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The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the
purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath.
Converged results are obtained for the spin bath by the surrogate Hamiltonian approach. This
method is based on constructing a system—bath Hamiltonian, with a finite but large number of spin
bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval.
Convergence with respect to the number of simultaneous excitations of bath modes can be checked.
The results are compared to calculations that include a finite number of harmonic modes carried out
by using the multiconfiguration time-dependent Hartree method of Nest and [ey@nem. Phys.

119 24 (2003]. In the weak coupling regime, at zero temperature and for small excitations of the
primary system, both methods converge to the Markovian limit. When initially the primary system

is significantly excited, the spin bath can saturate restricting the energy acceptance. An interaction
term between bath modes that spreads the excitation eliminates the saturation. The loss of phase
between two cat states has been analyzed and the results for the spin and harmonic baths are almost
identical. For stronger couplings, the dynamics induced by the two types of baths deviate. The
accumulation and degree of entanglement between the bath modes have been characterized. Only in
the spin bath the dynamics generate entanglement between the bath modes.

© 2004 American Institute of Physic§DOI: 10.1063/1.175931]2

I. INTRODUCTION In these cases a strong coupling or interactions with a low-
temperature environment may cause large system—bath cor-
Modeling quantum many-body systems is a challengingeg|ations, and will therefore result in a failure of the Markov-
problem. The main obstacle is the exponential growth ingn approximation. To overcome such difficulties in the
complexity with the number of degrees of freedom. Signifi- 4y namics of molecules that are in intimate interaction with
cant simplifications are achieved by partitioning the totaly, enyironment, an alternative approach termed the surrogate
system into a primary part and a bath describing theHamiItoniari‘ has been developed. The surrogate Hamil-

elr_wv_itrlonmsr;& Tgetri]d_ea :.S E{? Tr? del t_h(_a pri_ma?r/] systeml X tonian method employs a bath composed of two-level sys-
plicitly and the bath implicitly, thus minimizing the complex- v v o v 2o 2 spin bat,

ity of the bath to its influence on the primary system. A bath The concept of the system—bath separation underlines

composed of a set of noninteracting harmonic oscillators i e quantum description of manv body dvnamics. The ori-
the one most widely used. The idea originates from a normal. q b y y ay '

mode analysis combined with a weak system—bath couplinﬁwms_of the spin and harmonic baths are different. The har-
assumptiorf. If the bath is only weakly perturbed by the ' onic bath IS glosely related to a normgl mode_ degomposr
system, it can be considered linear, and therefore describd{pn- Once this is dpne the Spec”?l density f.unct|on is able to
as a collection of harmonic oscillators. completely determine the relaxation dynamics. From a com-
Such a bath is natural for systems interacting with theputat.ion.al poinF of view the determination of.the spectral
radiation field® The harmonic bath model has also been apdensity is a major task. The most popular working procedure
plied to less favorable scenarios such as energy relaxatidii 10 extract it from classical mechanitsThe drawback is

and dephasing of molecules in the liquid phase or on solidghat this procedure assumes harmonic modes and a linear
system—bath coupling term. The spin bath has its origin in a

tight binding model of condensed phase. This can also be-

3Electronic mail: davg@fh.huiji.ac.il

bElectronic mail: christiane.koch@lac.u-psud.fr come a simulation procet_iure if the parameters of the tight
9Electronic mail: ronnie@fh.huji.ac.i binding model can be estimated from first principtés.
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The purpose of the present study is to compare the pedifference between correlated and uncorrelated initial states
formance of the two baths in a simple system composed of & the subject of Sec. IV C. In addition, the decoherence in
primary anharmonic oscillator coupled to a multimode baththe TLS bath of the surrogate Hamiltonian is compared to
In the limit of weak system—bath coupling, it has beenthat in a bath of harmonic oscillatotsf. Sec. IV D. A char-
shown that the two baths are equivalent. For finite temperaacterization of different kinds of entanglement in the surro-
ture the equivalence requires a rescaling of the spectral degate Hamiltonian approach is presented in Sec. IV E. Finally,
sity function which determines the coupling of the primary Sec. V summarizes and concludes.
system to the different bath mod&s.The limiting coupling Appendix A compares the equations of motion between
strength where the dynamics induced by the two baths diffethe two different types of bath and Appendix B introduces
has not yet been characterized. For stronger couplingvo different measures of entanglement of a two-spin sys-
strength, the ergodic behavior of the two baths should b&m. It should be noted that atomic units are used throughout
different. The bath modes of the linearly driven harmonicthe paperf=me,=a,=1).
bath are uncorrelated. In the spin bath the coupling to the
primary system induces quantum entanglement between the
different modes. It is valuable to know how this fundamental,, +yeoRry
difference influences the dynamics of the primary system.

Our comparative study is based on a numerical model of  The system under study describes a primary system im-
a system coupled to a bath, with a large but finite number ofmersed in a bath. The state of the combined system—bath is
modes. For a finite interval of time determined by the inversejescribed by the wave functiolf (R, 3, ...,B,n) WhereR
of the energy level spacing, the finite bath mimics exactly aepresents the nuclear configuration of the dynamical system,

bath with an infinite number of modes. For this interval theand{,B-} are the bath degrees of freedom. The Hamiltonian
primary system cannot resolve the full density of states of sucrj1 a combined system is

the bath. By renormalizing the system—bath interaction term
to the density of states, the finite bath faithfully represents H=Hg®ig+is@Hg+Hgg. 1)
the infinite bath up to this time limit.

