a cer-
tain quality of the control, using ITO comes with a larger
numerical effort, as evidenced by the larger number of
matrix–vector operations in Figure 8b. These findings are
similar as those for controlling the harmonic oscillator,
reported in Figure 3. In contrast to Figure 3, however,
optimization based on the ITO propagator cannot reach
smaller values of JT , i.e., more accurate controls. The sat-
uration of the optimization for the ITO propagator that
is seen in the blue dashed line becoming vertical, is most
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Fig. 9. The same comparison as in Figure 3, but for the qudit
under Pythagorean control and the CNOT gate as target oper-
ation Ô, cf. equation (21) (T = 150 ns, δt = 0.003 ns, M = 8).

likely due to a rather high sensitivity of the algorithm
on the ITO parameters δt and M as well as the Krotov
update parameter λa, cf. equation (10a).

For the second control example, optimization of a
CNOT gate, the difficulties of Krotov’s method when
using ITO propagation become even more pronounced, see
Figure 9. The fact, that the control problem itself is more
challenging is evidenced in Figure 9 by the achievable val-
ues of JT , respectively the error, being much larger than in
Figure 8 for both methods. But the multi-target optimiza-
tion involves yet another difficulty for the ITO propagator.
The optimal choice of its parameters δt and M must now
be balanced between four different propagations. Given
the sensitivity of the method on these parameters, con-
vergence becomes more difficult to achieve. It turns out
that smaller values of M , around M = 5 or 6, should be
used for stable optimizations, in comparison to a stable,
stand-alone propagation. The optimal value of M depends
of course on the time step δt, which has to be chosen
accordingly (small) such that a small M suffices. For max-
imal efficiency, a tradeoff has to be found where the values
are small enough for sufficient stability but not so small
as to be numerically too costly. But even in this case,
optimization with the ITO propagator requires signifi-
cantly more computational resources than with the PWC
approximation, cf. Figure 9.

4.5 Controllability and quantum speed limit

Apart from the problem of finding optimized fields that
implement a desired dynamics, such as a specific quantum
gate, OCT can be used to answer, at least approximately,
the more fundamental question of controllability [39,40]:
when starting from a given state |Ψ init〉, which set of states
{|Ψ〉} is generally accessible under the set of all possi-
ble controls? The notion of quantum speed limits (QSLs)
naturally arises in this context [41,42]: provided that a
specific state |Ψ targ〉 is accessible by the system’s dynam-
ics starting in |Ψ init〉, what is the minimal time for this
transition? The notion of quantum speed limit is particu-
larly important with respect to unwanted interaction with

Fig. 10. Optimization results for random unitary opera-
tions with the optimizations performed for various final times
T and varying qudit anharmonicities β. The guess fields,
cf. equation (17), with p = q = 2, were shaped on input by
a linear rise and fall time of 10% of T . Optimizations were
repeated 30 times and stopped at 100 iterations if JT < 10−3,
cf. equation (21), could not be achieved until then.

the environment since it tells us whether it is possible to
“beat” decoherence using optimized controls [43].

Figure 10 provides information about the qudit’s con-
trollability in two ways. On one hand, it numerically shows
full qudit controllability. On the other hand, it allows to
extract the QSL for the implementation of any two-qubit
gate. The figure shows optimization results (using Kro-
tov’s method in combination with a PWC propagator)
for a variation of the final time T and the anharmonic-
ity β of the qudit. Note that in order to focus on the
influence of both parameters, dissipative effects have been
neglected. For each combination of T and β, 30 random
unitary gates Ô have been chosen [44] as optimization tar-
get and the average required number of iterations in order
to reach JT < 10−3 is shown. The obtained map can be
clearly divided into two regions. In the lower left part of
Figure 10, the optimization algorithm was not able reach
JT < 10−3 within the allowed 100 iterations. Most likely,
it will neither be possible for a larger number of iterations.
In contrast, in the upper right part, the optimization algo-
rithm finds suitable fields within only a few iterations,
yielding gates with sufficiently low errors. This is numeri-
cal evidence for full controllability as the target gates were
chosen randomly. The edge between both regions can be
identified as the QSL for these operations. It is not sharp,
since a tradeoff between remaining gate error JT and total
time T must usually be taken into account. Nevertheless,
it decreases for increasing qudit anharmonicity. For the
parameters in Table 1, the QSL can be roughly identified
as T ≈ 35 ns. In order to have faster gates, the anhar-
monicity β must be increased. Hence, increasing β would
benefit the qudit, as it reduces the impact of dissipation by
allowing for generally faster operations. Apart from gate
optimization, an increased β would furthermore benefit
the intended population inversion of Pythagorean control,
cf. Section 4.3, since it would diminish the strong field
deviations originating from the finite anharmonicity.
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5 Conclusions

