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The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the
purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath.
Converged results are obtained for the spin bath by the surrogate Hamiltonian approach. This
method is based on constructing a system–bath Hamiltonian, with a finite but large number of spin
bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval.
Convergence with respect to the number of simultaneous excitations of bath modes can be checked.
The results are compared to calculations that include a finite number of harmonic modes carried out
by using the multiconfiguration time-dependent Hartree method of Nest and Meyer@J. Chem. Phys.
119, 24 ~2003!#. In the weak coupling regime, at zero temperature and for small excitations of the
primary system, both methods converge to the Markovian limit. When initially the primary system
is significantly excited, the spin bath can saturate restricting the energy acceptance. An interaction
term between bath modes that spreads the excitation eliminates the saturation. The loss of phase
between two cat states has been analyzed and the results for the spin and harmonic baths are almost
identical. For stronger couplings, the dynamics induced by the two types of baths deviate. The
accumulation and degree of entanglement between the bath modes have been characterized. Only in
the spin bath the dynamics generate entanglement between the bath modes.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1759312#

I. INTRODUCTION

Modeling quantum many-body systems is a challenging
problem. The main obstacle is the exponential growth in
complexity with the number of degrees of freedom. Signifi-
cant simplifications are achieved by partitioning the total
system into a primary part and a bath describing the
environment.1 The idea is to model the primary system ex-
plicitly and the bath implicitly, thus minimizing the complex-
ity of the bath to its influence on the primary system. A bath
composed of a set of noninteracting harmonic oscillators is
the one most widely used. The idea originates from a normal
mode analysis combined with a weak system–bath coupling
assumption.2 If the bath is only weakly perturbed by the
system, it can be considered linear, and therefore described
as a collection of harmonic oscillators.

Such a bath is natural for systems interacting with the
radiation field.3 The harmonic bath model has also been ap-
plied to less favorable scenarios such as energy relaxation
and dephasing of molecules in the liquid phase or on solids.

In these cases a strong coupling or interactions with a low-
temperature environment may cause large system–bath cor-
relations, and will therefore result in a failure of the Markov-
ian approximation. To overcome such difficulties in the
dynamics of molecules that are in intimate interaction with
an environment, an alternative approach termed the surrogate
Hamiltonian4 has been developed. The surrogate Hamil-
tonian method employs a bath composed of two-level sys-
tems that acts as a spin bath.5–9

The concept of the system–bath separation underlines
the quantum description of many body dynamics. The ori-
gins of the spin and harmonic baths are different. The har-
monic bath is closely related to a normal mode decomposi-
tion. Once this is done the spectral density function is able to
completely determine the relaxation dynamics. From a com-
putational point of view the determination of the spectral
density is a major task. The most popular working procedure
is to extract it from classical mechanics.10 The drawback is
that this procedure assumes harmonic modes and a linear
system–bath coupling term. The spin bath has its origin in a
tight binding model of condensed phase. This can also be-
come a simulation procedure if the parameters of the tight
binding model can be estimated from first principles.11
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The purpose of the present study is to compare the per-
formance of the two baths in a simple system composed of a
primary anharmonic oscillator coupled to a multimode bath.
In the limit of weak system–bath coupling, it has been
shown that the two baths are equivalent. For finite tempera-
ture the equivalence requires a rescaling of the spectral den-
sity function which determines the coupling of the primary
system to the different bath modes.5–7 The limiting coupling
strength where the dynamics induced by the two baths differ
has not yet been characterized. For stronger coupling
strength, the ergodic behavior of the two baths should be
different. The bath modes of the linearly driven harmonic
bath are uncorrelated. In the spin bath the coupling to the
primary system induces quantum entanglement between the
different modes. It is valuable to know how this fundamental
difference influences the dynamics of the primary system.

Our comparative study is based on a numerical model of
a system coupled to a bath, with a large but finite number of
modes. For a finite interval of time determined by the inverse
of the energy level spacing, the finite bath mimics exactly a
bath with an infinite number of modes. For this interval the
primary system cannot resolve the full density of states of
the bath. By renormalizing the system–bath interaction term
to the density of states, the finite bath faithfully represents
the infinite bath up to this time limit.

The dynamics of the primary oscillator coupled to the
harmonic bath has been recently calculated based on the
multi-configuration time dependent Hartree approximation
~MCTDH!.12,13 The authors were able to show that for a
Morse oscillator coupled to a bath, converged results could
be obtained for a bath consisting of 60 modes to a time scale
of 3 ps. The present study utilized the same system and
system–bath coupling parameters, but employed a spin bath
in the context of the surrogate Hamiltonian. The comparison
allows an evaluation of the similarities and differences be-
tween the two descriptions. Once the differences are identi-
fied, it becomes possible to modify the surrogate Hamil-
tonian bath to extend the realm of similarity.

In the weak coupling limit the numerical study of Nest
and Meyer12 was able to identify a coupling parameter where
the Markovian semigroup limit was reached. One can reason
that the surrogate Hamiltonian bath should behave similarly
in this range of coupling parameters.

The system–bath construction in both cases is not Mar-
kovian and differs from the Redfield14,15 or semigroup
treatments.16–18The surrogate Hamiltonian approach is close
in spirit to real path integral techniques, where a large many-
body propagator is constructed and approximated. Generally,
the path integral methods,1,2,19 are applicable to harmonic
baths, and lead to a non-Markovian description.

The present paper is organized as follows: Section II
outlines the theory of the two models: the surrogate Hamil-
tonian approach which employs a bath of two-level systems
~TLS! and the MCTDH method using a harmonic bath. Sec-
tion III describes the system used for calculations. Section IV
compares the results for the two different environments. The
standard process investigated in studies of quantum dissipa-
tive dynamics is energy relaxation~cf. Sec. IV A!. An inter-
action between bath modes is introduced in Sec. IV B. The

difference between correlated and uncorrelated initial states
is the subject of Sec. IV C. In addition, the decoherence in
the TLS bath of the surrogate Hamiltonian is compared to
that in a bath of harmonic oscillators~cf. Sec. IV D!. A char-
acterization of different kinds of entanglement in the surro-
gate Hamiltonian approach is presented in Sec. IV E. Finally,
Sec. V summarizes and concludes.