The dynamics of the primary oscillator coupled to the
harmonic bath has been recently calculated based on the { =T+ vyR), 2
multi-configuration time dependent Hartree approximation o
(MCTDH).1213 The authors were able to show that for a whereT=P?/2M is the kinetic energy anlls is an external
Morse oscillator coupled to a bath, converged results coulgotential, which is a function of the system coordirigitéR.
be obtained for a bath consisting of 60 modes to a time scalf; denotes the bath Hamiltonian consisting of an infinite
of 3 ps. The present study utilized the same system andm of single mode Hamiltoniarfg,
system—bath coupling parameters, but employed a spin bath
in the context of the surrogate Hamiltonian. The comparison Qo= 2
allows an evaluation of the similarities and differences be- B4
tween the two descriptions. Once the differences are identi- ) i .
fied, it becomes possible to modify the surrogate Ham“_Forthe harmonic bath the single mode Hamiltonians take the
tonian bath to extend the realm of similarity. fo

In the weak coupling limit the numerical study of Nest . p? mjw_2
and Meyet? was able to identify a coupling parameter where  h; =L 2 ] !
the Markovian semigroup limit was reached. One can reason
that the surrogate Hamiltonian bath should behave similarlyvherep;, §; are the normal mode momentum and coordinate

The primary system Hamiltonian takes the form

h; . 3)

2__  ata
2m, T, ()

in this range of coupling parameters. respectively, andg;=(m;w;/2)4;+ (i/v2m;w;)p; is the
The system—bath construction in both cases is not Marcorresponding annihilation operator. For the spin bath,
kovian and differs from the Redfiefti’® or semigroup . i

treatment3®-*The surrogate Hamiltonian approach is close ]

in spirit to real path integral techniques, where a large manywhereé!, &; are the standard spin creation and annihilation
body propagator is constructed and approximated. Generallgperators of modg.

; ,19 H i ~
the path integral methods:!® are applicable to harmonic The system—bath interactiofisg can be decomposed

baths, and lead to a non-Markovian description. into a sum of products of system and bath operators without

The present paper is organized as follows: Section l,qq of generality. Specifically a system—bath coupling in-
outlines the theory of the two models: the surrogate Ham"'ducing vibrational relaxation is considered

tonian approach which employs a bath of two-level systems
(TLS) and the MCTDH method using a harmonic bath. Sec-
tion Il describes the system used for calculations. Section IV
compares the results for the two different environments. The . .
standard process investigated in studies of quantum dissip#hereV;=X\;8;=\;(& +4;) for the harmonic bath an¥,

tive dynamics is energy relaxatidof. Sec. IV A). An inter- =)\j(&;'+ o) for the spin bathf(R) is a function of the
action between bath modes is introduced in Sec. IV B. Thesystem coordinate operator. The influence of the bath on the

HSB=—f(?<>®; Vi, (6)
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primary system is characterized by the spectral density funGspmes the sum of binomial Coeﬁicierﬁgixg(::‘exc) With Ny

tion J(w). To include the density of states, the definition of o ,ymper of simultaneous excitations. The construction is
the spectral density function is choserids similar to the configuration—interactiotCl) approach in
electronic structure theories. The restriction of simulta-
J(w)=2 [\j2p(0) 80— ), (7)  neously allowed excitations leads to significant numerical
' savings and its validity can be checked by increasipg..
that is the system—bath coupling is weighted by density of  In the MCTDH methoé&®**the wave function¥’, which

states. Thus the constants are determined as describes the dynamics of a system withdegrees of free-
dom, is expanded as a linear combination of time-dependent
Aj=vI(w))/p(w)), ®  Hartree products:
wherep(wj)=(a)J-H—wJ-)*l is the density of the states of ny Ny
the bath. W(Qu,...Qu. =2 - 2 AL, (D
Observables associated with operators of the primary =1 jw=t
system are determined from the reduced system density op- M
erator, ps(R,R") =trg{|W)(¥|}, where tg{ } is a partial < IT 1{?(Q,.1)), (10
k=1 K

trace over the bath degrees of freedom. The system density

operator is construpted fr(_)m _the total system—bath WaV@vhere|<pJ(")) is the single-particle functiorispf) for the

function and only this function is propagated. degree of freedom and the_ . denote the MCTDH ex-
Loy

Since within a finite interval of time, the system cannot ansion coefficients. The  total number of coefficients
resolve the full density of bath states, it is sufficient to re-P PO o
and basis function combinations scales exponen-

place the bath modes by a finite set. The sampling density i1 iwm o
energy of this set is determined by the inverse of the timdi@lly with the number of degrees of freeddvh. Considering
interval. The finite bath oN spins is constructed with a & System coupled to a multimode bath, the use of the multi-
system—bath coupling term, which in the limht—c con- configurational wave function ensures the correct treatment
! H 26
verges to the given spectral density of the full bath. The?f the system—bath correlatioffs™ The method also en-
surrogate Hamiltonian, as well as the MCTDH method, con-2blés grouping of several modes together, which reduces
sist of a finite number of bath modes, and they are therefor@0th the number of single-particle degrees of freedom and
limited to representing the dynamics of the investigated systhe correlation effects between different modes. Although the
tem for a finite time(shorter than the Poincangeriod at exact treatment is contained in the limit of an infinite number
which recurrences app@r These recurrences are caused® configurations, in the weak coupling limit, the time-
by the finite size of the bath so that after some time thel€pendent basis employegsm the MCTDH method should be
energy flow into the bath is reflected at its boundaries.  'élatively small. Wortet al™ have pointed out that even for
The surrogate Hamiltonian contains all possible correla!Veak coupling, one spf per bath mottee Hartree limit is
tions between the primary system and the environment. Theot sufficient to fully describe the system—bath interaction.
combined system—bath state is described byNadEnen- However, the number of spf’s for the bath degrees of free-
sional spinor withN being the number of bath modes. The dom can be increased until convergence is achieved, which
spinor is bit ordered, i.e., thith bit set in the spinor index Makes this approximation controllable.
corresponds to th¢th TLS mode, which is excited if the

