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A propagation method for time-dependent Schrödinger equations with an explicitly time-dependent
Hamiltonian is developed where time ordering is achieved iteratively. The explicit time dependence
of the time-dependent Schrödinger equation is rewritten as an inhomogeneous term. At each step of
the iteration, the resulting inhomogeneous Schrödinger equation is solved with the Chebychev
propagation scheme presented in the work of M. Ndong et al. �J. Chem. Phys. 130, 124108 �2009��.
The iteratively time-ordering Chebychev propagator is shown to be robust, efficient, and accurate
and compares very favorably with all other available propagation schemes. © 2010 American
Institute of Physics. �doi:10.1063/1.3312531�

I. INTRODUCTION

The dynamics of the interaction of matter with a strong
radiation field is described by time-dependent Schrödinger
equations �TDSEs� where the Hamiltonian is explicitly time
dependent. This description is at the core of the theory of
harmonic generation,1,2 pump-probe spectroscopy,3 and co-
herent control.4,5 Typically, an atom or molecule couples to a
laser pulse via a dipole transition,

Ĥ�t� = Ĥ0 + E�t��̂ , �1�

with E�t� as the time-dependent electromagnetic field, caus-
ing the explicit time dependence of the Hamiltonian. Simu-
lating these light-matter processes from first principles im-
poses a numerical challenge. Realistic simulations require
efficient procedures with very high accuracy.

For example, in coherent control processes, interaction
of quantum matter with laser light leads to constructive in-
terference in some desired channel and destructive interfer-
ence in all other channels. In time-domain coherent control
such as pump-probe spectroscopy, wave packets created by
radiation at an early time interfere with wave packets gener-
ated at a later time. This means that the relative phase be-
tween different partial wave packets has to be maintained for
a long time with high accuracy. As a result, numerical meth-
ods designed to simulate such phenomena have to be highly
accurate, minimizing the errors in both amplitude and phase.

The difficulty of simulating explicitly time-dependent
Hamiltonians emerges from the fact that the commutator of
the Hamiltonian with itself at different times does not
vanish,6

�Ĥ�t1�,Ĥ�t2��− � 0. �2�

Formally, this effect is taken into account by time ordering
such that the time evolution is given by

Û�T,0� = Te−i/��0
TĤ�t�dt. �3�

The effect of time ordering is to incorporate higher order

commutators into the propagator Û�T ,0�. For strong fields
E�t� and fast time dependences the convergence with respect
to ordering is slow. Methods to incorporate the second order
Magnus term7 have been developed either in a low order
polynomial expansion8,9 or as a split exponential.10

A quantum dynamical propagator that fully accounts for
time ordering is given by the �t , t�� method.11 It is based on
rewriting the Hamiltonian in an extended Hilbert space
where an auxiliary coordinate t� is added and terms such as
E�t���̂ are treated as a potential in this degree of freedom.
The Hamiltonian thus looses its explicit dependence on time
t, and can be propagated with one of the available highly
accurate methods for solving the TDSE with time-
independent Hamiltonian.12

Most of the vast literature on the interaction of matter
with time-dependent fields in general3,13–15 and on coherent
control in particular4,16–19 ignores the effect of time ordering.
Popular approaches include Runge–Kutta schemes,7,20,21 the
standard Chebychev propagator with very small time step,22

and the split propagator.13,19,23 Naively it is assumed that if
the time step is small enough the calculation with an explicit
time-dependent Hamiltonian can be made to converge. The
difficulty is that this convergence is very slow—second order
in the time step if the Hamiltonian is stationary in the time
interval and third order if the second order Magnus approxi-
mation is used.8,24 Additionally in many cases the error ac-
cumulates in phase9,25 so that common indicators of error
such as deviation from unitarity are misleading.a�Electronic mail: ckoch@physik.fu-berlin.de.
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In order to obtain high quality simulations of explicitly
time-dependent problems a new approach has to be devel-
oped. The ultimate �t , t�� method cannot be used in practice
since it becomes prohibitively expensive in realistic simula-
tions. On the other hand we want to maintain the exponential
convergence property of spectral decomposition such as the
Chebychev propagator. The solution is an iterative imple-
mentation of the Chebychev propagator for inhomogeneous
equations such that it can overcome the time ordering issue.

The paper is organized as follows. The formal solution to
the problem is introduced in Sec. II: the TDSE for an explic-
itly time-dependent Hamiltonian is rewritten as an inhomo-
geneous TDSE. The inhomogeneity is calculated iteratively
and converges in the limit of many iterations. At each step of
the iteration, an inhomogeneous TDSE is solved by a
Chebychev propagator which is based on a polynomial ex-
pansion of the inhomogeneous term.26 The resulting algo-
rithm is outlined explicitly in Sec. III and applied to three
different examples in Sec. IV. Its high accuracy is demon-
strated and its efficiency is discussed in comparison to other
approaches. Section V concludes.

II. FORMAL SOLUTION

The Hamiltonian Ĥ, describing the interaction of a quan-
tum system with a time-dependent external field, typically

consists of a field-free, time-independent part Ĥ0 and an

interaction term Ŵ�t�= �̂E�t�. The TDSE for such a
Hamiltonian �setting �=1�

i
�

�t
���t�� = �Ĥ0 + Ŵ�t�����t�� �4�

is solved numerically by dividing the overall propagation
time �0,T� into short time intervals �tn , tn+1�, each of length
�t. A two-stage approach is employed. First, the formal so-
lution of the TDSE is considered. The term arising from the
explicit time dependence of the Hamiltonian is approximated
iteratively. The iterative loop thus takes care of the time or-
dering. Second, at each step of the iteration, an inhomoge-
neous Schrödinger equation is obtained. It is solved with the
recently introduced Chebychev propagator for inhomoge-
neous Schrödinger equations.26

A. Iterative time ordering

The TDSE, Eq. �4�, is rewritten to capture the time de-
pendence within the interval �tn , tn+1�,

i
�

�t
���t�� = �Ĥ0 + Ŵn����t�� + �Ŵ�t� − Ŵn����t�� . �5�

Here, Ŵn is the value of Ŵ�t� at the midpoint of the propa-

gation interval, Ŵn=Ŵ��tn+1+ tn� /2�. The formal solution of
Eq. �5� is given by

���t�� = e−iĤn�t−tn����tn�� − i�
tn

t

e−iĤn�t−��V̂n���������d� ,

�6�

where Ĥn= Ĥ0+Ŵn denotes the part that is independent of

time in �tn , tn+1� and V̂n�t�=Ŵ�t�−Ŵn the time-dependent
part. Equation �6� is subjected to an iterative loop,

��k�t�� = e−iĤn�t−tn���k�tn�� − i�
tn

t

e−iĤn�t−��V̂n���

���k−1����d� . �7�

The solution at the kth step of the iteration ��k� is calculated
from the formal solution, Eq. �6�, by replacing ��k� in the
second term on the right-hand side of Eq. �6� by ��k−1�,
which is known from the previous step.