Appendix A compares the equations of motion between
the two different types of bath and Appendix B introduces
two different measures of entanglement of a two-spin sys-
tem. It should be noted that atomic units are used throughout
the paper (\5me5a051).

II. THEORY

The system under study describes a primary system im-
mersed in a bath. The state of the combined system–bath is
described by the wave functionC(R̂,b̂1 ,...,b̂2N) where R̂
represents the nuclear configuration of the dynamical system,
and $b̂ j% are the bath degrees of freedom. The Hamiltonian
of such a combined system is

Ĥ5ĤS^ ÎB1 ÎS^ ĤB1ĤSB. ~1!

The primary system Hamiltonian takes the form

ĤS5T̂1VS~R̂!, ~2!

whereT̂5P̂2/2M is the kinetic energy andVS is an external
potential, which is a function of the system coordinate~s! R̂.
ĤB denotes the bath Hamiltonian consisting of an infinite
sum of single mode Hamiltoniansĥj ,

ĤB5(
j

ĥj . ~3!

For the harmonic bath the single mode Hamiltonians take the
form

ĥj5
p̂j

2

2mj
1

mjv j
2

2
q̂j

25v j âj
†âj , ~4!

wherep̂j , q̂j are the normal mode momentum and coordinate
respectively, andâj5A(mjv j /2)q̂j1( i /A2mjv j )p̂j is the
corresponding annihilation operator. For the spin bath,

ĥj5v jŝj
†ŝj , ~5!

whereŝj
† , ŝj are the standard spin creation and annihilation

operators of modej .
The system–bath interactionĤSB can be decomposed

into a sum of products of system and bath operators without
loss of generality. Specifically a system–bath coupling in-
ducing vibrational relaxation is considered,

ĤSB52 f ~R̂! ^ (
j

V̂ j , ~6!

where V̂ j5l j q̂j5l j (âj
†1âj ) for the harmonic bath andV̂ j

5l j (ŝj
†1ŝj ) for the spin bath.f (R̂) is a function of the

system coordinate operator. The influence of the bath on the
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primary system is characterized by the spectral density func-
tion J(v). To include the density of states, the definition of
the spectral density function is chosen as3,20

J~v!5(
j

ul j u2r~v!d~v2v j !, ~7!

that is the system–bath coupling is weighted by density of
states. Thus the constantsl j are determined as

l j5AJ~v j !/r~v j !, ~8!

wherer(v j )5(v j 112v j )
21 is the density of the states of

the bath.
Observables associated with operators of the primary

system are determined from the reduced system density op-
erator, r̂S(R,R8)5trB$uC&^Cu%, where trB$ % is a partial
trace over the bath degrees of freedom. The system density
operator is constructed from the total system–bath wave
function and only this function is propagated.

Since within a finite interval of time, the system cannot
resolve the full density of bath states, it is sufficient to re-
place the bath modes by a finite set. The sampling density in
energy of this set is determined by the inverse of the time
interval. The finite bath ofN spins is constructed with a
system–bath coupling term, which in the limitN→` con-
verges to the given spectral density of the full bath. The
surrogate Hamiltonian, as well as the MCTDH method, con-
sist of a finite number of bath modes, and they are therefore
limited to representing the dynamics of the investigated sys-
tem for a finite time~shorter than the Poincare´ period at
which recurrences appear21!. These recurrences are caused
by the finite size of the bath so that after some time the
energy flow into the bath is reflected at its boundaries.

The surrogate Hamiltonian contains all possible correla-
tions between the primary system and the environment. The
combined system–bath state is described by a 2N dimen-
sional spinor withN being the number of bath modes. The
spinor is bit ordered, i.e., thej th bit set in the spinor index
corresponds to thej th TLS mode, which is excited if the
counting of bits starts atj 50. The dimension 2N results from
the total number of possibilities to combine two statesN
times. Thus the total wave function can be written as

uC~R̂,$b̂j%!&5c0uf0~R̂!&1(
j 50

SN1 D
cj uf j~R̂!&

1 (
j ,k50

SN2 D
cjkuf jk~R̂!&1¯ , ~9!

where uf j (R̂)&5(0,...,f j (R̂),...,0)T is a singly excited
spinor,uf jk(R̂)&5(0,...,f j (R̂),...,fk(R̂),...,0)T is a doubly
excited spinor and so on. Thej th component corresponds to
the j th TLS being excited. However, considering all 2N pos-
sibilities of combining the bath modes might not be neces-
sary in a weak coupling limit. In this case, for short time
dynamics, it is possible to restrict the number of simulta-
neous bath excitations.22 As an extreme example, only single
excitations might be considered. If one restricts the number
of simultaneous excitations, the dimension of the spinor be-

comes the sum of binomial coefficients(k50
Nexc(k

Nexc) with Nexc

the number of simultaneous excitations. The construction is
similar to the configuration–interaction~CI! approach in
electronic structure theories. The restriction of simulta-
neously allowed excitations leads to significant numerical
savings and its validity can be checked by increasingNexc.

In the MCTDH method23,24 the wave functionC, which
describes the dynamics of a system withM degrees of free-
dom, is expanded as a linear combination of time-dependent
Hartree products:

uC~Q1 ,...,QM ,t !&5 (
j 151

n1

¯ (
j M51

nM

Aj 1 ,...,j M
~ t !

3 )
k51

M

uw j k
(k)~Qk ,t !&, ~10!

where uw j k
(k)& is the single-particle function~spf! for the k

degree of freedom and theAj 1 ,...,j M
denote the MCTDH ex-

pansion coefficients. The total number of coefficients
Aj 1 ,...,j M

and basis function combinations scales exponen-
tially with the number of degrees of freedomM . Considering
a system coupled to a multimode bath, the use of the multi-
configurational wave function ensures the correct treatment
of the system–bath correlations.25,26 The method also en-
ables grouping of several modes together, which reduces
both the number of single-particle degrees of freedom and
the correlation effects between different modes. Although the
exact treatment is contained in the limit of an infinite number
of configurations, in the weak coupling limit, the time-
dependent basis employed in the MCTDH method should be
relatively small. Worthet al.25 have pointed out that even for
weak coupling, one spf per bath mode~the Hartree limit! is
not sufficient to fully describe the system–bath interaction.
However, the number of spf’s for the bath degrees of free-
dom can be increased until convergence is achieved, which
makes this approximation controllable.