counting of bits starts gt=0. The dimension 2 results from IIl. THE MODEL
the total number of possibilities to combine two stalés The primary system is constructed from an anharmonic
times. Thus the total wave function can be written as (Morse oscillator of massv,
A A ~ [TJ ~ l’_] _ ISZ D —2aR 2 —aR 11
VRABD)=col bo(R)) + 2, ¢1(R)) sTam P62, )
N The coupling term is nonlinear in the Morse oscillator coor-
2] R dinateR, but reduces to a linear one for a small
+_E Cikl pjk(R)) ++ -+, 9 .
j,k=0 N 1_e—aR
f(R)= — (12

where |¢;(R))=(0,...,$;(R),...,0) is a singly excited
spinor,| ;i (R))=(0.....¢;(R),....¢(R),...,0) is adoubly  The spectral density function was chosen to be the same as in
excited spinor and so on. Théh component corresponds to the harmonic bath case. For an Ohmic bath the damping rate
the jth TLS being excited. However, considering al fos-  y is frequency independent and the spectral density in the
sibilities of combining the bath modes might not be necescontinuum limit is given by

sary in a weak coupling limit. In this case, for short time ) =M 13
dynamics, it is possible to restrict the number of simulta- (@) ye (13
neous bath excitatiorf¥ As an extreme example, only single for all frequenciesw up to the cutoff frequency, . A finite
excitations might be considered. If one restricts the numbebath with equally spaced sampling of the energy range was
of simultaneous excitations, the dimension of the spinor beused.
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0.1

position (a.u.)

u)

5 -0.01625 -

energy (a

-0.01675 -

The parameters used are the same as in Ref. 12: a well 0.2 ' ' ' '
depth D of 0.018 a.u.,,a=2a.u.,, and a mass oM
=10 a.u. The initial state was chosen to be a Gaussian dis-
placed byR,=2R from the origin with a width ofec=R fi &«
(R~0.09129 a.u. is the characteristic length scale of the ‘ /\/\
) ; . 0.0 v
Morse oscillatoy. For such a displacement the coupling term V yvv'
(12) is almost linear. The initial system—bath state has a di- 1.
rect product form where the bath is at zero temperature. Such Dl 00 1300 2000
a state has no initial correlations between the system and the -0.01575 — — — ;
bath. - Nesoch H
There are a few characteristic time scales of the system. — N=60(2)
The period of the Morse oscillator igs—=27/Q)~127 fs,
whereQ) = «/2D/M refers to the harmonic frequency of the
potential. The bath has two time scaleg,, is associated
with the highest frequencw.= 2.5 and corresponds to a B
i I i L | L 1 L | L
time scale of 52 fs. Thg time scal_e qorre;pondlng to the 0.01725; 00 T 300 S
frequency spacindiw defines the Poincargeriod (7,e9. It time (fs)
should be larger than any other time scale of interest. With _ o
we fixed this time becomes FIG. 1. The energy relaxatiotower panel and .dampt.-:'d oscillations of t'he
average positioflupper panglof the Morse oscillator in the weak coupling
27 2N limit (y~*=1630 fs). The bath is assumed to be Ohmic with cutoff fre-
T =—= . (14 quency w,=2.9x10 % a.u. and consists dl=60 TLS. The initial state
rec A ~ ~
w We was chosen to be a Gaussian displacedRpy 2R with a width of o=R,
Thus, with an increasing number of bath modes, the convehereR~=0.091 29. Thick solid lines refer to MCTDH calculations with a
gence progresses in time. In our simulations the number gf2th of harmonic oscillator&adopted from Ref. 12 Dashed lines refer to
. . . surrogate Hamiltonian calculations with only single excitations. Thin lines
TLS is chosgn to beN=20,...,§0(for different coupling  refer to two simultaneous excitations allowed.
strengthy which ensures that, is greater than the overall
simulation time.
The calculations were performed in three different inter-for the weak coupling casey( *=1630 fs) are shown in
action regimes identified by considering the involved timeFig. 1. For a short period of time the energy relaxes with the
scales:(i) weak coupling referring toy 1=1630 fs> 7., Same rate in the two types of bath. However, aftgr

Thath; (i) the intermediate situation characterized by ~500 fs the rate decreases and eventually the system energy
=163 fs~ 745 Tham; (iii) the strong coupling regime de- becomes constant. It should be pointed out, that the satura-
fined by ¥y 1=54 fs~ 7y < Tosc- tion time is not the recurrencéPoincarg time (ts< Q.

In the simulations discussed below, the average positioiThis is confirmed by the fact that for tinte>tg the overall
of the oscillator and the energy relaxation were calculated foenergy transfer from the bath back to the system is not com-
all three coupling strengths. For comparison, the effectiveplete. Calculating the population of the bath modes shows

subsystem energy was defined as in Ref. 12: that att>t, most of the system energy is transferred to very
N . . few (or even ongbath modes, which are in resonance with
Es=(HY)=(Hg)+0.5Hgp). (15 the system’s frequency. Modes which are near to the reso-
It includes half of the system—bath interaction term. nance mode or modes become saturated and start to transfer

The dynamics of the system combined with the bath ishe excitation back to the system. A dynamic “steady state”

generated by solving the time-dependent Sdimger equa- between the system and the bath is formed, where most of
tion: the modes transfer energy back, while ofme very few

o . continue to absorb energy from the system.
V(R {B}t)=e "MWV (R,{B;}.0. (16) When the number of simultaneous excitations is in-
creased to two, the effect of saturation appears at a later stage

Each spinor componeny;(R) is represented on a spatial éts>2000 fs). The results become similar to those of Ref. 12

grid. The kinetic energy operator is applied in Fourier spac and the values of the average positimee Fig. 1(upper

employing FFT, and the Chebychev meth@dls_used o pane)] are nearly indistinguishable. We conclude that for the
compute the evolution operator. Numerical details of apply-

ina the bath operators have already been aiven in Refs Weak coupling case, the bath that has two simultaneous ex-
9 P y 9 " citations is completely sufficient to reproduce the dynamics

and 29. generated by all simultaneous excitations for times up
to 2 ps.
IV. RESULTS AND DISCUSSION The relaxation dynamics for medium coupling are

shown in Fig. 2. A saturation effect was obtained for the bath
restricted to single excitations. However, two simultaneous
First a restricted surrogate Hamiltonian is applied, whichexcitations were sufficient to overcome this saturation and
limits the possible system—bath correlations. The most exeonverge the whole dynamics of the problem. A slight dif-
treme restriction includes only single excitations. The resultderence in the energy relaxation rate of the two baths is iden-