In this approach, time ordering is achieved by converg-
ing ��k−1� to ��k� as the iterative scheme proceeds. This is
equivalent to the derivation of the Dyson series. Starting
from the equation of motion for the time evolution operator

i
�

�t
Û�t,0� = Ĥ�t�Û�t,0� ,

the formal solution for the time evolution operator

Û�t,0� = − i�
0

t

Ĥ�t1�Û�t1,0�dt1 �8�

is iteratively inserted in the right-hand side, i.e.,

Û�t,0� = − i�
0

t �
0

t1

Ĥ�t1�Ĥ�t2�Û�t2,0�dt2dt1,

. . .

Û�t,0� = − i�
0

t �
0

t1

¯�
0

tn−1

Ĥ�t1�Ĥ�t2� ¯

Ĥ�tn�Û�tn,0�dtn ¯ dt2dt1,

where Û�tn ,0� goes to 1 as tn becomes smaller and smaller.
Our formal solution, Eq. �6�, is equivalent to Eq. �8�. An
alternative approach to time ordering is given by the Magnus
expansion, which is based on the group properties of unitary
time evolution.7 In the limit of convergence, the Magnus and
the Dyson series are completely equivalent, but low-order
approximations of the two differ.7 Our iterative scheme cor-
responds to the limit of convergence �with respect to ma-
chine precision�.

B. Equivalence to an inhomogeneous TDSE

Differentiating Eq. �7� with respect to time, an inhomo-
geneous Schrödinger equation at each step k of the iteration
is obtained,

�

�t
��k�t�� = − iĤn��k�t�� + ��k−1�t�� . �9�

The inhomogeneity is given by
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��k−1�t�� = − iV̂n�t���k−1�t�� . �10�

Equation �9� can be solved by approximating the inhomoge-
neous term globally within �tn , tn+1�, i.e., by expanding it into
Chebychev polynomials,

��k−1�t�� 	 

j=0

mk−1

Pj�t̄���̄k−1,j� . �11�

Pk−1,j denotes the Chebychev polynomial of order j with

expansion coefficient ��̄k−1,j�, and t̄=2�t− tn� /�t−1 with
t� �tn , tn+1� is a rescaled time.26

The expansion coefficients ��̄k−1,j� in Eq. �11� are given
by

��̄k−1,j� =
2 − � j0

�
�

−1

1 ��k−1�t̄��Pj�t̄�
�1 − t̄2

dt̄ . �12�

Since ��k−1�t̄�� is known at each point in the interval and in
particular at the zeros t̄i of the mkth Chebychev polynomial,
the integral in Eq. �12� can be rewritten by applying a
Gaussian quadrature,27 yielding

��̄k−1,j� =
2 − � j0

mk


i=0

mk−1

��k−1�t̄i��Pj�t̄i� . �13�

Due to the fact that the Chebychev polynomials can be ex-
pressed in terms of cosines, Eq. �13� is equivalent to a cosine

transformation. Thus the expansion coefficients ��̄k−1,j� can
easily be obtained numerically by fast cosine transformation.

The expansion into Chebychev polynomials, if con-
verged, is equivalent to the following alternative expansion:



j=0

mk−1

Pj�t̄���̄k−1,j� = 

j�=0

mk−1
�t − tn� j�

j�!
��k−1

�j��� . �14�

Once the coefficients of the Chebychev expansion ��̄k−1,j�
are known, the transformation described in the Appendix is

used to generate the coefficients ��k−1
�j��� in Eq. �14�. Note that

both sides of Eq. �14� represent a global approximation, i.e.,
the right-hand side of Eq. �14� does not correspond to a
Taylor expansion.26

Approximating the inhomogeneous term by the right-
hand side of Eq. �14�, the formal solution of Eq. �9� can be
written as26

��k�t�� = 

j=0

mk−1
�t − tn� j

j!
�	k−1

�j� � + F̂mk
�	k−1

�mk�� , �15�

where the �	k−1
�j� � are obtained recursively,

�	k−1
�0� � = ���tn�� ,

�	k−1
�j� � = − iĤn�	k−1

�j−1�� + ��k−1
�j−1�� , �16�

1 
 j 
 mk.

F̂mk
is a function of Ĥn and is given by

F̂mk
= �− iĤn�−mk�e−iĤn�t−tn� − 


j=0

mk−1
�− iĤn�t − tn�� j

j!
 . �17�

Taking the derivative of Eq. �15� with respect to time, the
inhomogeneous Schrödinger equation is recovered after
some algebra.26

Alternatively, Eq. �10� can be inserted into Eq. �7�,
replacing ��k−1� by its polynomial approximation, Eq. �11�,

��k�t�� = e−iĤnt���0�� + e−iĤnt 

j=0

mk−1 �
0

t

eiĤn�� j

j!
��k−1

�j� �d� �18�

�without any loss of generality, tn has been set to zero�. De-
fining

�̂ j = e−iĤnt�
0

t

eiĤn�� j

j!
d� �19�

and integrating Eq. �19� by parts, one obtains

�̂ j = �− iĤn�−1�e−iĤnt�̂ j−1 −
tj

j!
1 ,

�20�
1 
 j 
 mk − 1,

�̂0 = �− iĤn�−1�e−iĤnt − 1� . �21�

By induction, it follows that

�̂ j = �− iĤn�−�j+1��e−iĤnt − 

a=0

j
�− iĤnt�a

a!
 . �22�

Defining

F̂ j+1 = �− iĤn�−�j+1��e−iĤnt − 

a=0

j
�− iĤnt�a

a!
 , �23�

Eq. �18� becomes

��k�t�� = e−iĤnt���0�� + 

j=0

mk−1

F̂ j+1��k−1
�j� � , �24�

which was shown to be equivalent to Eq. �15�.26

The algorithm for solving the TDSE with explicitly
time-dependent Hamiltonian is thus based on evaluating the
integral of the formal solution, Eq. �6�, in an iterative fash-
ion. At each step k of the iteration, the inhomogeneous
TDSE, Eq. �9�, is solved by applying the propagator of
Ref. 26 within each short time interval �tn , tn+1�.

