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ABSTRACT
Three-wave mixing spectroscopy of chiral molecules, which exist in left-handed and right-handed conformations, allows for enantiose-
lective population transfer despite random orientation of the molecules. This is based on constructive interference of the three-photon
pathways for one enantiomer and the destructive one for the other. We prove here that three mutually orthogonal polarization direc-
tions are required to this end. Two different dynamical regimes exist to realize enantioselective population transfer, and we show that
they correspond to different phase conditions in the three-wave mixing. We find the excitation scheme used in current rotational three-
wave mixing experiments of chiral molecules with C1 symmetry to be close to optimal and discuss the prospects for rovibrational
three-wave mixing experiments of axially chiral molecules. Our comprehensive study allows us to clarify earlier misconceptions in the
literature.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5097406

I. INTRODUCTION

Chiral molecules exist in left-handed and right-handed confor-
mations referred to as enantiomers. An ensemble of chiral molecules
typically consists of a racemat, i.e., a statistical mixture containing
50% of each enantiomer. In the gas phase, the means for enantiomer
separation, conversion, and purification are essentially limited to
electromagnetic fields. Their use to this end has been discussed the-
oretically for about two decades.1–14 Even simply separating the two
enantiomers out of a racemat is already a formidable task because
of their identical spectra, except for a tiny energy difference due to
the weak interaction.15,16 A possible handle for separation arises for
molecules with three nonvanishing dipole moment components, µa,
µb, and µc, in the molecule-fixed coordinates, since one component
switches sign upon change of enantiomer such that the enantiomers
can exhibit a different interaction with electromagnetic radiation.
Enantiomer separation exploiting this difference to achieve enan-
tioselective population of certain molecular states can make use of

the electronic,1–4 vibrational,6,7,11 or rotational12,13,17–23 degrees of
freedom of the molecule.

First theoretical proposals for enantioselective excitation
assumed the molecules to be oriented in space.1–5 However,
this is not a fundamental requirement since the enantiomer-
specific electric-dipole interaction survives orientational averag-
ing.8,9,24 In particular, three orthogonal, linearly polarized electro-
magnetic fields result in enantioselective excitation of rotational13

or rovibrational states.8,9,24 Experimentally, enantioselective excita-
tion was demonstrated with three-wave mixing microwave spec-
troscopy of rotational states, using resonant excitation of states
that are connected by the a-type, b-type, and c-type component
of the dipole moment.17–23 This is possible for chiral molecules
with C1-symmetry, i.e., molecules without a rotation axis, which
have three nonvanishing components of their permanent dipole
moment. In contrast, axially chiral molecules possess a rotational
axis and therefore have only one nonvanishing component of their
permanent dipole moment. However, transition dipole moments
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exist for all three projections such that excitation of rovibrational
states may give rise to enantioselectivity.9,11 Similarly, induced
dipole moments that come into play when the light is detuned far
off resonance with any molecular transition may serve the same
purpose.25–27

Cyclic coupling of three molecular states is a common feature
of enantioselective excitation schemes for randomly oriented chiral
molecules using the rotational or rovibrational structure.6–14,28 This
is rationalized by the fact that three-wave mixing spectroscopy, as a
purely electric-dipole-based technique, requires a vectorial observ-
able for enantioselectivity.29 Whether further fundamental require-
ments have to be met and whether there is an optimal way to
implement the cyclic coupling are currently open questions. For
example, recent microwave experiments17–19,21,22 have used electro-
magnetic fields with three perpendicular polarizations. In contrast,
some of the theoretical proposals employ electromagnetic fields
of single,5,11 two,11 or three13,28 polarization directions. Moreover,
adiabatic6,7,9–11 as well as sudden, nonadiabatic population trans-
fer5,17–19,21,22 has been suggested for enantioseparation, often in com-
bination with coherent control or optimal control theory, and also
shortcuts to adiabaticity14 may be utilized.

The aim of this paper is to clarify which requirements are
essential for enantioselective excitation of bound molecular states.
In Sec. II, we answer the question of how many polarization direc-
tions are needed by making use of the rotational symmetry of
chiral molecules. Employing the simplest model for cyclic cou-
pling in Sec. III, we identify the specific conditions for enantios-
electivity in the adiabatic and nonadiabatic regimes. We further-
more show how these two regimes for enantioseparation can be
applied to real molecular systems in Sec. IV, considering both purely
rotational excitation of C1-symmetric molecules, i.e., molecules
where all three components of the permanent molecular dipole
moment are nonzero, and excitation of rotational and vibra-
tional states which can be realized also in chiral molecules with
C1-symmetry as well as C2-symmetry. We summarize our findings
in Sec. V.

II. CONDITIONS FOR ENANTIOSELECTIVE EXCITATION
We assume the chiral molecules to be rigid enough to model

them as an asymmetric top with Hamiltonian

Ĥrot = AĴ2
a + BĴ2

b + CĴ2
c , (1)

where Ĵa, Ĵb, and Ĵc are the angular momentum operators with
respect to the principle molecular axes and A > B > C are the rota-
tional constants. Different vibrational states can simply be included
by means of a tensor product, provided the rovibrational coupling
is negligible. In other words, accounting for the vibrational dynam-
ics of the molecule does not change the conclusions drawn from the
rotational structure.