A. Energy relaxation and small amplitude motion
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0.2 : T - : 0.025 — : —_— 06
— =163, N=s0 | =
| — y'=815s, N=30 | ST
=y \ 0.020 == v'=1630 fs, N=20 4177 1% -
= 0.1 \ - . = : [ Tlebi = ! !
i:/ \ ! Q\‘ ; \ /,‘\ ,’\ / s ¥'=3260 s, N=10 | 1'1 l o o’
ks | I\ / N\ \ £ / A h — ¥ =1630fs||
g ’ / v DA S ~ | — —— 00
X_ 7 T "‘___'_\'_‘ J03
o1 j I ; | . y ooor 7 2t N
0 300 600 900 L 1r 7 Joz
-0.0160 . | ; : ; s i
0.005 — ! a
— MCTDH PRI (R Iy Hoa
N —— N=40(1) [ gt 1 |
—~ - T aanowmsapes !
5 -0.0165 T i : n .
& 0000,y 300 600 900 0 300 600 500
> time (fs) time (fs)
20
(5}
5 -0.0170 FIG. 3. (Left pane) The relative difference in the effective subsystem en-
ergy (Hs)+0.XHgp)) between the bath with only single excitations al-
o= lowed (E;) and the bath with two simultaneous excitatiqis) as a func-
-0.01750 : 3(')0 ; : * tion of time. The difference is calculated for a few coupling strengths. The

600
simulation time ist=900 fs and the number of bath modes M

=10,...,40.(Right panel The populatiorPg;,, of one and two simultaneous

FIG. 2. The energy relaxatiofiower panel and damped oscillations of the bath excitations is compared to the bath with two simultaneous excitations.
average positiorfupper panelof the Morse oscillator in the intermediate The solid lines refer to the weak coupling limity{*=1630 fs) and the
coupling regime ¢ 1= 163 fs). The bath parameters and the initial state aredashed lines refer to medium coupling (*=163 fs).

the same as in the weak coupling calculations. The number of bath modes is

N=40. Thick solid lines refer to MCTDH calculations with a bath of har-

monic oscillators(adopted from Ref. 12 Dashed lines refer to surrogate ences between the single-configuratiottae Hartree limit

Hamilto_nian calculations with ;ingle excitationg o_nIy. Thin lines refer to and the multiconfigurational descriptio(with an increasing
calculations with two allowed simultaneous excitations. . . . .
number of single particle functionsiave been obtained for
the energy relaxation process. In these calculations at least
four single particle functions per resonant bath modes and
tified. The TLS bath causes stronger relaxation, but the retwo spf for secondary modes were required to achieve con-
sults are still in good agreement with those of Ref. 12. SinCQ/ergence in the relatively weak coupling |imit*y(l
the initial state is a function oR and the system—bath cou- =500 fs).
pling depends ok as well, the initial excitation influences In the strong coupling regiméFig. 4) there is consider-
the effective strength of the coupling. If the initial displace-
ment, i.e., the initial excitation of the primary system, is
decreased, the saturation is postponed. We can then deduce
that the relaxation rate converges to the value of Ref. 12.
Combining the results of Figs. 1 and 2 leads to the conclu-
sion that the differences between the two types of bath in the
weak and intermediate coupling regimes are caused by the
saturation of a few “central” modes in the spin bath. This
saturation is postponed if the bath includes more correla-

time (fs)

position (a.u.)

-0.1 s

tions. For very weak coupling, these higher order system— 0 ul)o 2(|JO 300
bath correlations become insignificant. -0.01675 ' | - | '

The problem of including all system—bath correlations is e N o
therefore crucial in the medium and strong coupling regime. 5 0017001, == Ny I
FlgureA3 shows the difference in the system ener@ysf S ST e N
+0.5Hsp) for two cases: a bath with only single excita- g ________
tions and a bath in which two simultaneous excitations are © .0.01750 |-
allowed. The calculations were made for different coupling | 77 7T —
strengths. As the coupling strength is reduced, the difference -0.01775 = : 1(')0 ' 2(')0 : o
decreases. Thus in a very weak coupling limit, the TLS bath time (fs)

with only single excitationgno system—bath correlations
becomes sufficient to describe the dynamics for relativeI)F

IG. 4. The energy relaxatiofiower panel and damped oscillations of the
average positiofupper paneglof the Morse oscillator in the strong coupling

long times. In this limit the TLS bath coincides completely syrength ¢~ 1=54 fs). The bath parameters and the initial state are the same

with the harmonic bath.

as in the weak coupling calculations. The number of bath modds is

The issue of including system—bath correlations has alse 20. Solid lines refer to Nest and Meyer's MCTDH calculatidgadopted

been addressed in the MCTDH calculations.