Once convergence with respect to the iteration k is
reached, the inhomogeneous term becomes constant with re-
spect to k.

III. OUTLINE OF THE ALGORITHM

We assume that the action of the Hamiltonian on a wave
function can be efficiently computed.12 Then the complete
propagation time interval �0,T� is split into small time inter-
vals, �tn , tn+1�. For each time step �tn , tn+1�, the implementa-
tion of the Chebychev propagator with iterative time order-
ing �ITO� involves an outer loop over the iterative steps k for
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time ordering and an inner loop over j for the solution of the
�inhomogeneous� Schrödinger equation for each k.

�1� Preparation: Set a local time grid ��l� for each short-
time interval �tn , tn+1�. In order to calculate the expan-
sion coefficients of the inhomogeneous term by cosine
transformation, the Nt sampling points ��l� are taken to
be the roots of the Chebychev polynomial PNt

of order
Nt. The number of sampling points Nt is not known in
advance. One thus has to provide an initial guess and
check below, in step 3.ii, that it is equal to or larger
than the number of Chebychev polynomials required to
expand the inhomogeneous term,

Nt � mmax. �25�

Here, mmax corresponds to the maximum of the re-
quired order of the inhomogeneous propagator mk for
all iterations k �the mk are obtained as described below
in step 3.ii�.

�2� The propagation for k=0 solves the Schrödinger equa-

tion for the time-independent Hamiltonian Ĥn= Ĥ0

+Ŵn,

i
�

��
��0���� = �Ĥ0 + Ŵn���0���� ,

with initial condition ��0�t= tn��= ���tn��. A standard
Chebychev propagator is employed to this end. Note
that for k=0, the same time grid ��l� needs to be used as
for k�0 because the inhomogeneous term for k=1 is
calculated from the zeroth order solution, ��0�t��. Since
the ��l� are not equidistant, the Chebychev expansion

coefficients of the standard propagator e−iĤn��l need to
be calculated for each time step within �tn , tn+1�, where
��l=�l+1−�l, l=1, Nt−1.

�3� The k�0 propagation solves an inhomogeneous
Schrödinger equation, cf. Eq. �9�, with the initial con-
dition ��k�t= tn��= ��0�t= tn��= ���tn��. This is achieved
by the Chebychev propagator for inhomogeneous
Schrödinger equations,26 i.e., Eq. �15�, and involves the
following steps:

�i� Evaluate the inhomogeneous term ��k−1����
=−i�Ŵ���−Ŵn���k−1����.

�ii� Calculate the expansion coefficients of the inho-
mogeneous term, cf. Eqs. �11� and �14�. The

Chebychev expansion coefficients ��̄k−1,j� are
obtained by cosine transformation of ��k−1����.26

The coefficients ��k−1
�j��� are evaluated from the

Chebychev expansion coefficients ��̄k−1,j� using
the recursive relation given in Eqs. �A14� and
�A15�. The order mk of the expansion is deter-
mined by demanding that the ratio of the small-
est to the largest Chebychev coefficient becomes
smaller than the specified error ,

��̄k−1,mk+1�

��̄k−1,0�
�  . �26�

To obtain high accuracy,  may correspond to the
machine precision.28

�iii� Calculate the Chebychev expansion coefficients

of F̂mk
, cf. Eq. �17�, also by cosine transforma-

tion. The number of terms in this Chebychev ex-
pansion is also determined by the relative mag-
nitude of the coefficients, analogous to Eq. �26�.
Note that if the argument of F̂mk

= fmk
�Ĥn� be-

comes very small, Eq. �17� should be replaced
by a Taylor expansion

F̂mk
= �t − tn�mk


j=0

Nj �− iĤn�t − tn�� j

�j + mk�!
�27�

for numerical stability.26

�iv� Determine all �	k−1
�j� � required in Eq. �15� by

evaluating Eq. �16�.
�v� Construct the solution ��k�t= tn+1�� according to

Eq. �15�.

�4� Convergence is reached when ��k−1�tn+1�� and ��k�tn+1��
become indistinguishable,

��k−1�tn+1� − ��k�tn+1�� �  ,

and the desired solution of the Schrödinger equation
with explicitly time-dependent Hamiltonian is obtained,
���tn+1��= ��k�tn+1��.

The only parameter of the algorithm is the prespecified
error . It determines the number of iterative terms kmax and
the order of the inhomogeneous propagators mk.

Furthermore, to execute the algorithm, the user has to
provide, besides , an initial guess for the number of sam-
pling points of the local time grid Nt. During the execution of
the algorithm, Eq. �25� has to be checked. If the condition is
violated, Nt has to be increased. On the other hand, Nt should
be as small as possible for numerical efficiency. Therefore, if
the initial guess of Nt turns out to be much larger than mmax,
Nt should be decreased �but still fulfill Eq. �25��. Note that
every change in Nt implies recalculation of the local time
grid ��l�. As a rule of thumb, a reasonable initial guess is
Nt	10 for small time steps and Nt	20 for large time steps.