In order to assess the impact of time ordering in quan-
tum optimal control, we have combined Krotov’s method
with a highly efficient propagation method that explicitly
accounts for time ordering. We have tested the ensuing
algorithm for the harmonic oscillator and applied it to a
superconducting circuit. For the latter, we have also ana-
lyzed the population dynamics, starting from so-called
Pythagorean control for population inversion between
non-adjacent levels in a four-level system [28]. For strong
driving, the dynamics of the superconducting qubit had
been found experimentally to significantly deviate from
what is expected for Pythagorean control [29]. We could
explain this observation in terms of higher levels in the
anharmonic ladder that get populated which is a direct
consequence of the failure of the rotating wave approxima-
tion. Furthermore, we have analyzed the time evolutions
that can be generated in the superconducting circuit by
determining the type of “non-local” operations that can
be realized. This analysis suggested full controllability of
the superconducting qubit, a fact that we have confirmed
by optimizing for random unitaries and determining the
quantum speed limit for each. The latter is essentially
determined by the anharmonicity.

Surprisingly, in our examples for OCT we have found
the effect of time ordering to be fairly small. Except
for very small control errors, the control solutions found
within the piecewise constant approximation do not differ
too much from those obtained under explicit time order-
ing. For very high precision applications as required, for
example, in quantum information science below the error
correction threshold, time ordering will, however, eventu-
ally become an effect that needs to be accounted for. At
this time, iterative time ordering [12,15,16] provides the
most efficient approach to address this issue.

Iterative time ordering rewrites the explicitly time-
dependent part of the equation of motion as an inho-
mogeneity that needs to be determined self-consistently.
When combining this propagator with Krotov’s method, it
turned out to be crucial to jointly determine both the con-
trol and the state self-consistently to obtain a converging
method. Still, the performance of the resulting algorithm
is rather sensitive with respect to its main parameters
– the expansion order of the inhomogeneity, the time
step and the magnitude of the control update. Should
the algorithm be useful for practical applications, these
parameters need to be determined in a more automated
way to avoid numerical instability. This will be the subject
of future work.
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Appendix A: Implementation of the ITO
propagator

The pseudocode for the ITO propagator is shown in
Figure A.1. Curved brackets indicate a loop over all ele-
ments of the set, where the indices i, j,m, n range from 0
to M − 1. For better readability, only the most important
steps are included in Figure A.1. When implementing the
code for the ITO algorithm, several aspects have to be
taken into account.

(i) Transformation of the polynomial expansion of the
inhomogeneity into the monomial basis: first, we
expand Newton polynomials Rn in the monomial
basis,

Rn(t) =
n∑

m=0

qn,m
tm

m!
. (A.1)

Making use of the recursive definition of the Newton
polynomials and by equating coefficients, we obtain

qn+1,0 = −tnqn,0, (A.2a)

qn+1,m = mqn,m−1 − tnqn,m, (A.2b)

qn+1,n+1 = (n+ 1) qn,n, (A.2c)

from which, with q0,0 = 1, all transformation coef-
ficients can be computed recursively. The inhomo-
geneity expanded in orthogonal Newton polynomi-
als, with polynomial coefficients an, can then be
transformed into the monomial basis,

s(t) ≈
M−1∑
m=0

sm
tm

m!
, sm =

M−1∑
n=m

qn,man.

(ii) Normalization of the expansion domain: in the case
of the Chebyshev polynomials as polynomial basis,
this is essential, since they can only be used on
the interval [−1,+1]. For the Newton polynomi-
als, a normalization also becomes necessary when
computing the coefficients by the divided difference
scheme. Because of the recursive definition, includ-
ing products of the differences between interpolating
points in the denominator of the fraction, this might
become unstable depending on how small or large
these differences are. The optimal choice for stability
is a domain of length 4 which leads to a capac-
ity ρ of size 1 [45]. This is desirable. The capacity

ρ =
∏N
i=1 |zi − zc|1/N , where zc is the center of the

points {zi}, is a measure for size and variance of
the set {zi}. To obtain it, one has to take the factor
4/δt into account for the computation of the New-
ton coefficients and later when using them in the
transformation to monomial coefficients, see (i).
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Fig. A.1. The ITO propagator as pseudo code algorithm.

(iii) The product of the operator generating the dynamics
and the time step, Gδt: it is recommended that
this product is carried out as it is, and that sep-
arating G and δt is avoided. As a matter of fact,
the solution contains only terms with both the
operator G (or its eigenvalues) and the time step
δt, neither of them individually. It might be the
case that either the eigenvalues of G are large or
that δt is small, and their joint evaluation avoids
numerical instabilities.