In Ref. 13 thérom Ref. 13, where the thick lines are the full-dimensional wave packet
’ sult and the thin lines refer to the Morse—Lindblad model. Dashed lines

. . 7
same system has been studied with the G-MCTDH methoFifer to surrogate Hamiltonian calculations with single excitations. Dot-

(the MCTDH with Gaussian expansion functipn®iffer-
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able deviation between the two models. In the surrogate -0.01575 - - ——
Hamiltonian model the energy relaxes faster and the oscilla- - wo7s10*|
tor is damped after a single period. As expected, convergence 2 g g;625]- |
requires many simultaneous excitations. For example, a bath f B |
consisting ofN=20 modes requires at least four simulta- 2
neous excitations for converging the energy relaxation dy- & 001675 , —
namics. Although the spin bath with a few simultaneous ex- - e
citations is sufficient to overcome the saturation effect, it 0017255 ' 10100 s 2o|oo s S
does not produce the same results as the harmonic bath in the i , l . ‘ .
MCTDH method. — mern |
A k=1.510"

B. The interaction between the bath modes 5 -L.0f625=

The saturation of bath modes is expected whenever an %>’3
anharmonic bath is employed. Nevertheless, to mimic the g 003E
harmonic bath more closely the saturation of the bath modes B 3
should be reduced. This effect is obtained by allowing en- -0.01725; ; 10'00 ; 20'00 ; T
ergy exchange between the bath modes. For the surrogate time (fs)

Hamiltonian this i n dding to the bath Hamiltonian
a onia s done by add g tothe b onia FIG. 5. The energy relaxation with interaction between the bath modes is

Hg of Eqg. (1) the term shown in the weak coupling limity~1=1630 fs). The bath is assumed to
be Ohmic with cutoff frequency,=2.9x10 2 a.u.(Upper paneél The in-
A= z Kij(a'iTa'j + &;‘&i), (17) fluence of the parameter is shown for a bath oN=40 modes.(Lower

pane) The energy relaxation is shown with the optimal parametek of
=1.5x107* (thin line). The thick solid line refers to MCTDH calculations
where the parametekij(=;<]*i) is the interaction strength with a bath of harmonic oscillatoréRef. 12. The dashed line refers to
between two bath modes. The interaction can be restricted &rrogate Hamiltonian calculations with two simultaneous excitations al-
the nearest neighbors in energy by the condiﬁquO for lowed without interaction between the bath modes. The bath consids of
S i . ; . =60 modes.
|i—j|>1. The detailed algorithm of applying E€L7) in the modes
bit representation has been described in Ref. 29 in the con-
text of pure dephasing. ) _ o
The termé &+ & &; describes a two quasiparticle in- quently, « determines how quickly the excitation is trans-
| .
teraction within the bath. A qualitative picture is based on arPOrted away from a TLS mode close to resonance with the
almost elastic exchange of energy between the two neareBfiMary system. On the other hand, the interaction energy,
neighbor bath modes which are almost degenerate. The prbe., the expectation value ¢Hsg), depends on the popula-
cess is described by a creation of an excitation in one mod#on of the primary system and of the bath modes close to it.

at the expense of another and vice versa. If the population is removed from those bath modes and
The new bath Hamiltonian including the interactions can“diffuses” all over the bath, the interaction energy decreases
be diagonalized leading to and the decay becomes slower. This explains the upper panel
of Fig. 5 which shows the energy relaxation for different
HB:Z 2,070, (18  Vvalues of«.
I

An optimal value of the interspin coupling parameter
should minimize saturation without altering the spectral den-
sity. As an examplex=1.5x10"* for calculations carried

basis Of{?i} the system-—bath i_nt_eraction term in_ HE) IS oyt for N=60 bath modescf. the lower panel of Fig. )6 For
also modified. However for sufficiently smadlthe eigenval- this value of« the spectrum of the bath deviated less than

ues of the bath change only slightly, but the saturation eﬁeci%. The energy relaxation in this case is almost indistin-

is postponed to a much later time. _ , guishable from the results obtained in Ref. 12 for the har-
Figure 5 shows the influence of the interaction betweenmoniC bath.

the bath modes on energy relaxation in the weak coupling

limit (y~1=1630 fs). The dynamics are calculated for a

rel_atively Iong period of 3 ps. For such a Ion_g time th_e satlu-= corelated versus uncorrelated states

ration effect is observed even for a bath with two simulta-

neous excitations. Since the saturation tirpés determined The widely used assumption of an initially uncorrelated

mostly by the saturation of the few modes close to resonancgystem—bath state is not consistent with most experimental

with the subsystem, increasing the number of modes doesituations®=*?The influence of initial correlations has been

not prolongts. addressed in the context of the weak coupling approxima-
Adding an interaction between the bath modes leads t&on, where it appears as an additional inhomogeneous

slower decay and delayed saturatioh Fig. 5, upper pangl term

This can be understood from the following considerations: A fully correlated initial state is easily obtained in the

the interaction term, Eq17), describes the transport of ex- surrogate Hamiltonian method. Once the system—bath

citation from one bath mode to its nearest neighbor. ConseamiltonianH is set, the correlated ground state can be de-

where®; are the eigenvalues @ff(Hg+H;,)D. In the new

Downloaded 30 Sep 2004 to 141.14.151.34. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 121, No. 2, 8 July 2004 Dissipative quantum dynamics 667

T T T T -0.0159

T T ——
-1
-0.0160 Y =16301s]

=
s -0.0165

;‘u:n
-0.0170

Eg (au)

-0.0160

1 L | L |
-0.0175 ‘
0

0.2

W(x,p)

0.1

—0.02
0.0

position (a.u.)
<Hgp>/<H >

—0.01

-0.1

L | L 1 L | L i NI T N S N
0 50 100 150 200 0 10 20 30 40 50
time (fs) system-bath coupling 1|

0.00

P

FIG. 6. Effect of initial correlations. The energy relaxation and damped
oscillations of the average position are shown for the initially uncorrelatedg 7. Wigner functionW(x,p) of a superposition of two spatially dis-
(solild lines and correlateddashed linesstates. The dynamics for weak placed Gaussian wave packets R§==0.25 a.u. with a coherent-state

- width of o=(2Mw,) ! (cat stat® The figure showsV(R,P) at the initial
timet=0. The interference term, which appears between the Gaussian pack-
ets, indicates their coherence and decays with time.