IV. EXAMPLES

We test the accuracy and efficiency of the algorithm for
three examples of increasing complexity. The first two ex-
amples, a driven two-level atom and a linearly driven har-
monic oscillator, are analytically solvable. We can therefore
compare the numerical with the analytical solution and es-
tablish the accuracy of the Chebychev propagator with ITO.
For the third example, wave packet interferometry in two
oscillators coupled by a field, no analytical solution is
known. The Chebychev propagator with ITO thus serves as a
reference solution to which less accurate methods can be
compared.
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A. Driven two-level atom

The Hamiltonian for a two-level atom driven resonantly
by a laser field in the rotating-wave approximation reads29

Ĥ = � 0 �̂E�t�
�̂E�t� 0

 , �28�

where the field is of the form

E�t� =
1

2
E0S�t� , �29�

and S�t� denotes the envelope of the field. We take the
strength of the transition dipole to be �=1 a.u., the final
propagation time T=9000 a.u., and the shape function

S�t� = sin2��t

T
 . �30�

Analytically, the time evolution of the amplitudes

���t�� = �cg�t�
ce�t�

 �31�

is obtained as

cg
ana�t� = cos�1

4
�E0�t −

T

2�
sin�2�t

T
� , �32�

ce
ana�t� = i sin�1

4
�E0�t −

T

2�
sin�2�t

T
� . �33�

Initially the two-level system is assumed to be in the ground
state, cg�t=0�=1, ce�t=0�=0. The pulse amplitude is chosen
to yield a �-pulse, such that cg

ana�t=T�=0, ce
ana�t=T�=1.

Defining at each time step the errors

�sol�t� = ��cg
ana�t��2 − �cg�t��2� �34�

and

�norm�t� = �1 − ���t����t��� , �35�

we measure the deviation of the numerical from the analyti-
cal solution and the deviation of the norm of ���t�� from
unity. The time evolution of �sol�t� and �norm�t� is shown in
Fig. 1 for the Chebychev propagator with ITO.

The maximum errors occurring during the propagation,
�norm

max and �sol
max, are also summarized in Table I. For time

steps, �t= tn+1− tn, up to about T /100, the maximum errors
occurring during the propagation �sol

max are of the order of
10−11. If the time step is further increased to about T /10, the
maximum errors are of the order of 10−9. The increase in
�sol

max is accompanied by an increase in �norm
max as the time steps

become larger, cf. Table I. The deviation from unitarity indi-
cates that the error is due to the Chebychev expansion of the
time evolution which becomes unitary only once the series is
converged. The limiting factor here is the accuracy of the
numerically obtained Chebychev expansion coefficients.
This effect becomes more severe, as the argument of the
Chebychev polynomials �t�E �and thus the largest expan-
sion coefficient� becomes larger and larger.

The errors obtained by the Chebychev propagator with
iterative time ordering of the order from 10−11 to 10−9 have
to be compared with those obtained by the standard Cheby-
chev propagator, i.e., neglecting all effects due to time order-
ing. The latter yields maximum solution errors �sol

max of the
order of 10−4 for �t=10 a.u.=T /900 and 10−3 for �t
=40 a.u. The smallest �sol

max that can be achieved without
time ordering is of the order of 10−6 for �t=10−2 a.u.
=T /900 000. Thus the numerical results obtained with the
iterative method are highly accurate compared with those
obtained by the standard Chebychev propagator neglecting
time ordering.

Regarding the numerical efficiency of the Chebychev
propagator with ITO, several conclusions can be drawn from
Table I. First of all, it is absolutely sufficient to choose the
number of sampling points within the interval �t, Nt, only
slightly larger than the order of the expansion of the inho-
mogeneous term mk. Doubling Nt does not yield better accu-
racy but requires more CPU time. Second, we expect an
optimum in terms of CPU time as �t is increased. A Cheby-
chev expansion always comes with an offset and becomes
more efficient as more terms in the expansion but less time
steps are required �this concerns both Chebychev expan-
sions, that for the inhomogeneous term of order mk and that

for the time evolution operator, i.e., for the F̂mk
, of order

NCheby�. However, this trend is countered by a higher number
of iterations for time ordering kmax. According to Table I, the
optimum in terms of CPU time is found for �t	700 a.u.
Finally, the order required in the Chebychev expansion of the
inhomogeneous term mmax stays comparatively small, well
below the values where the transformation between the Che-
bychev coefficients and the polynomial coefficients becomes
numerically instable, cf. Appendix.

B. Driven harmonic oscillator

As a second example, we consider a harmonic oscillator
of mass m=1 a.u. and frequency �=1 a.u. driven by a lin-
early polarized field. The time-dependent Hamiltonian is
given by

0 2000 4000 6000 8000
time t [a.u.]

1×10
-14

1×10
-13

1×10
-12

1×10
-11

1×10
-10

1×10
-9

ε no
rm

(t
)

∆t = 40 a.u.
∆t = 300 a.u.
∆t = 900 a.u.

(b)

0 2000 4000 6000 80001×10
-14

1×10
-13

1×10
-12

1×10
-11

1×10
-10

1×10
-9

1×10
-8

ε so
l(t

)
∆t = 40 a.u.
∆t = 300 a.u.
∆t = 900 a.u.

(a)

FIG. 1. Strongly driven two-level atom propagated with iteratively time
ordering Chebychev propagator: �a� error of the solution �sol�t� and
�b� deviation of the norm of ���t�� from unity �norm�t�.
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Ĥ�r;t� = −
1

2

�2

�r2 +
1

2
r2 + rE0S�t�cos��0t� , �36�

where E0 is the maximum field amplitude, S�t� is the shape
function given by Eq. �30�, and �0 is the frequency of the
driving field. The final time is set to T=100 a.u. The Hamil-
tonian is represented on a Fourier grid12 with Ngrid=128 grid
points, and rmax=10 a.u.=−rmin. The transition probabilities
and expectation values of position and momentum as a func-
tion of time are known analytically.11,30

Taking the initial wave function ���t=0�� to be the
ground state of the harmonic oscillator, we again measure the
deviation of the numerical from the analytical solution �sol

and the deviation of the norm of ���t�� from unity �norm for
the time-dependent probability of the oscillator to be in the
ground state. The pulse amplitude is chosen to completely
deplete the population of the ground state.

Two cases are analyzed which both correspond to strong

resonant driving of the oscillator. In the first case the
rotating-wave approximation is invoked, i.e., we set �0=0.
This eliminates the highly oscillatory term from the field,
keeping only the time dependence of the shape function
�moderate time dependence�. In the second case, the rotating-
wave approximation is avoided, �0=�, i.e., the time depen-
dence of the Hamiltonian is much stronger than in the first
case �strong time dependence�.