(iv) Calculation of the function fM : an especially crucial
point is the computation of fM (G0, {τj})vM , where
instabilities occur if it is not computed thoroughly
enough. Observing the definition of the function fM ,
cf. equation (8a), we can see that the second term
of the rhs is just a truncated exponential sum sub-
tracted from the full exponential function. For small
zt, the computation in this way might become unsta-
ble or inaccurate due to round-off errors. Instead,
it is possible to directly calculate the expression
in terms of an exponential series, starting at M .
This decreases the round-off error by removing the
subtraction.

(v) Error estimation for multiple sources of errors: the
first – and usually largest – source of error occurs
in the self-consistent loop to generate the solution,
i.e., it is due to the fact that we have replaced the
exact solution u by the iterated one u(k), cf. equa-
tion (5). In order to determine how many iterations
are needed, we use the common approach to compare
the new solution u(k) to the one from the previous

iteration u(k−1),

ε
(k)
iter :=

∥∥u(k)(tn+1)− u(k−1)(tn+1)
∥∥∥∥u(k)(tn+1)

∥∥ .

The second error originates from the approximation
of the inhomogeneity s(t) by a truncated polynomial
expansion in time. This error can be estimated by
[16]

εM := ‖∆s‖δt, (A.3)

where ‖∆s‖ represents the maximal interpolation
error of the approximated inhomogeneity within the
current time step. For the Newton interpolation on
the Chebyshev nodes, cf. equation (7), it scales as
1/(2M−1M !). Compared to εiter, it has a smaller
impact onto the total error due to the chosen split-
ting of the Hamiltonian, which we chose such that
the inhomogeneity is small compared to the homo-
geneous part. The third and last source of error is
the computation of fM (G0, τ)vM , cf. equation (8a).
Depending on G, the impact of this term might be
very high in the computation. In general, if one or
more of the errors are too high, it is recommended
to either increase the order of the interpolating poly-
nomial M or decrease the size of the local interval,
i.e., the time step δt.

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 161 Page 15 of 16

Appendix B: Derivation of the N -level
interaction Hamiltonian

The Hamiltonian (in its generalized N -level form) for the
superconducting phase qudit is given by equation (16).
The external control field E(t) is analytically given by
equation (17). In the following, we transform states and
operators into the interaction picture. For state |Ψ(t)〉 in
the Schrödinger picture, the transformation reads

|Ψint(t)〉 = Ô(t) |Ψ(t)〉 , Ô(t) = exp
(

iĤ0t
)
. (B.1)

Plugging this into the Schrödinger equation yields

i
∂

∂t
|Ψint(t)〉 = Ĥint(t) |Ψint(t)〉 , (B.2)

with Ĥint(t) = Ô(t)Ĥ1(t)Ô
†
(t). Inserting two identity

operators allows to write the interaction Hamiltonian as

Ĥint(t) =
N−1∑
n,m=0

Ô(t) |n〉 〈n| Ĥ1(t) |m〉 〈m| Ô
†
(t). (B.3)

Expanding the matrix element of Ĥ1(t) gives

Ĥint(t) =

N−1∑
n,m=0

√
n+ 1E(t)δm,n+1e

−iωn,mt |n〉 〈m|+ H.c.

=

N−2∑
n=0

√
n+ 1E(t)e−iωn,n+1t |n〉 〈n+ 1|+ H.c. (B.4)

with ωn,n+1 = εn+1 − εn. Expanding the analytical field
equation (17) in exponentials reads

E(t) =
1

2

[
V01√

1

(
eiω01t + e−iω01t

)
+
V12√

2

(
eiω12t + e−iω12t

)
+
V23√

3

(
eiω23t + e−iω23t

)]
. (B.5)

Plugging this into equation (B.4), we obtain the complete
form of the interaction Hamiltonian as

Ĥint(t) =
1

2

[
N−2∑
n=0

√
n+ 1 |n〉 〈n+ 1|

×
(

V01√
1

(
ei(ω01−ωn,n+1)t + e−i(ω01+ωn,n+1)t

)
+
V12√

2

(
ei(ω12−ωn,n+1)t + e−i(ω12+ωn,n+1)t

)
+
V23√

3

(
ei(ω23−ωn,n+1)t + e−i(ω23+ωn,n+1)t

))]
+H.c. (B.6)

If we perform a rotating wave approximation, i.e., neglect-
ing fast oscillating terms, the interaction Hamiltonian

becomes

Ĥint(t) =
1

2

[
N−2∑
n=0

√
n+ 1 |n〉 〈n+ 1|

×
(

V01√
1
ei(ω01−ωn,n+1)t +

V12√
2
ei(ω12−ωn,n+1)t

+
V23√

3
ei(ω23−ωn,n+1)t

)]
+ H.c. (B.7)

Equations (B.6) and (B.7) can be further divided into a
time-independent and time-dependent part, such that the
final form matches equation (18).
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T. Schulte-Herbrüggen, D. Sugny, F.K. Wilhelm, Eur.
Phys. J. D 69, 279 (2015)

2. J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175 (2007)
3. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,
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