For B = C or A = B, the molecule becomes a prolate, respec-
tively, oblate, symmetric top with eigenfunctions |J, Ka, M⟩ or
|J, Kc, M⟩. The symmetric top wavefunctions are determined by the
rotational quantum number J (J = 0, 1, 2, . . .) and the quantum
numbers M and K (M, K = −J, −J + 1, . . ., J) which describe the
rotation with respect to a space-fixed axis and a molecule-fixed axis,
respectively. The eigenfunctions of the asymmetric top are expressed

as superpositions of symmetric top eigenstates,

∣J, τ,M⟩ =∑
K
c J,MK (τ)∣J,K,M⟩, (2)

where K-states with the same J and M are mixed. Here, τ = 1, 2, . . .,
2J + 1 counts the asymmetric top eigenstates with the same J and
M. The interaction of the molecule with an electromagnetic field is
described in the dipole-approximation by

Ĥint = − ˆ⃗µ ⋅ E⃗(t), (3)

where ˆ⃗µT
= (µ̂x, µ̂y, µ̂z) is the molecular dipole moment in space-

fixed coordinates. Transformation to the molecule-fixed frame
leads to11,30

Ĥz
int = −µ̂zEz(t)

= −Ez(t)[µ̂aD1
00 −

µ̂b
√

2
(D1

01 −D
1
0−1) + i

µ̂c
√

2
(D1

01 + D1
0−1)] (4)

for an electric field which is linearly polarized along the space-
fixed z-axis. DJ

MK denotes the elements of the Wigner D-matrix,
and µ̂i with i = a, b, c are the components of the dipole moment
in the molecule-fixed coordinate system. For electric fields polar-
ized linearly along the space-fixed x- and y-axes, the interaction
Hamiltonian reads11,30

Ĥx
int = −µ̂xEx(t)

= −Ex(t)[
µ̂a
√

2
(D1

−10 −D
1
10) +

µ̂b
2
(D1

11 −D
1
1−1 −D

1
−11 + D1

−1−1)

− i
µ̂c
2
(D1

11 + D1
1−1 −D

1
−11 −D

1
−1−1)] (5)

and

Ĥy
int = −µ̂yEy(t)

= −Ey(t)[−i
µ̂a
√

2
(D1

−10 +D1
10)+ i

µ̂b
2
(D1

11 −D
1
1−1 +D1

−11 −D
1
−1−1)

+
µ̂c
2
(D1

11 + D1
1−1 + D1

−11 + D1
−1−1)], (6)

respectively. The elements of the Wigner D-matrix, DJ
MK , determine

the selection rules. In the symmetric top basis and using Wigner
3j-symbols,30

⟨J′′,K′′,M′′
∣D1

MK ∣J
′,K′,M′

⟩ =
√

2J′′ + 1
√

2J′ + 1(−1)M
′′+K′′

×(
J′ 1 J′′
M′ M −M′′)(

J′ 1 J′′
K′ K −K′′).

(7)

To investigate the enantioselective population transfer between
rotational states, we consider cyclic coupling of rotational states by
three electric fields with frequencies resonant to the three transi-
tions, as shown in Fig. 1. For electric dipole interaction, ∆J = 0 or
∆J = ±1. Cyclic three state coupling can thus occur between either
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FIG. 1. Scheme for cyclic population transfer between three rotational states.
The possible combinations of J-states for such three-level cycles are denoted by
(a)–(c).

three states with the same J or two states with the same J and one
state with J ± 1. It is important to note that each of the levels is
(2J + 1)-fold degenerate. One should further recall that, for
interaction with a field linearly polarized along the z-direction,
∆M = 0, whereas ∆M = ±1 for interaction with fields linearly polar-
ized along the x- and y-axes. Moreover, the dipole moment µ̂a cor-
responds to a transition with ∆K = 0, while µ̂b and µ̂c are responsible
for transitions between states with ∆K = ±1.

An early proposal for cyclic coupling between three rotational
states suggested the use of three electromagnetic fields with the same
linear polarization, i.e., E⃗(t) = Ez(t) e⃗z .5 However, such a cycle can-
not exist for M = 0 since in that case transitions with ∆J = 0 are for-
bidden. Cycles with M ≠ 0 do exist, but enantioselectivity was proven
to vanish after orientation averaging,8,24 i.e., after averaging over all
M = ±|M|. Cycles with two different polarization directions involve
combinations such as Ez , Ex, Ex or Ez , Ey, Ey which were proposed
in Ref. 11. However, we show in the Appendix that as a consequence
of the permutation symmetry of the Wigner 3j-symbols, such loops
are not enantioselective. Our group theoretical arguments invali-
date the prediction of a small enantioselective effect for excitation
by pulses with two polarization directions or even a single polariza-
tion direction.11 Instead, we find in Subsection 2 of the Appendix
and in accordance with Ref. 13 that enantioselective cyclic three-
state coupling requires a combination of fields with three orthogonal
polarization directions. The symmetry of the rotational states of an
asymmetric top implies that such a cyclic three level system always
consists of transitions involving all three dipole moment compo-
nents, µ̂a, µ̂b, and µ̂c (see Subsection 1 of the Appendix). In sum-
mary, we give a group-theoretical proof for the statement that three
mutual orthogonal polarization directions are necessary for enan-
tioselective three-wave mixing spectroscopy. This is in accordance
with Ref. 13 and has been at the core of the microwave three-wave
mixing experiments of Refs. 17–23. If this condition is fulfilled,
enantioselective cyclic coupling survives orientational averaging and
can thus be realized in real molecular systems with degenerate
M-states. In the following, we use a three-level system with cyclic
coupling to investigate various regimes for enantioselective popula-
tion transfer.