In order to compare the Chebychev propagators with and
without time ordering, we first list the smallest �sol

max and �norm
max

achieved by the standard Chebychev propagator without time
ordering in Table II. The standard Chebychev propagator was
developed for time-independent problems and is most effi-
cient for large time steps. Here, however, extremely small
time steps �t have to be employed to minimize the error due
to the time dependence of the Hamiltonian. Consequently,
the required CPU times become quickly very large. Note that

TABLE I. The maximum error of the solution �sol
max and the maximum deviation of the norm from unity �norm

max

occurring in the overall propagation time are listed together with the required CPU time for several short time
intervals �t. Nt denotes the number of sampling points within �t, NCheby the largest number of Chebychev

coefficients in the expansion of F̂mk
, mmax the largest order of the expansion of the inhomogeneous term, and

kmax the largest number of the iterations for time ordering occurring for all time intervals �tn , tn+1�.

�t Nt mmax NCheby �sol
max �norm

max
CPU time

�s� kmax

10 6 4 10 1.7�10−11 1.1�10−11 23 3
12 4 10 1.7�10−11 1.1�10−11 47 3

20 7 5 11 4.1�10−11 1.8�10−11 14 4
14 5 11 4.1�10−11 1.8�10−11 29 4

40 7 5 14 3.1�10−11 1.2�10−11 8 4
14 5 14 3.1�10−11 1.2�10−11 15 4

80 8 6 16 1.9�10−11 1.1�10−11 6 5
16 6 16 1.9�10−11 1.1�10−11 11 5

100 9 7 17 8.3�10−11 4.0�10−11 5 5
18 7 17 8.3�10−11 4.0�10−11 9 5

300 10 8 29 1.9�10−10 1.0�10−10 3.4 6
20 9 29 1.9�10−10 1.0�10−10 5.3 6

600 12 10 32 5.7�10−10 3.1�10−10 2.6 6
24 10 32 5.7�10−10 3.1�10−10 4.2 6

700 12 10 33 7.8�10−10 3.6�10−10 2.1 7
24 10 33 7.8�10−10 3.6�10−10 3.8 7

800 14 12 35 5.2�10−10 2.3�10−10 2.5 8
28 12 35 5.2�10−10 2.3�10−10 4.3 8

900 15 13 36 1.1�10−9 5.3�10−10 3.0 8
30 13 36 1.1�10−9 5.3�10−10 5.1 8

1000 17 15 38 3.6�10−9 7.0�10−10 3.5 9
34 15 38 3.6�10−9 7.0�10−10 5.8 9

TABLE II. Driven harmonic oscillator with ��0=0� and without ��0=�� the rotating-wave approximation for
the standard Chebychev propagator without time ordering. NCheby is the number of Chebychev polynomials

required for the expansion of e−iĤ�t.

�t
�a.u.� NCheby �norm

max ��0=�� �norm
max ��0=0� �sol

max ��0=�� �sol
max ��0=0� CPU time

10−6 4 6.8�10−9 6.7�10−9 4.6�10−8 6.7�10−9 1 h, 16 min, 28 s
10−5 5 6.6�10−10 6.6�10−10 4.7�10−7 4.4�10−9 9 min, 26 s
10−4 7 1.3�10−11 4.7�10−11 4.7�10−6 4.2�10−8 1 min, 28 s
10−3 10 6.5�10−12 7.3�10−12 4.7�10−5 4.2�10−7 12 s
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the deviation of the norm from unity is much smaller than
the error of the solution. This means that norm conservation
cannot serve as an indicator for the error due to the time
dependence of the Hamiltonian. This error is clearly
non-negligible even for the very small time steps shown in
Table II.

Tables III and IV compare the results for the driven har-
monic oscillator obtained by the Chebychev propagator with
ITO and without time ordering �standard Chebychev propa-
gator�. The rotating-wave approximation is invoked in Table
III, �0=0, and avoided in Table IV, �0=�.

In the case of the rotating-wave approximation, both
propagators conserve the norm on the order of 10−12. How-
ever, only the propagator with ITO achieves an accuracy of
the solution of the same order of magnitude while the stan-
dard propagator yields errors of the order of 10−6 for the time
steps listed in Table III. The smallest maximum error of the
solution achieved by the standard Chebychev propagator for
�0=0 is of the order of 10−8 for a norm deviation of the
order of 10−11, cf. Table II. However, this requires a prohibi-
tively small time step, �t=10−4 a.u.

Even for a very strongly time-dependent Hamiltonian,
when the rotating-wave approximation is not invoked ��0

=��, the Chebychev propagator with ITO yields similarly
accurate results, with errors of the order of 10−13, cf. Table
IV. For comparison, the error obtained for the standard Che-
bychev propagator without time ordering is of the order of
10−3 for the time steps reported in Table IV. The smallest
errors achieved with the standard Chebychev propagator are
of the order of 10−6 for a norm deviation of the order of 10−11

for extremely small time steps, cf. Table II.
The error of the solution �sol�t� is shown in Fig. 2 as a

function of time for different time steps and a very strongly
time-dependent Hamiltonian, �0=�. This illustrates the su-
periority of the Chebychev propagator with ITO in terms of
accuracy. A comparison of Tables II and IV reveals further-

more that the Chebychev propagator with ITO is also more
efficient than a standard Chebychev propagator with very
small time step if a high accuracy of the solution is desired.

Since we have established the Chebychev propagator
with ITO as a highly accurate method for the solution of the
TDSE with explicitly time-dependent Hamiltonian, it is
worthwhile to compare it with alternative propagation meth-
ods for this class of problems. In the following we will con-
sider the �t , t�� method11 and a fourth-order Runge–Kutta
�RK4� scheme. The �t , t�� method provides a numerically
exact propagation scheme by translating the problem of time
ordering into an additional degree of freedom of a time-
independent Hamiltonian.11 The TDSE for the Hamiltonian
in the extended space is solved by numerically exact propa-
gation schemes such as the Chebychev or Newton
propagators.31 The �t , t�� method is, however, relatively
rarely used in the literature due to its numerical costs in
terms of both CPU time and required storage. On the other
hand, Runge–Kutta schemes are extremely popular in the
literature.32 They are potentially very accurate if a high-order
variant is employed. Note that high order of a Runge–Kutta
method implies evaluation of the Hamiltonian at several
points within the time step �tn , tn+1�.