III. THE MODEL

The primary system is constructed from an anharmonic
~Morse! oscillator of massM ,

ĤS5
P̂2

2M
1D~e22aR̂22e2aR̂!. ~11!

The coupling term is nonlinear in the Morse oscillator coor-
dinateR, but reduces to a linear one for a smallR:

f ~R̂!5
12e2aR̂

a
. ~12!

The spectral density function was chosen to be the same as in
the harmonic bath case. For an Ohmic bath the damping rate
g is frequency independent and the spectral density in the
continuum limit is given by

J~v!5Mgv ~13!

for all frequenciesv up to the cutoff frequencyvc . A finite
bath with equally spaced sampling of the energy range was
used.
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The parameters used are the same as in Ref. 12: a well
depth D of 0.018 a.u., a52 a.u., and a mass ofM
5105 a.u. The initial state was chosen to be a Gaussian dis-
placed byR052R̃ from the origin with a width ofs5R̃

(R̃'0.09129 a.u. is the characteristic length scale of the
Morse oscillator!. For such a displacement the coupling term
~12! is almost linear. The initial system–bath state has a di-
rect product form where the bath is at zero temperature. Such
a state has no initial correlations between the system and the
bath.

There are a few characteristic time scales of the system.
The period of the Morse oscillator istosc52p/V'127 fs,
whereV5aA2D/M refers to the harmonic frequency of the
potential. The bath has two time scales.tbath is associated
with the highest frequencyvc52.5V and corresponds to a
time scale of 52 fs. The time scale corresponding to the
frequency spacingDv defines the Poincare´ period (t rec). It
should be larger than any other time scale of interest. With
vc fixed this time becomes

t rec5
2p

Dv
5

2pN

vc
. ~14!

Thus, with an increasing number of bath modes, the conver-
gence progresses in time. In our simulations the number of
TLS is chosen to beN520,...,60 ~for different coupling
strengths!, which ensures thatt rec is greater than the overall
simulation time.

The calculations were performed in three different inter-
action regimes identified by considering the involved time
scales:~i! weak coupling referring tog2151630 fs@tosc,
tbath; ~ii ! the intermediate situation characterized byg21

5163 fs'tosc.tbath; ~iii ! the strong coupling regime de-
fined byg21554 fs'tbath,tosc.

In the simulations discussed below, the average position
of the oscillator and the energy relaxation were calculated for
all three coupling strengths. For comparison, the effective
subsystem energy was defined as in Ref. 12:

ES5^ĤS8&5^ĤS&10.5̂ ĤSB&. ~15!

It includes half of the system–bath interaction term.
The dynamics of the system combined with the bath is

generated by solving the time-dependent Schro¨dinger equa-
tion:

C~R̂,$b̂ j%,t !5e2 i ĤtC~R̂,$b̂ j%,0!. ~16!

Each spinor componentc j (R̂) is represented on a spatial
grid. The kinetic energy operator is applied in Fourier space
employing FFT,27 and the Chebychev method28 is used to
compute the evolution operator. Numerical details of apply-
ing the bath operators have already been given in Refs. 4
and 29.

IV. RESULTS AND DISCUSSION

A. Energy relaxation and small amplitude motion

First a restricted surrogate Hamiltonian is applied, which
limits the possible system–bath correlations. The most ex-
treme restriction includes only single excitations. The results

for the weak coupling case (g2151630 fs) are shown in
Fig. 1. For a short period of time the energy relaxes with the
same rate in the two types of bath. However, afterts

'500 fs the rate decreases and eventually the system energy
becomes constant. It should be pointed out, that the satura-
tion time is not the recurrence~Poincare´! time (ts,t rec).
This is confirmed by the fact that for timet.ts the overall
energy transfer from the bath back to the system is not com-
plete. Calculating the population of the bath modes shows
that att.ts most of the system energy is transferred to very
few ~or even one! bath modes, which are in resonance with
the system’s frequency. Modes which are near to the reso-
nance mode or modes become saturated and start to transfer
the excitation back to the system. A dynamic ‘‘steady state’’
between the system and the bath is formed, where most of
the modes transfer energy back, while one~or very few!
continue to absorb energy from the system.

When the number of simultaneous excitations is in-
creased to two, the effect of saturation appears at a later stage
(ts.2000 fs). The results become similar to those of Ref. 12
and the values of the average position@see Fig. 1~upper
panel!# are nearly indistinguishable. We conclude that for the
weak coupling case, the bath that has two simultaneous ex-
citations is completely sufficient to reproduce the dynamics
generated by all simultaneous excitations for times up
to 2 ps.

The relaxation dynamics for medium coupling are
shown in Fig. 2. A saturation effect was obtained for the bath
restricted to single excitations. However, two simultaneous
excitations were sufficient to overcome this saturation and
converge the whole dynamics of the problem. A slight dif-
ference in the energy relaxation rate of the two baths is iden-

FIG. 1. The energy relaxation~lower panel! and damped oscillations of the
average position~upper panel! of the Morse oscillator in the weak coupling
limit ( g2151630 fs). The bath is assumed to be Ohmic with cutoff fre-
quencyvc52.931023 a.u. and consists ofN560 TLS. The initial state

was chosen to be a Gaussian displaced byR052R̃ with a width of s5R̃,

whereR̃'0.091 29. Thick solid lines refer to MCTDH calculations with a
bath of harmonic oscillators~adopted from Ref. 12!. Dashed lines refer to
surrogate Hamiltonian calculations with only single excitations. Thin lines
refer to two simultaneous excitations allowed.
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tified. The TLS bath causes stronger relaxation, but the re-
sults are still in good agreement with those of Ref. 12. Since
the initial state is a function ofR̂ and the system–bath cou-
pling depends onR̂ as well, the initial excitation influences
the effective strength of the coupling. If the initial displace-
ment, i.e., the initial excitation of the primary system, is
decreased, the saturation is postponed. We can then deduce
that the relaxation rate converges to the value of Ref. 12.
Combining the results of Figs. 1 and 2 leads to the conclu-
sion that the differences between the two types of bath in the
weak and intermediate coupling regimes are caused by the
saturation of a few ‘‘central’’ modes in the spin bath. This
saturation is postponed if the bath includes more correla-
tions. For very weak coupling, these higher order system–
bath correlations become insignificant.