(y 1630 fs) and strong couplingsy(*=54 fs) are compared. A bath
consisting ofN=10 modes with two and five simultaneous excitati¢ios

the weak and strong coupling, respectivaly sufficient to obtain the con-
verged results(Left) The effective subsystem enerdgypper panel (E§
=(Hg)+0.XHsp) and the expectation value for the Morse coordinate
(lower panel are shown(Right) The bare subsystem ener@ypper panel

Es=(Hs) in the strong coupling regimey(*=54 fs) is shown for the short  Alicki *® identifies pure decoheren¢gephasingwith the de-
time dynamics. The energy stored in the system-bath couglmger  cay of the off-diagonal elements of the density operator,
pane} is calculated as a function of the coupling constt y. which is not accompanied by dissipation. He then argues that
dephasing cannot be caused by a harmonic oscillator bath
termined by propagating an initial guess wave function inwith a coupling, which is linear in coordinates or momenta.
imaginary time usingd.3® Energy _relaxation i_s also gccompanied by loss of phase.
The influence of initial correlations is shown in Fig. 6. FOr comparison, we will consider decoherence as a process
The uncorrelated state is identical to that of the previouscausefjlby energy relaxation, which is characterized by a time
calculations: the primary system is defined as a shifted1=7 - The decoherence effect will be illustrated in terms
Gaussian wave packet, while the bath is not excited. For th@f the dissipative dynamics of cat states, defined as a super-
correlated initial state, the ground state of the total systenROSition of two coherent states. The interaction with the en-
was calculated first. Then this ground state was displaced byironment leads to decay of the coherences of such a super-

. . S iRk v position on an extremely short time scale, usually much
the shift operator in momentum spate=e with Ro shorter than the corresponding relaxation time stalEhis

=2R. The dynamics of the correlated state are compared tBrocess has been modeled using G-MCTDH by Ref. 13, and
that of the uncorrelated state for weak and strong couplingSg 5 result can be used for a comparative study.

_1_ _1_ . .
(y "=1630fs andy "=54fs). The dashed and solid lines  the wigner function of the cat stat&ig. 7) consists of

in Fig. 6 correspond to the initial state being correlated and,,,, Gaussians centered at-Ry,p,) and an interference

uncorrelated, respectively. term, which is centered at the origin. The off-diagonal part of
The short-time dynamics differ for the correlated and,q jensity matrix in the coherent-state basis, which contains

uncorrelated cases, since the correlations need to be built Ygrormation about quantum interferences between the two

in the uncorrelated casé.In the latter case an initial slip- components of the cat state, decays with the fatg. In the

page in the system energy can be observed before the rfrarovian limit the decay rate is proportional to the square
duced dynamics appear to be Markovigight upper panel ¢ the distance between the coherent states. For zero tem-
This effect is insignificant for weak coupling. Even for perature it is given B

strong coupling, the differences between the correlated and 5
uncorrelated cases were found to be very small. Apparently, _ YMwoé
the displacement is a stronger “perturbation” than that Yeoh 2h

caused by the correlations, i.e., the displacement establish((aos and 5 are parameters of the primary systemg(repre-
a new initial state® 0 o

sents the frequency of the harmonic oscillator, @id the
separation distance between the coherent states
The decoherence rate for a primary system coupled to a
Decoherence has become a popular term used to déLiS bath is calculated and compared to the calculations for a
scribe loss of phase in coherent superpositions of quantumath of harmonic oscillators with the G-MCTDH methid.
states due to interaction with a bath. It is therefore natural tdhe calculations are performed for a cat state in a harmonic
compare the decoherence properties of the spin bath to thosscillator potential withw,=10"2 a.u. andM =10° a.u. The
of the harmonic bath. The first difficulty is that there are bath has the same parameters as for the previous calculations
different approaches to the definition of decoherencewith damping rates ofy~1=1630 fs andy =500 fs.

(19

D. Decoherence
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1.0 ‘ | - | : \ - E. Entanglement
) - Y::=163°fs Entanglement between two quantum states is a manifes-
0814 s | tation of additional quantum correlation. For example en-
\ \ - tanglement between the system and the bath mpangs
06tk N 1 2 ®pg. In a dissipative environment it is expected that initial
o o = entanglement between parts of the system are lost leading to
0.4 \ . decoherenc&#* In addition a bath can also provide an in-
\ "'“-.f_\\ direct interaction between totally decoupled parts of the pri-
odll 3 OV ] mary system and entangle thénf'®
Ry : \"““F::::;—;;-_-‘-_--_---- The difference between the harmonic and the spin baths
. Diieen i should be manifested in another type of entanglement—
0 100 20! 300 400

quantum correlations between different bath modes. A sys-
tem interacting with the spin bath, can induce entanglement
FIG. 8. The decoherence effect in terms of decay of the coherence norm arjgetween two spin modes, which are not directly interacting
off-diagonal elements in the energy representation. The coherencengim \yith each other. In the harmonic bath on the other hand, a
is shown as a function of time for two different couplings,-=1630 fs . . .
and y"'=500 fs. In the golden rule limit, off-diagonal elements of the system linearly coupled to d'ﬁer.ent modes is not able to
reduced system density matiXR,R’) decay exponentially with the deco- entangle those modésee Appendix A
herence ratese;=130 fs andy,,;,=40 fs (for the two given couplings, Pere§’ and Horodecket al*® have provided a criterion,
respectively. This decay is shown by the full lines. The dashed lines refer topased on partial transposition to determine whether a given
the calculated decay of the decoherence norm. The dotted lines show the. " .