In order to achieve a fair comparison between the Che-
bychev propagator with ITO and the �t , t�� method, first the
parameters which yield an optimal performance of the �t , t��
method for our example have to be determined. The required
CPU time and the errors �sol

max and �norm
max as a function of the

number of grid points Nt� and Nt are listed in Table V. In
case of a moderate time dependence of the Hamiltonian cor-
responding to the rotating-wave approximation ��=0�, a
fairly small number of grid points in both t and t� is suffi-
cient. Note that the number of points in the auxiliary coordi-
nate Nt� is not known a priori.

For a strong time dependence, i.e., �0=�, a fairly large

TABLE III. Comparison of the Chebychev propagator with iterative time ordering and without time ordering for the driven harmonic oscillator in the
rotating-wave approximation ��0=0�. Notation as in Table I.

With ITO Without time ordering �standard�

�t
�a.u.� Nt mmax NCheby �norm

max �sol
max CPU time kmax

�t
�a.u.� NCheby �norm

max �sol
max

CPU time
�s�

0.01 10 8 9 5.3�10−13 5.3�10−13 1 min, 54 s 2 0.01 18 1.4�10−12 4.2�10−6 2
0.02 10 8 10 1.4�10−13 1.4�10−13 58 s 2 0.02 18 5.7�10−12 8.5�10−6 1.28
0.04 10 8 15 5.5�10−13 4.5�10−13 31 s 2 0.04 29 6.15�10−12 1.7�10−5 1
0.1 10 8 24 1.4�10−12 1.4�10−12 27 s 3 0.1 44 1.5�10−12 4.2�10−5 0.52

TABLE IV. Comparison of the Chebychev propagator with iterative time ordering and without time ordering for the driven harmonic oscillator without the
rotating-wave approximation ��0=��. Notation as in Table I.

With ITO Without time ordering �standard�

�t
�a.u.� Nt mmax NCheby �sol

max �norm
max CPU time kmax

�t
�a.u.� NCheby �norm

max �sol
max

CPU time
�s�

0.01 10 8 9 8.2�10−14 3.5�10−13 2 min, 5 s 3 0.01 18 1.5�10−12 4.6�10−4 2
0.02 10 8 10 2.5�10−13 3.6�10−12 1 min, 34 s 3 0.02 23 4.7�10−12 9.3�10−4 1.28
0.04 10 8 15 3.6�10−13 5.5�10−11 56 s 3 0.04 29 8.9�10−12 1.8�10−3 1

064105-7 Chebychev propagator with iterative time ordering J. Chem. Phys. 132, 064105 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



number of points for the auxiliary coordinate t� are required,
Nt�=2048. However, since the actual propagation involves a
time-independent Hamiltonian, large time steps can be taken
for the Chebychev propagator, resulting in the most efficient
solution when Nt is small, Nt=16, and correspondingly the
number of Chebychev terms NCheby is large.

Table VI reports the comparison between the Chebychev
propagator with ITO, the �t , t�� method, and the RK4 for the
resonantly driven harmonic oscillator. For a moderate time
dependence, i.e., in the case of the rotating-wave approxima-
tion ��0=0�, the �t , t�� method and the Chebychev propaga-
tor with ITO yield a similarly good performance in terms of
errors and CPU time. Contradicting the common perception
of the Runge–Kutta scheme as a particularly efficient
method, the CPU time for our example is found to be almost
two orders of magnitude and the error three orders of mag-
nitude larger than for the Chebychev propagator with ITO
and the �t , t�� method.

For strong time dependence, i.e., resonant driving with-
out the rotating-wave approximation ��0=��, the Chebychev
propagator with ITO is found by far superior in terms of both
efficiency and accuracy compared with the �t , t�� method and
the RK4 scheme. In both cases, the Runge–Kutta scheme is

the least accurate method. The smallest error of the solution
�sol

max achieved with RK4 is of the order of 10−7 for �0=� and
�t=10−6 a.u. and of the order of 10−9 for �0=0 with the
same �t. We have not tested smaller time steps, since already
with �t=10−6 a.u., RK4 is the least efficient of the three
methods in terms of CPU time.

Figure 3 illustrates how much CPU time is required for a
given maximum error of the solution �sol

max. A clear separation
between highly accurate methods �Chebychev propagator
with ITO, �t , t�� method� and less accurate methods �standard
Chebychev propagator without time ordering, RK4 scheme�
emerges. If a highly accurate method is desired, the Cheby-
chev propagator with ITO appears to be the best choice. It
outperforms the �t , t�� method not only in terms of CPU time,
as shown in Fig. 3, but also in terms of required memory. In
the intermediate regime realizing a compromise between ac-
curacy and efficiency, the Chebychev propagator with ITO is
still the best choice. While the less accurate methods that
ignore time ordering become prohibitively expensive, the
�t , t�� method does not cover this regime. This is due to the
choice of Nt�—if it is large enough, the calculation is con-
verged and the error is very small; if it is too large, conver-
gence cannot be achieved and norm conservation is violated.
Only for cases, where a limited accuracy of the solution is
sufficient ��sol�10−5�, the standard Chebychev propagator
and the RK4 scheme represent the most efficient propagation
schemes.
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FIG. 2. Strongly time-dependent Hamiltonian ��0=��: comparison of the
Chebychev propagators without time ordering �standard� and with ITO in
terms of the difference between the numerical and analytical solution, �sol�t�.

TABLE V. Performance of the �t , t�� method. The required CPU time and the errors �norm
max and �sol

max are listed for
different numbers of sampling points of the t� coordinate Nt� and different numbers of sampling points within
�0,T�, Nt together with the number of required terms in the Chebychev expansion NCheby. The upper �lower� part
corresponds to �0=0 ��0=��.

Nt� Nt NCheby �sol
max �norm

max CPU time

1024 1024 43 2.3�10−12 1.2�10−12 16 min, 37 s
128 128 150 3.0�10−13 1.3�10−13 43 s
128 16 906 3.4�10−13 1.7�10−13 32 s
128 8 1740 2.4�10−13 1.2�10−13 30 s

1024 1024 43 2.5�10−10 3.2�10−7 17 min, 43 s
2048 2048 33 3.3�10−11 2.8�10−11 1 h, 8 min, 46 s
2048 512 73 3.3�10−11 1.6�10−11 36 min, 58 s
2048 256 119 3.3�10−11 1.6�10−11 30 min, 36 s
2048 128 204 3.3�10−11 1.6�10−11 25 min, 42 s
2048 64 366 3.3�10−11 1.6�10−11 22 min, 58 s
2048 32 680 3.3�10−11 1.6�10−11 21 min, 21 s
2048 16 1295 3.3�10−11 1.6�10−11 21 min, 14 s

TABLE VI. Comparison of highly accurate methods.