The problem of including all system–bath correlations is
therefore crucial in the medium and strong coupling regime.
Figure 3 shows the difference in the system energy (^ĤS&
10.5̂ ĤSB&) for two cases: a bath with only single excita-
tions and a bath in which two simultaneous excitations are
allowed. The calculations were made for different coupling
strengths. As the coupling strength is reduced, the difference
decreases. Thus in a very weak coupling limit, the TLS bath
with only single excitations~no system–bath correlations!
becomes sufficient to describe the dynamics for relatively
long times. In this limit the TLS bath coincides completely
with the harmonic bath.

The issue of including system–bath correlations has also
been addressed in the MCTDH calculations. In Ref. 13 the
same system has been studied with the G–MCTDH method
~the MCTDH with Gaussian expansion functions!. Differ-

ences between the single-configurational~the Hartree limit!
and the multiconfigurational descriptions~with an increasing
number of single particle functions! have been obtained for
the energy relaxation process. In these calculations at least
four single particle functions per resonant bath modes and
two spf for secondary modes were required to achieve con-
vergence in the relatively weak coupling limit (g21

5500 fs).
In the strong coupling regime~Fig. 4! there is consider-

FIG. 2. The energy relaxation~lower panel! and damped oscillations of the
average position~upper panel! of the Morse oscillator in the intermediate
coupling regime (g215163 fs). The bath parameters and the initial state are
the same as in the weak coupling calculations. The number of bath modes is
N540. Thick solid lines refer to MCTDH calculations with a bath of har-
monic oscillators~adopted from Ref. 12!. Dashed lines refer to surrogate
Hamiltonian calculations with single excitations only. Thin lines refer to
calculations with two allowed simultaneous excitations.

FIG. 3. ~Left panel! The relative difference in the effective subsystem en-
ergy (̂ HS&10.5̂ HSB&) between the bath with only single excitations al-
lowed ^E1& and the bath with two simultaneous excitations^E2& as a func-
tion of time. The difference is calculated for a few coupling strengths. The
simulation time is t5900 fs and the number of bath modes isN
510,...,40.~Right panel! The populationPsim of one and two simultaneous
bath excitations is compared to the bath with two simultaneous excitations.
The solid lines refer to the weak coupling limit (g2151630 fs) and the
dashed lines refer to medium coupling (g215163 fs).

FIG. 4. The energy relaxation~lower panel! and damped oscillations of the
average position~upper panel! of the Morse oscillator in the strong coupling
strength (g21554 fs). The bath parameters and the initial state are the same
as in the weak coupling calculations. The number of bath modes isN
520. Solid lines refer to Nest and Meyer’s MCTDH calculations~adopted
from Ref. 12!, where the thick lines are the full-dimensional wave packet
result and the thin lines refer to the Morse–Lindblad model. Dashed lines
refer to surrogate Hamiltonian calculations with single excitations. Dot-
dashed lines refer to a bath with four excitations allowed simultaneously.
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able deviation between the two models. In the surrogate
Hamiltonian model the energy relaxes faster and the oscilla-
tor is damped after a single period. As expected, convergence
requires many simultaneous excitations. For example, a bath
consisting ofN520 modes requires at least four simulta-
neous excitations for converging the energy relaxation dy-
namics. Although the spin bath with a few simultaneous ex-
citations is sufficient to overcome the saturation effect, it
does not produce the same results as the harmonic bath in the
MCTDH method.

B. The interaction between the bath modes

The saturation of bath modes is expected whenever an
anharmonic bath is employed. Nevertheless, to mimic the
harmonic bath more closely the saturation of the bath modes
should be reduced. This effect is obtained by allowing en-
ergy exchange between the bath modes. For the surrogate
Hamiltonian this is done by adding to the bath Hamiltonian
ĤB of Eq. ~1! the term

Ĥ int5(
i j

k i j ~ŝi
†ŝj1ŝj

†ŝi !, ~17!

where the parameterk i j (5k j i* ) is the interaction strength
between two bath modes. The interaction can be restricted to
the nearest neighbors in energy by the conditionk i j 50 for
u i 2 j u.1. The detailed algorithm of applying Eq.~17! in the
bit representation has been described in Ref. 29 in the con-
text of pure dephasing.

The termŝi
†ŝj1ŝj

†ŝi describes a two quasiparticle in-
teraction within the bath. A qualitative picture is based on an
almost elastic exchange of energy between the two nearest
neighbor bath modes which are almost degenerate. The pro-
cess is described by a creation of an excitation in one mode
at the expense of another and vice versa.

The new bath Hamiltonian including the interactions can
be diagonalized leading to

Ĥ̃B5(
i

ṽ i ŝ̃i
†ŝ̃i , ~18!

whereṽ i are the eigenvalues ofD̂†(ĤB1Ĥ int)D̂. In the new
basis of$ŝ̃i% the system–bath interaction term in Eq.~6! is
also modified. However for sufficiently smallk the eigenval-
ues of the bath change only slightly, but the saturation effect
is postponed to a much later time.

Figure 5 shows the influence of the interaction between
the bath modes on energy relaxation in the weak coupling
limit ( g2151630 fs). The dynamics are calculated for a
relatively long period of 3 ps. For such a long time the satu-
ration effect is observed even for a bath with two simulta-
neous excitations. Since the saturation timets is determined
mostly by the saturation of the few modes close to resonance
with the subsystem, increasing the number of modes does
not prolongts .