"o 1 . mixed state of two subsystems is entandlefdAppendix B.
decay of te{p,t in the energy representation. . . . )

Since the criterion is defined only for two coupled TLS, the

study of entanglement is limited to two bath modé&s g§nd
A quantitative measure of decoherence of the primaryj). The density operator of any two bath mogesis ob-

time (fs)

system is the coherence norm used by Stretnal,*° tained as a partial trace ofir; ;{pg} over the rest of the bath
GO+« ~coht modes, where the density operator of the bath pjs
Neo(t) =trs{pE(1) P (1)}, (200 —yrg{p}. The procedure checks whether the partial transpo-
where p2" refers to off-diagonal elements of the subsystemsition of p;j with respect to one of the modes has negative
reduced density matrix in the basis of coherent states. ~ eigenvalues. The smallest eigenvalugof the partial trans-

Since decoherence is a basis-dependent phenomendifse matriXpTi constitutes the criteria. Then the eigenvalues
one can ask if it can also be measured in the basis of theith Ao<<O are averaged over all entangled pairs of bath

eigenstates of the system Hamiltoni&hs. The question modes.

arises, whether these eigenstates form a pointerBasise In Fig. 9 the averaged parametey is shown as a func-
basis with respect to which off-diagonal elements in the refion of time for three different coupling strengths. The en-
duced density operator disappear due to decoherence. To péanglement calculations were based on converged results ob-
form this test the system density operafat) =trg{p!}, tained for a bath oN=40 modes. This was sufficient to a
which has been calculated in the coordinate basis is trandime scale of 900 fs, for all three system—bath coupling

formed to the basis of thléseigenstates. Decomposing such strengths considered. Sincetat0 the bath is not excited,

a state to a dynamical and a static part leads to there are no entangled bath modes, therefgye 0 for all
pairs. Ast increases\, becomes negative for some of the
Ps(t) = peor(t) + C*pg’, (21) pairs of the bath modes, meaning that these modes become
wherep&is the equilibrium stationary system density opera-entangled. As time progresses, the ngmber of entangled pairs
tor andC? is an overlap functional given by saturates for all three couplingsf. Fig. 9, lower panel
o R ~eq Therefore, the increase in the absolute valua ofs related
C2=trg{ps(t) - pE}/trs{pE™. (220 primarily to the growth in population of the entangled

Peor(t) in Eq. (21), has no diagonal elements in the energymodes. The maximum in the number of entangled modes for
representation and is therefore traceless. Thus the decohé&n early time may be associated with the creation of higher-
ence effect is measured by the decay gffit,, - order entanglement terms where three or more simultaneous
Figure 8 shows the decay of the coherence nogg  €Xcitations become important. Such higher-order entangle-
and tg{pZ,) for two different coupling strengthéoth are  ment is not captured by the Peres-Horodecki parameter.
weak. The thick lines refer to a simple exponential decay  To characterize the degree of entanglement we use an
predicted by Eq(19) for a harmonic bath and confirmed by additional measure, the entanglement of formation intro-
Ref. 13. The dashed lines refer to the calculated decay aluced by Wootterset al**=>! (cf. Appendix B. For any
Neon» Which is in good agreement with the prediction. The2®2 mixed state this quantity varies from zefgeparable
decay of tg{pZ,} (the dotted lineshas almost the same rate state$ to one(maximally entangled statesOur results(cf.
at a relatively short time. However, the off-diagonal elementd=ig. 10 are obtained by averaging the entanglement of for-
of ps in the energy representation do not decay strictly tomationE(p;;) (for two bath modes andj) over all possible
zero. Therefore, in this case, the system energy eigenstatpairs of modes. The dynamics ¢E(p)) is similar to those
cannot be considered as a pointer b4sis. of the partial transpose parameter. It should be noted that the
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0 riod in time. In both cases this task becomes possible by
ook N L 5 employing a large but finite npmber of bath modes and con-
: T Pl 0 N trolling the degree of correlation.
s 700004~ LT S A. The similarities
Voo A
-0.0006 - f\%‘ "l«;ﬁ For all cases studied the extremely short time dynamics
VW were identical. This period represents the inertial response of
e : . T the bath and is characterized by a zero derivative of the en-
0 300 600 900 ergy at the initial timet=0. This non-Markovian dynamical
1D ' l ' — evolution, “the slippage,” is quite short and in many cases it
. 80F . L:ZZ(:’ can be ignored. The initial dynamics are closely related to
§: dil = 8 iy & the issue of the choice of the initial state. Preferably it should
g represent equilibrium system—bath correlation and not be a
g 1 product state. The surrogate Hamiltonian method allows to
z | create such a fully correlated initial state of the system—bath
entity. However, in the present model differences in the dy-
% 300 600 900 namics between correlated and uncorrelated states seem to be
time (fs) insignificant, even in the strong coupling case. It is expected

FIG. 9. Measurement of entanglement between the bath modes as afunctitgn":lt the same phenomena would be observed in the harmonic
of time. (Upper panel The smallest eigenvalue of the partial transposition bath.
p'i of the reduced density matrix for a pair of the bath modig) (is For weak system—bath coupling the dynamics induced

calculated according to Appendix B. The negative eigenvalues are averagqg&, both baths are also similar. This is a numerical confirma-
over all possible combinations of the bath modg¢swer panel The rela-

tive number of entangled pairs of the bath modes as a function of time. Théion thatin the We‘?"k cou_p;ling ”m_it,the. harr_no_nicl bath Ca,n be
calculations are performed for three different system—bath couplingnapped to the spin bafh! In addition in this limit the spin
strengths ¢~ *=1630, 500, 163 fs The bath consisting oN=40 modes ~ bath converges with only single excitations of the bath
with two simultaneous excitations allowed is used in all calculations. modes meaning that the system and bath are almost disen-
tangled. This fact is consistent with the convergence to the
o _ ~ Markovian limit>?
growth of entanglement shown in Figs. 9 and 10 is exclusive  The decoherence properties of the harmonic and spin
to the spin bath. baths as determined by the loss of phase of cat states are
found to be quite similar. This result is somewhat surprising
V. SUMMARY AND CONCLUSIONS sin.ce the ergodic propertigs of the two baths are djfferent. To
rationalize, one should notice that the coherence in cat states
The similarities and differences of the relaxation dynam-composed of a superposition of two coherent states in a
ics of a primary system coupled to a spin or to a harmonigingle mode does not represent entanglement. Therefore, this
bath have been analyzed. The study was facilitated by thghase loss does not characterize decoherence in accordance
ability to obtain converged numerical results for a finite pe-with Alicki’s notion.3® Moreover when a pure dephasing
term was added it was found that it did not erode the phase
coherence between cat statésVe conclude that the deco-
0.02 ' ' ‘ ' herence properties of the two baths still require a further