�sol
max �norm

max CPU time

�0=0 ITO 5.5�10−13 4.5�10−13 31 s
�t , t�� 2.9�10−13 1.2�10−13 30 s
RK4 8.6�10−10 3.5�10−13 38 min, 24 s

�0=� ITO 2.5�10−13 3.6�10−12 1 min, 34 s
�t , t�� 3.3�10−11 1.6�10−12 21 min, 14 s
RK4 9.4�10−8 1.7�10−13 38 min, 24 s
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C. Wave packet interferometry

Our third example applies the Chebychev propagator
with ITO to a model that cannot be integrated analytically. It
explores the effect of time ordering on phase sensitivity as
employed in coherent control. Wave packet interferometry
has first been demonstrated in the early 1990s.33 A pair of
electronic or vibrational wave packets is made to interfere
with two laser pulses. This represents a conceptually very
simple prototype of quantum control.34 The interference is
controlled by the relative phase between the two pulses.

Our example is inspired by a recent experiment.35 We
consider two harmonic oscillators that are coupled by a laser
field,

Ĥ = �T̂ + V̂g�r� �̂E�t�

�̂E�t� T̂ + V̂e�r�
 , �37�

where T̂ denotes the kinetic energy and

V̂g�r� =
1

2m
�g

2r2,

V̂e�r� =
1

2m
�e

2�r − re�2.

For simplicity we again take m=1, �g=�e=1, and �
=1 a.u. The Hamiltonian is represented on a Fourier grid
with Ngrid=128, rmin=−10 a.u., rmax=12 a.u., and re

=3.5 a.u. Starting from the vibronic ground state, a pump
pulse is applied to create a wave packet in the excited state,
cf. Fig. 4�a�. The excited state wave packet oscillates back
and forth in the excited state potential with a period of
2� /�e. The control pulse, with parameters identical to those
of the pump pulse, can be applied with different time delays.
If it is applied after one vibrational period, a relative phase
equal to zero induces constructive interference while a rela-
tive phase of � induces destructive interference.34 Different
time delays combined with a different choice of the relative
phase yield the same result.34 Constructive interference im-
plies an increase in population in the excited state, while for

destructive interference the wave packet is deexcited to the
ground state.

The excited state population that was measured in the
experiment by a probe pulse35 can be simply calculated,
���e ��e��2. The ratio of excited state population at the final
time T and at time t1, just after the pump pulse,

R��� =
���e�T���e�T���2

���e�t1���e�t1���2
, �38�

depends on the relative phase between the two pulses, �.
This dependence is illustrated in Fig. 4�b�. For �=0, the
population increases by a factor of 4 and for �=� complete
deexcitation is observed.

Since an analytical solution is not available for this ex-
ample, we take the solution obtained by the Chebychev
propagator with ITO as the reference. The accuracy of propa-
gators without time ordering is analyzed in terms of the rela-
tive error �sol

rel ,

�sol
rel��� =

�RITO��� − R����
RITO���

. �39�

They are shown for the standard Chebychev propagator, the
split propagator, and the RK4 scheme in Figs. 5 and 6 for
different pulse energies �respectively, pulse areas� and �t
=10−4 a.u. �which has to be compared with the duration of
the pulse, 0.3 a.u. and the vibrational period, 2� a.u.�. Figure
5 corresponds to �almost� constructive interference, �	0,
Fig. 6, to �almost� destructive interference, �	�. Overall,
the relative errors obtained are smaller for wave packet in-
terference compared with the examples of Secs. IV A and
IV B. We attribute this to the fact that the pump and control
pulse are very short compared with the vibrational time scale
of the oscillators. In this regime of impulsive excitation, the
pulses act almost as �-functions, and there is not enough time
to accumulate large errors due to neglected time ordering.
However, even in this regime the errors are non-negligible.
As expected the errors become larger with increasing pulse
intensity. The Runge–Kutta scheme yields similar errors for
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both constructive and destructive interference. The results
obtained by the standard Chebychev propagator without time
ordering and the split propagator appear to be only weakly
affected by time ordering for constructive interference. The
results obtained with these two propagators for destructive
interference are much more sensitive to time ordering effects
and relative errors reach between 10−6 and 10−4 for weak and
strong pulses, respectively. The error of the split propagator
is due to two effects—time ordering and the nonvanishing
commutator between kinetic and potential energy, while the
error of the standard Chebychev propagator is solely due to
time ordering. For weak pulses, the standard Chebychev
propagator yields more accurate results than the split propa-
gator, cf. Fig. 6. However, for strong pulses �pulse area of
� /2� roughly the same accuracy is achieved by the standard
Chebychev propagator and the split propagator. This indi-

cates that the neglected time ordering becomes the dominat-
ing source of error.

V. CONCLUSIONS

We have developed a Chebychev propagator based on
ITO to solve TDSEs with an explicitly time-dependent
Hamiltonian. The key idea consists of rewriting the term of
the TDSE that contains the time dependence of the Hamil-
tonian as an inhomogeneity. This inhomogeneity can be ap-
proximated iteratively. At each step of the iteration, the
Chebychev propagator for inhomogeneous Schrödinger
equations26 is employed. Convergence is reached when the
wave functions of two consecutive iteration steps differ by
less than a prespecified error. Time ordering is thus accom-
plished in an implicit manner.

We have outlined the implementation of the algorithm
and demonstrated the accuracy and efficiency of this propa-
gator for three different examples. A comparison to analyti-
cal solutions and other available propagators has shown our
approach to be extremely accurate, yet efficient, in particular
for very strong time dependencies.

The importance of correctly accounting for time order-
ing effects24 has been demonstrated for destructive quantum
interference phenomena. In most of the literature on coherent
control, accurate propagation methods are employed but time
ordering effects are completely neglected. This is not justi-
fied, in particular for applications such as optimal control
theory or high-harmonic generation where the fields are very
strong.