Adding an interaction between the bath modes leads to
slower decay and delayed saturation~cf. Fig. 5, upper panel!.
This can be understood from the following considerations:
the interaction term, Eq.~17!, describes the transport of ex-
citation from one bath mode to its nearest neighbor. Conse-

quently, k determines how quickly the excitation is trans-
ported away from a TLS mode close to resonance with the
primary system. On the other hand, the interaction energy,
i.e., the expectation value of^ĤSB&, depends on the popula-
tion of the primary system and of the bath modes close to it.
If the population is removed from those bath modes and
‘‘diffuses’’ all over the bath, the interaction energy decreases
and the decay becomes slower. This explains the upper panel
of Fig. 5 which shows the energy relaxation for different
values ofk.

An optimal value of the interspin coupling parameterk
should minimize saturation without altering the spectral den-
sity. As an example,k51.531024 for calculations carried
out for N560 bath modes~cf. the lower panel of Fig. 5!. For
this value ofk the spectrum of the bath deviated less than
1%. The energy relaxation in this case is almost indistin-
guishable from the results obtained in Ref. 12 for the har-
monic bath.

C. Correlated versus uncorrelated states

The widely used assumption of an initially uncorrelated
system–bath state is not consistent with most experimental
situations.30–32 The influence of initial correlations has been
addressed in the context of the weak coupling approxima-
tion, where it appears as an additional inhomogeneous
term.32

A fully correlated initial state is easily obtained in the
surrogate Hamiltonian method. Once the system–bath
HamiltonianĤ is set, the correlated ground state can be de-

FIG. 5. The energy relaxation with interaction between the bath modes is
shown in the weak coupling limit (g2151630 fs). The bath is assumed to
be Ohmic with cutoff frequencyvc52.931023 a.u. ~Upper panel! The in-
fluence of the parameterk is shown for a bath ofN540 modes.~Lower
panel! The energy relaxation is shown with the optimal parameter ofk
51.531024 ~thin line!. The thick solid line refers to MCTDH calculations
with a bath of harmonic oscillators~Ref. 12!. The dashed line refers to
surrogate Hamiltonian calculations with two simultaneous excitations al-
lowed without interaction between the bath modes. The bath consists ofN
560 modes.

666 J. Chem. Phys., Vol. 121, No. 2, 8 July 2004 Gelman, Koch, and Kosloff

Downloaded 30 Sep 2004 to 141.14.151.34. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



termined by propagating an initial guess wave function in
imaginary time usingĤ.33

The influence of initial correlations is shown in Fig. 6.
The uncorrelated state is identical to that of the previous
calculations: the primary system is defined as a shifted
Gaussian wave packet, while the bath is not excited. For the
correlated initial state, the ground state of the total system
was calculated first. Then this ground state was displaced by

the shift operator in momentum spaceD̂5e2 iR0k̂ with R0

52R̃. The dynamics of the correlated state are compared to
that of the uncorrelated state for weak and strong couplings
(g2151630 fs andg21554 fs). The dashed and solid lines
in Fig. 6 correspond to the initial state being correlated and
uncorrelated, respectively.

The short-time dynamics differ for the correlated and
uncorrelated cases, since the correlations need to be built up
in the uncorrelated case.34 In the latter case an initial slip-
page in the system energy can be observed before the re-
duced dynamics appear to be Markovian~right upper panel!.
This effect is insignificant for weak coupling. Even for
strong coupling, the differences between the correlated and
uncorrelated cases were found to be very small. Apparently,
the displacement is a stronger ‘‘perturbation’’ than that
caused by the correlations, i.e., the displacement establishes
a new initial state.35

D. Decoherence

Decoherence has become a popular term used to de-
scribe loss of phase in coherent superpositions of quantum
states due to interaction with a bath. It is therefore natural to
compare the decoherence properties of the spin bath to those
of the harmonic bath. The first difficulty is that there are
different approaches to the definition of decoherence.

Alicki 36 identifies pure decoherence~dephasing! with the de-
cay of the off-diagonal elements of the density operator,
which is not accompanied by dissipation. He then argues that
dephasing cannot be caused by a harmonic oscillator bath
with a coupling, which is linear in coordinates or momenta.

Energy relaxation is also accompanied by loss of phase.
For comparison, we will consider decoherence as a process
caused by energy relaxation, which is characterized by a time
T15g21. The decoherence effect will be illustrated in terms
of the dissipative dynamics of cat states, defined as a super-
position of two coherent states. The interaction with the en-
vironment leads to decay of the coherences of such a super-
position on an extremely short time scale, usually much
shorter than the corresponding relaxation time scale.37 This
process has been modeled using G–MCTDH by Ref. 13, and
as a result can be used for a comparative study.

The Wigner function of the cat state~Fig. 7! consists of
two Gaussians centered at (6R0 ,p0) and an interference
term, which is centered at the origin. The off-diagonal part of
the density matrix in the coherent-state basis, which contains
information about quantum interferences between the two
components of the cat state, decays with the rategcoh. In the
Markovian limit the decay rate is proportional to the square
of the distance between the coherent states. For zero tem-
perature it is given by38,39

gcoh5
gMv0d2

2\
. ~19!

v0 and d are parameters of the primary system (v0 repre-
sents the frequency of the harmonic oscillator, andd is the
separation distance between the coherent states!.

The decoherence rate for a primary system coupled to a
TLS bath is calculated and compared to the calculations for a
bath of harmonic oscillators with the G–MCTDH method.13

The calculations are performed for a cat state in a harmonic
oscillator potential withv051023 a.u. andM5105 a.u. The
bath has the same parameters as for the previous calculations
with damping rates ofg2151630 fs andg215500 fs.

FIG. 6. Effect of initial correlations. The energy relaxation and damped
oscillations of the average position are shown for the initially uncorrelated
~solid lines! and correlated~dashed lines! states. The dynamics for weak
(g2151630 fs) and strong couplings (g21554 fs) are compared. A bath
consisting ofN510 modes with two and five simultaneous excitations~for
the weak and strong coupling, respectively! is sufficient to obtain the con-
verged results.~Left! The effective subsystem energy~upper panel! (ES8
5^HS&10.5̂ HSB&) and the expectation value for the Morse coordinate
~lower panel! are shown.~Right! The bare subsystem energy~upper panel!
ES5^HS& in the strong coupling regime (g21554 fs) is shown for the short
time dynamics. The energy stored in the system–bath coupling~lower
panel! is calculated as a function of the coupling constanth5Mg.