I —Y:=1630fs =t studly.
— v =500fs g
0.015r|— y' =163 fs e 7

0.01- [\ - B. The differences

<E(p)>

The spin and harmonic baths begin to deviate when the
0.005 / i initial excitation of the primary system is increased. This
' difference is observed for excitations where the dynamics
I ’_’_/_'//_,_/»—/—v generated by the harmonic bath are still Markovian. The first
05 300 : 6(')0 . 500 indication of differences is the necessity of two simultaneous
time (fs) bath excitation to converge the spin bath. For larger time
periods, the spin bath saturates limiting the ability to assimi-
EIG. 10._ Measurement of entanglement petween the bath modes as afur]ca:te the system’s energy. The conclusion is that the limit of
tion of time. (Upper panel The smallest eigenvalue of the partial transpo- . . L. )
sition p"i of the reduced density matrix for a pair of the bath modef) (s weak coupling IS more restrictive in t_he spin bath case. The
calculated according to Appendix B. The negative eigenvalues are averageeffect of saturation can be reduced if the bath Hamiltonian
over all possible combinations of the bath mod¢swer panel The rela-  includes a mode-mode coupling term. This term causes dif-
tive number of entangled pairs of the bath modes as a function of time. .Th?usion of excitation between the modes, spreading the exci-
calculations are performed for three different system—bath coupling ",
strengths §~1=1630, 500, 163 fs The bath consisting okl=40 modes tation over a greater _number of bath modes. _Thus ba_th
with two simultaneous excitations allowed is used in all calculations. modes, which are relatively far from resonance with the pri-

T
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mary system become populated and the saturation is sup- d . o
pressed. Practically, this allows to increase the convergence &ij —lwjbj—=iNj(o+07). (A3)
time scale of the spin bath. R .

In the medium coupling regime there is an overall goodSince the annihilation and creation operatoysnd b, sat-
agreement between the two models. The spin bath, howevegfy the standard Bose commutation relatiofb; ,BjT,]
causes stronger relaxation, a fact, which becomes even moees; ., , a closed set of equations is obtained for each of the
visible in the case of strong coupling. In this regime theindependent bath modes.
deviations between the two baths become significant. Now, let us consider a different model, where the pri-

The pOSSIbI'Ity of entanglement of bath modes mediatednary system is Coup|ed to a bath of Spé’]s’[’he total Hamil-
by the primary system is a major conceptual difference betonian may be written in the form
tween the spin and harmonic baths. In the spin bath after a 1 1
short initial perlod W|_th only s[nglg excitations, entanglement ﬂ:Qang _Z w; 6-"2— _E. M&g & +he., (A4)
between pairs of spins sets in with what seems as an expo- 27 27
nential growth. At later times the pair entanglement is re-

) - where o designates the set of Pauli operators &
placed by higher order terms and the pair entanglement satu- T2 g P drid

+ Al . ..
rates. All these correlations are absent from the harmoni((‘fotr)]J =0y are the usual ladder operators. For simplicity, we
bath, nevertheless, the dynamics of the the primary systems
are not very different except for extremely strong coupling.s
The present simulations should be extended to finite tem-
peratures, where different dynamics of harmonic and spin
baths are expected when the coupling is larger than the weak
coupling regime:’** The recently proposed random phase
method® allows to extend the above models to finite tem- A (6262 +5°62) (A5)
perature applications. 2 T T

The present stu_dy is an important step in e_stablls_hlng thepe Heisenberg equations of motion for the system operator
surrogate Hamiltonian method as a practical simulation tool re
The elucidation of the system—bath dynamics allows to tailor J N N
a simulation package in particular for ultrafast dynamical ~ 0 . ~0 1.0A1 2.0
processes. The two bath models represent different physics. at7=" +! ( 205+ 2 0= 702(’%)’ (A6)
The surrogate Hamiltonian is more suited to a local mOdeand the equation of motion for the bath operator reads
bath description, while the harmonic bath finds its origin in a

global normal mode description. The very similar dynamics  d (

X

sider a systertD) consisting of a spirs which interacts
ith a pair(1,2) of spins. Thus, the Hamiltonian of the whole
ystem reads

A 1 N
A= Q62+ 5 (0167 + 0,6%) - 7%&3&%&96&)

A
- ~12, M2 g .12
observed in the weak and medium coupling cases indicates §¢ ¢+ @120+ 500

-2
that from the viewpoint of the reduced dynamics it is hard to . . _ .
identify a distinction between the two baths. The commutation relations for spin operators are different

from those of bosons,
ACKNOWLEDGMENTS [67,07]=—2i oy, (A8)

o=+

(A7)
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+iny (69 62%0* -5 6L%6% Y. (A9)

. _ . The triple correlations of the type’ 6™ 62 is a manifesta-
_ The differences between harmonic and spin baths can by of the buildup of quantum entanglement—a specific cor-
illuminated by studying the simple system of a Sé'”'_ relation between different modes, which has no analogy in
coupled to a bath. For the harmonic bath the total Hamil-¢|assjcal physics. These correlations make a difference be-
tonian in second quantization is given by tween the spin bath and the harmonic oscillator one, since

1 - ~ ey the latter does not have quantum correlations between the
A= EQ&Z-F; w;b] bj+; Nj(bj+bN) (. +6). bath modes.

(A1)

Thus the Heisenberg equations of motion for the system op-
erators are APPENDIX B: ENTANGLEMENT

BETWEEN DIFFERENT BATH MODES
d

1 - PO
abi =70+ H]=%iQ5. i &, \j(b+ bJT)- (A2) In order to check whether the reduced two-system den-
! sity matrix p is entangled, first we will use the partial trans-
Similarly, the equations of motion for the bath operators areposition criterion proposed by Pefésnd Horodecket al*®

APPENDIX A: HARMONIC BATH VERSUS SPIN BATH
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