The approach of rewriting parts of the TDSE as an in-
homogeneity can be extended to other classes of problems
where numerical integration is difficult. An obvious example
is given by nonlinear Schrödinger equations such as the
Gross–Pitaevski equation. By rewriting the nonlinear term as
an inhomogeneity, it should be possible to derive a very
stable propagation scheme.
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APPENDIX: TRANSFORMATION TO OBTAIN THE
COEFFICIENTS ��„j�…

‹ FROM THE CHEBYCHEV
EXPANSION COEFFICIENTS ��̄j‹ OF THE
INHOMOGENEOUS TERM

In order to make use of Eq. �14�, a transformation link-

ing the Chebychev coefficients ��̄ j� that are calculated by
cosine transformation of the inhomogeneous term, cf. Eq.
�13�, to the coefficients ���j��� appearing in the formal solu-
tion of the inhomogeneous Schrödinger equation, cf. Eqs.
�15�–�17�, is required. Assuming �� �0, t�, then �̄=2� / t−1,
and Eq. �14� becomes
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FIG. 5. Constructive wave packet interference: accuracy of the standard
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FIG. 6. Destructive wave packet interference: accuracy of the standard
Chebychev propagator, the split propagator, and the RK4 scheme with re-
spect to the Chebychev propagator with ITO for different pulse areas.

064105-10 Ndong et al. J. Chem. Phys. 132, 064105 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp





j=0

m−1

Pj��̄���̄ j� = 

j�=0

m−1
� j�

j�!
���j��� . �A1�

Replacing � by �̄ in the right-hand side of Eq. �A1�, one
obtains



j=0

m−1

Pj��̄���̄ j� = 

j�=0

m−1
��̄ + 1� j�tj�

j�!2 j�
���j��� . �A2�

The Chebychev polynomials can be expanded in powers of
�̄,

Pj��̄� = 

k=0

j

Cj,k
�̄k

k!
. �A3�

Since Chebychev polynomials satisfy

Pj+1��̄� = 2�̄Pj��̄� − Pj−1��̄� , �A4�

the coefficients Cj,k satisfy a corresponding recursion rela-
tion, cf. Eq. �A6� of Ref. 26. Inserting Eq. �A2� into Eq. �A1�
yields



j=0

m−1



k=0

j
Cj,k

k!
��̄ j��̄k = 


j�=0

m−1



k=0

j�
j�!

k!�j� − k�!
tj�

j�!2 j�
���j����̄k.

�A5�

Introducing

��̄ j,k� =
Cj,k

k!
��̄ j� ,

�� j�,k� =
1

k!�j� − k�!
tj�

2 j�
���j��� ,

Eq. �A5� is rewritten,



j=0

m−1



k=0

j

��̄ j,k��̄k = 

j�=0

m−1



k=0

j�

�� j�,k��̄k. �A6�

Calculation of the ���j��� from the ��̄ j� is thus equivalent to
calculation of the �� j�,k� from the ��̄ j,k�. Note that the powers
of �̄ in Eq. �A6� occur in the inner sums. In order to trans-
form them to the outer sums, first the left-hand side of
Eq. �A5� is written,



j=0

m−1



k=0

j
Cj,k

k!
��̄ j��̄k = ��̄0,0� + 


k=0

1

��̄1,k��̄k + 

k=0

2

��̄2,k��̄k + ¯

+ 

k=0

m−1

��̄m−1,k��̄k, �A7�



j=0

m−1



k=0

j
Cj,k

k!
��̄ j��̄k = 


j=0

m−1

��̄ j,0� + 

j=1

m−1

��̄ j,1��̄ + 

j=2

m−1

��̄ j,2��̄2

+ ¯ + ��̄m−1,m−1��̄m−1, �A8�



j=0

m−1



k=0

j
Cj,k

k!
��̄ j��̄k = 


j=0

m−1



k=j

m−1

��̄ j,k��̄ j . �A9�

Similarly, the right-hand side of Eq. �A5� is written,



j�=0

m−1



k=0

j�
1

k!�j� − k�!
tj�

2 j�
���j����̄k = 


j�=0

m−1



k=j�

m−1

�� j�,k��̄ j�. �A10�

Equating the right-hand sides of Eqs. �A9� and �A10�, the
�� j�,k� are obtained,



j�=k

m−1

�� j�,k� = 

j=k

m−1

��̄ j,k�, 0 
 k 
 m − 1. �A11�

Replacing ��̄ j,k� and �� j�,k� by their definition yields



j�=k

m−1
1

k!�j� − k�!
tj�

2 j�
���j��� = 


j=k

m−1
Cj,k

k!
��̄ j�, 0 
 k 
 m − 1,

1

k! 

j�=k

m−1
1

�j� − k�!
tj�

2 j�
���j��� =

1

k! 

j=k

m−1

Cj,k��̄ j�, 0 
 k 
 m − 1,

�A12�



j�=k

m−1
1

�j� − k�!
tj�

2 j�
���j��� = 


j=k

m−1

Cj,k��̄ j�, 0 
 k 
 m − 1.

This leads to the hierarchy of equations

tm−1

2m−1 ���m−1�� = Cm−1,m−1��̄m−1� ,

tm−2

2m−2 ���m−2�� +
tm−1

2m−1 ���m−1��

= Cm−2,m−2��̄m−2� + Cm−1,m−2��̄m−1� ,

�A13�
] = ]



j�=k

m−1
1

�j� − k�!
tj�

2 j�
���j��� = 


j=k

m−1

Cj,k��̄ j�, 0 
 k 
 m − 2.

The coefficients ���j��� can thus be determined step by step

from the coefficients of the Chebychev expansion ��̄ j�,

���m−1�� =
2m−1

tm−1 Cm−1,m−1��̄m−1� , �A14�

���k�� =
2k

tk �

j=k

m−1

Cj,k��̄ j� − 

j=k+1

m−1
1

�j� − k�!
tj�

2 j�
���j���,

�A15�
k = m − 2,0.

Note that the transformation given by Eqs. �A14� and �A15�
becomes numerically instable for large orders, m�100. In
our applications, such a large m would correspond to time
steps larger than the overall propagation time and was never
required.
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