FIG. 7. Wigner functionW(x,p) of a superposition of two spatially dis-
placed Gaussian wave packets atR0560.25 a.u. with a coherent-state
width of s5(2Mv0)21 ~cat state!. The figure showsW(R,P) at the initial
time t50. The interference term, which appears between the Gaussian pack-
ets, indicates their coherence and decays with time.
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A quantitative measure of decoherence of the primary
system is the coherence norm used by Strunzet al.,40

ncoh~ t !5trS$r̂S
coh~ t !r̂S

coh†~ t !%, ~20!

wherer̂S
coh refers to off-diagonal elements of the subsystem

reduced density matrix in the basis of coherent states.
Since decoherence is a basis-dependent phenomenon,

one can ask if it can also be measured in the basis of the
eigenstates of the system HamiltonianĤS . The question
arises, whether these eigenstates form a pointer basis41—the
basis with respect to which off-diagonal elements in the re-
duced density operator disappear due to decoherence. To per-
form this test the system density operatorr̂S(t)5trB$r̂%,
which has been calculated in the coordinate basis is trans-
formed to the basis of theĤS eigenstates. Decomposing such
a state to a dynamical and a static part leads to42

r̂S~ t !5r̂coh~ t !1C2r̂S
eq, ~21!

wherer̂S
eq is the equilibrium stationary system density opera-

tor andC2 is an overlap functional given by

C25trS$r̂S~ t !•r̂S
eq%/trS$r̂S

eq2%. ~22!

r̂coh(t) in Eq. ~21!, has no diagonal elements in the energy
representation and is therefore traceless. Thus the decoher-
ence effect is measured by the decay of trS$r̂coh

2 %.
Figure 8 shows the decay of the coherence normncoh

and trS$r̂coh
2 % for two different coupling strengths~both are

weak!. The thick lines refer to a simple exponential decay
predicted by Eq.~19! for a harmonic bath and confirmed by
Ref. 13. The dashed lines refer to the calculated decay of
ncoh, which is in good agreement with the prediction. The
decay of trS$r̂coh

2 % ~the dotted lines! has almost the same rate
at a relatively short time. However, the off-diagonal elements
of r̂S in the energy representation do not decay strictly to
zero. Therefore, in this case, the system energy eigenstates
cannot be considered as a pointer basis.41

E. Entanglement

Entanglement between two quantum states is a manifes-
tation of additional quantum correlation. For example en-
tanglement between the system and the bath meansr̂Þr̂S

^ r̂B . In a dissipative environment it is expected that initial
entanglement between parts of the system are lost leading to
decoherence.43,44 In addition a bath can also provide an in-
direct interaction between totally decoupled parts of the pri-
mary system and entangle them.45,46

The difference between the harmonic and the spin baths
should be manifested in another type of entanglement—
quantum correlations between different bath modes. A sys-
tem interacting with the spin bath, can induce entanglement
between two spin modes, which are not directly interacting
with each other. In the harmonic bath on the other hand, a
system linearly coupled to different modes is not able to
entangle those modes~see Appendix A!.

Peres47 and Horodeckiet al.48 have provided a criterion,
based on partial transposition, to determine whether a given
mixed state of two subsystems is entangled~cf. Appendix B!.
Since the criterion is defined only for two coupled TLS, the
study of entanglement is limited to two bath modes (i ) and
( j ). The density operator of any two bath modesr̂i j is ob-
tained as a partial trace of trkÞ i , j$r̂B% over the rest of the bath
modes, where the density operator of the bath isr̂B

5trS$r̂%. The procedure checks whether the partial transpo-
sition of r̂i j with respect to one of the modes has negative
eigenvalues. The smallest eigenvaluel0 of the partial trans-
pose matrixrTj constitutes the criteria. Then the eigenvalues
with l0,0 are averaged over all entangled pairs of bath
modes.

In Fig. 9 the averaged parameterl0 is shown as a func-
tion of time for three different coupling strengths. The en-
tanglement calculations were based on converged results ob-
tained for a bath ofN540 modes. This was sufficient to a
time scale of 900 fs, for all three system–bath coupling
strengths considered. Since att50 the bath is not excited,
there are no entangled bath modes, thereforel050 for all
pairs. As t increasesl0 becomes negative for some of the
pairs of the bath modes, meaning that these modes become
entangled. As time progresses, the number of entangled pairs
saturates for all three couplings~cf. Fig. 9, lower panel!.
Therefore, the increase in the absolute value ofl0 is related
primarily to the growth in population of the entangled
modes. The maximum in the number of entangled modes for
an early time may be associated with the creation of higher-
order entanglement terms where three or more simultaneous
excitations become important. Such higher-order entangle-
ment is not captured by the Peres-Horodecki parameter.

To characterize the degree of entanglement we use an
additional measure, the entanglement of formation intro-
duced by Wootterset al.49–51 ~cf. Appendix B!. For any
2^ 2 mixed state this quantity varies from zero~separable
states! to one~maximally entangled states!. Our results~cf.
Fig. 10! are obtained by averaging the entanglement of for-
mationE(r i j ) ~for two bath modesi and j ) over all possible
pairs of modes. The dynamics of^E(r)& is similar to those
of the partial transpose parameter. It should be noted that the

FIG. 8. The decoherence effect in terms of decay of the coherence norm and
off-diagonal elements in the energy representation. The coherence normncoh

is shown as a function of time for two different couplings,g2151630 fs
and g215500 fs. In the golden rule limit, off-diagonal elements of the
reduced system density matrixr(R,R8) decay exponentially with the deco-
herence ratesgcoh

215130 fs andgcoh
21540 fs ~for the two given couplings,

respectively!. This decay is shown by the full lines. The dashed lines refer to
the calculated decay of the decoherence norm. The dotted lines show the

decay of trS$r̂coh
2 % in the energy representation.
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growth of entanglement shown in Figs. 9 and 10 is exclusive
to the spin bath.

V. SUMMARY AND CONCLUSIONS

The similarities and differences of the relaxation dynam-
ics of a primary system coupled to a spin or to a harmonic
bath have been analyzed. The study was facilitated by the
ability to obtain converged numerical results for a finite pe-

riod in time. In both cases this task becomes possible by
employing a large but finite number of bath modes and con-
trolling the degree of correlation.

A. The similarities

For all cases studied the extremely short time dynamics
were identical. This period represents the inertial response of
the bath and is characterized by a zero derivative of the en-
ergy at the initial timet50. This non-Markovian dynamical
evolution, ‘‘the slippage,’’ is quite short and in many cases it
can be ignored. The initial dynamics are closely related to
the issue of the choice of the initial state. Preferably it should
represent equilibrium system–bath correlation and not be a
product state. The surrogate Hamiltonian method allows to
create such a fully correlated initial state of the system–bath
entity. However, in the present model differences in the dy-
namics between correlated and uncorrelated states seem to be
insignificant, even in the strong coupling case. It is expected
that the same phenomena would be observed in the harmonic
bath.

For weak system–bath coupling the dynamics induced
by both baths are also similar. This is a numerical confirma-
tion that in the weak coupling limit the harmonic bath can be
mapped to the spin bath.5–7 In addition in this limit the spin
bath converges with only single excitations of the bath
modes meaning that the system and bath are almost disen-
tangled. This fact is consistent with the convergence to the
Markovian limit.52

The decoherence properties of the harmonic and spin
baths as determined by the loss of phase of cat states are
found to be quite similar. This result is somewhat surprising
since the ergodic properties of the two baths are different. To
rationalize, one should notice that the coherence in cat states
composed of a superposition of two coherent states in a
single mode does not represent entanglement. Therefore, this
phase loss does not characterize decoherence in accordance
with Alicki’s notion.36 Moreover when a pure dephasing
term was added it was found that it did not erode the phase
coherence between cat states.53 We conclude that the deco-
herence properties of the two baths still require a further
study.

B. The differences

The spin and harmonic baths begin to deviate when the
initial excitation of the primary system is increased. This
difference is observed for excitations where the dynamics
generated by the harmonic bath are still Markovian. The first
indication of differences is the necessity of two simultaneous
bath excitation to converge the spin bath. For larger time
periods, the spin bath saturates limiting the ability to assimi-
late the system’s energy. The conclusion is that the limit of
weak coupling is more restrictive in the spin bath case. The
effect of saturation can be reduced if the bath Hamiltonian
includes a mode-mode coupling term. This term causes dif-
fusion of excitation between the modes, spreading the exci-
tation over a greater number of bath modes. Thus bath
modes, which are relatively far from resonance with the pri-

FIG. 9. Measurement of entanglement between the bath modes as a function
of time. ~Upper panel! The smallest eigenvalue of the partial transposition
rTj of the reduced density matrix for a pair of the bath modes (i , j ) is
calculated according to Appendix B. The negative eigenvalues are averaged
over all possible combinations of the bath modes.~Lower panel! The rela-
tive number of entangled pairs of the bath modes as a function of time. The
calculations are performed for three different system–bath coupling
strengths (g2151630, 500, 163 fs!. The bath consisting ofN540 modes
with two simultaneous excitations allowed is used in all calculations.

FIG. 10. Measurement of entanglement between the bath modes as a func-
tion of time. ~Upper panel! The smallest eigenvalue of the partial transpo-
sition rTj of the reduced density matrix for a pair of the bath modes (i , j ) is
calculated according to Appendix B. The negative eigenvalues are averaged
over all possible combinations of the bath modes.~Lower panel! The rela-
tive number of entangled pairs of the bath modes as a function of time. The
calculations are performed for three different system–bath coupling
strengths (g2151630, 500, 163 fs!. The bath consisting ofN540 modes
with two simultaneous excitations allowed is used in all calculations.
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mary system become populated and the saturation is sup-
pressed. Practically, this allows to increase the convergence
time scale of the spin bath.

In the medium coupling regime there is an overall good
agreement between the two models. The spin bath, however,
causes stronger relaxation, a fact, which becomes even more
visible in the case of strong coupling. In this regime the
deviations between the two baths become significant.

The possibility of entanglement of bath modes mediated
by the primary system is a major conceptual difference be-
tween the spin and harmonic baths. In the spin bath after a
short initial period with only single excitations, entanglement
between pairs of spins sets in with what seems as an expo-
nential growth. At later times the pair entanglement is re-
placed by higher order terms and the pair entanglement satu-
rates. All these correlations are absent from the harmonic
bath, nevertheless, the dynamics of the the primary systems
are not very different except for extremely strong coupling.
The present simulations should be extended to finite tem-
peratures, where different dynamics of harmonic and spin
baths are expected when the coupling is larger than the weak
coupling regime.5,7,54 The recently proposed random phase
method55 allows to extend the above models to finite tem-
perature applications.

The present study is an important step in establishing the
surrogate Hamiltonian method as a practical simulation tool.
The elucidation of the system–bath dynamics allows to tailor
a simulation package in particular for ultrafast dynamical
processes. The two bath models represent different physics.
The surrogate Hamiltonian is more suited to a local mode
bath description, while the harmonic bath finds its origin in a
global normal mode description. The very similar dynamics
observed in the weak and medium coupling cases indicates
that from the viewpoint of the reduced dynamics it is hard to
identify a distinction between the two baths.
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APPENDIX A: HARMONIC BATH VERSUS SPIN BATH

The differences between harmonic and spin baths can be
illuminated by studying the simple system of a spin-1

2

coupled to a bath. For the harmonic bath the total Hamil-
tonian in second quantization is given by

Ĥ5
1

2
Vŝz1(

j
v j b̂j

†b̂j1(
j

l j~ b̂j1b̂j
†!~ ŝ11ŝ2!.

~A1!

Thus the Heisenberg equations of motion for the system op-
erators are

d

dt
ŝ65

1

i
@ŝ6 ,Ĥ#56 iVŝ62 i ŝz(

j
l j~ b̂j1b̂j

†!. ~A2!

Similarly, the equations of motion for the bath operators are

d

dt
b̂j52 iv j b̂j2 il j~ ŝ11ŝ2!. ~A3!

Since the annihilation and creation operatorsb̂j and b̂j
† , sat-

isfy the standard Bose commutation relation,@ b̂j ,b̂j 8
†

#
5d j , j 8 , a closed set of equations is obtained for each of the
independent bath modes.

Now, let us consider a different model, where the pri-
mary system is coupled to a bath of spins1

2. The total Hamil-
tonian may be written in the form

Ĥ5Vŝz
01

1

2 (
j

v jŝz
j 2

1

2 (
j

l j ŝ1
0 ŝ2

j 1h.c. , ~A4!

where ŝx,y,z designates the set of Pauli operators andŝ6
i

5ŝx
i 6ŝy

i are the usual ladder operators. For simplicity, we
consider a system~0! consisting of a spin1

2 which interacts
with a pair~1,2! of spins. Thus, the Hamiltonian of the whole
system reads

Ĥ5Vŝz
01

1

2
~v1ŝz

11v2ŝz
2!2

l1

2
~ ŝ1

0 ŝ2
1 1ŝ2

0 ŝ1
1 !

2
l2

2
~ ŝ1

0 ŝ2
2 1ŝ2

0 ŝ1
2 !. ~A5!

The Heisenberg equations of motion for the system operator
are

d

dt
ŝ6

0 56 i S 2Vŝ6
0 1

l1

2
ŝz

0ŝ6
1 1

l2

2
ŝz

0ŝ6
2 D , ~A6!

and the equation of motion for the bath operator reads

d

dt
ŝ6

1,256 i S v1,2ŝ6
1,21

l1,2

2
s6

0 ŝz
1,2D . ~A7!

The commutation relations for spin operators are different
from those of bosons,

@ŝi ,ŝj #522i ŝk , ~A8!

which makes the set of the equations above nonclosed. After
some algebra, the equation for the bath operators becomes

d

dt
~ ŝz

0ŝ6
1,2!56 iv1,2ŝz

0ŝ6
1,26 i

l1

2
ŝ6

0

1 il2~ ŝ1
0 ŝ6

1,2ŝ2
2,12ŝ2

0 ŝ6
1,2ŝ1

2,1!. ~A9!

The triple correlations of the typeŝ1
0 ŝ6

1 ŝ2
2 is a manifesta-

tion of the buildup of quantum entanglement—a specific cor-
relation between different modes, which has no analogy in
classical physics. These correlations make a difference be-
tween the spin bath and the harmonic oscillator one, since
the latter does not have quantum correlations between the
bath modes.

APPENDIX B: ENTANGLEMENT
BETWEEN DIFFERENT BATH MODES

In order to check whether the reduced two-system den-
sity matrix r̂ is entangled, first we will use the partial trans-
position criterion proposed by Peres47 and Horodeckiet al.48
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A mixed state described by density matrixr̂ is nonseparable
@and therefore cannot be written as a product state of two
subsystems (i ) and (j ), r̂5r̂i ^ r̂j ,] iff the partial transpo-
sition of r̂ with respect to one of the two subsystems has
negative eigenvalues. The partial transposer̂Tj is obtained by
transposing in a matrix representation ofr̂ only those indices
corresponding to subsystem (j ), i.e., rmm,nn

Tj 5rmn,nm . The
following notation for matrix elements of a composite sys-
tem is used:

rmm,nn5^em^ f mur̂uen^ f n&, ~B1!

whereem and f m denote the arbitrary orthonormal bases in
Hilbert space describing the first (i ) and second (j ) system,
respectively.

Checking the positivity of the partial transpose is equiva-
lent to checking the signs of the eigenvalues ofr̂Tj or, alter-
natively, the signs of the following determinants:

W15r11,11
Tj r22,22

Tj 2r11,22
Tj r22,11

Tj ,

~B2!
W25r12,12

Tj r21,21
Tj 2r12,21

Tj r21,12
Tj .

In the case when one of the above determinants is negative,
the stater̂ is nonseparable, and hence there is entanglement
between the two subsystemsr̂i , r̂j .

Another entanglement measure for a mixed state of two
spin-12 particles is the entanglement of formation.49–51 Ex-
plicitly, for the reduced two-system density matrixr̂ the en-
tanglement of formation is defined by

E~r!5h 1
2 @11A12C~r!2#, ~B3!

whereh is the binary entropy functionh(x)52x log2 x2(1
2x)log2(12x) andC~r! is the concurrence. The concurrence
is calculated in the following way: first we define the ‘‘spin-
flipped’’ density matrix to be

r̃5~sy^ sy!r* ~sy^ sy!, ~B4!

where the asterisk denotes complex conjugation ofr̂ in the
standard basis$u00&,u01&,u10&,u11&,% and sy expressed in the
same basis is the matrix

sy5S 0 2 i

i 0 D . ~B5!

As both r and r̃ are positive operators, it follows that the
product rr̃, though non-Hermitian, also has only real and
non-negative eigenvalues. Let the square roots of these ei-
genvalues, in decreasing order, bel1 , l2 , l3 , andl4 . Then
the concurrence of the density matrixr is defined asC
5max$l12l22l32l4,0%. It should be noted thatC50 cor-
responds to an unentangled state, whileC51 to a completely
entangled state and the entanglement of formationE is a
monotonically increasing function ofC.
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24M. H. Beck, A. Jäckle, G. A. Worht, and H.-D. Meyer, Phys. Rep.324, 1

~2000!.
25G. A. Worth, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys.105,

4412 ~1996!.
26H. Wang, J. Chem. Phys.113, 9948~2000!.
27R. Kosloff, in Numerical Grid Methods and Their Application to Schro¨-

dinger Equation~Kluwer Academic, The Netherlands, 1993!.
28R. Kosloff and H. Tal-Ezer, Chem. Phys. Lett.127, 223 ~1986!.
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