III. THREE-LEVEL MODEL FOR ENANTIOSELECTIVE
EXCITATION
A. Model and field-dressed spectrum

Enantioselective cyclic coupling schemes for randomly ori-
ented chiral molecules involve necessarily degenerate M-levels such
that the smallest model (with M = 0 and M = ±1) consists of four
levels. However, we show in Subsection 2 of the Appendix that
any such coupling scheme with degenerate M-levels can be decom-
posed into two or more equivalent three-level systems. The most ele-
mentary model to describe the enantioselective excitation of bound
molecular states is thus given by a three-level system. The bare
Hamiltonian,

Ĥ0 =

⎛
⎜
⎜
⎝

E1 0 0
0 E2 0
0 0 E3

⎞
⎟
⎟
⎠

, (8)

contains the energies En of the rotational or rovibrational states
of the chiral molecule and is identical for both enantiomers.
We consider electric-dipole interaction with three linearly polar-
ized fields. The parameters of the fields—wavelengths, pulse dura-
tion, and intensity—are chosen such that each field resonantly
drives only a single transition. The interaction Hamiltonian then
reads

Ĥ(±)int (t) =

⎛
⎜
⎜
⎜
⎜
⎝

0 H(±)12 (t) H(±)13 (t)

H(±)∗12 (t) 0 H(±)23 (t)

H(±)∗13 (t) H(±)∗23 (t) 0

⎞
⎟
⎟
⎟
⎟
⎠

, (9)

where

Ĥ(±)nm (t) = ⟨n∣ − µ⃗(±) ⋅ E⃗α∣m⟩ (10)

with µ⃗(±) being the molecular dipole moment and E⃗α(t) = e⃗αEα(t)
being the electric field with polarization direction e⃗α, and

Eα(t) = �α(t) cos(ωαt + �α). (11)

Here, �α(t) is the envelope of electric field Eα(t) (α = x, y, z), whereas
its frequency and phase are denoted by ωα and �α, respectively. The
superscript (±) refers to the two enantiomers.

In the interaction picture, the time-dependent Schrödinger
equation reads

ih̵
∂

∂t
∣ψ(±)I (t)⟩ = Ĥ(±)I (t)∣ψ(±)I (t)⟩, (12)

with

H(±)I (t) =

⎛
⎜
⎜
⎜
⎜
⎝

δ12 H̃(±)12 (t) H̃(±)13 (t)

H̃(±)∗12 (t) 0 H̃(±)23 (t)

H̃(±)∗13 (t) H̃(±)∗23 (t) −δ23

⎞
⎟
⎟
⎟
⎟
⎠

. (13)

Here, the frequencies of the electric fields are ωz = (E2 − E1)/h̵
+ δ12, ωx = (E3 − E1)/h̵ + δ13, and ωy = (E3 − E2)/h̵ + δ23. Within
the rotating wave approximation (RWA),
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H̃(±)12 = −⟨1∣µ⃗(±) ⋅ e⃗z ∣2⟩ �z(t) exp(i�12) exp[i(δ12 + δ23 − δ13)t],

H̃(±)13 = −⟨1∣µ⃗(±) ⋅ e⃗x∣3⟩ �x(t) exp(i�13),

H̃(±)23 = −⟨2∣µ⃗(±) ⋅ e⃗y∣3⟩ �y(t) exp(i�23),

(14)

where we have renamed�z =�12,�x =�13, and�y =�23. Recall that,
in the RWA, the transition matrix elements can be complex, i.e.,

⟨n∣µ⃗(±) ⋅ e⃗α∣m⟩ = σ(±)nm ∣⟨n∣µ⃗(±) ⋅ e⃗α∣m⟩∣ exp(iθnm). (15)

It is then useful to define phases,6

Φnm = θnm + �nm, (16)

which contain the material phase θnm and the phases of the
electric fields �nm. Note that the absolute values of the tran-
sition dipole moments are identical for both enantiomers, i.e.,
∣⟨n∣µ⃗(+) ⋅ e⃗α∣m⟩∣ = ∣⟨n∣µ⃗(−) ⋅ e⃗α∣m⟩∣. The difference between the enan-
tiomers is expressed by the sign σ(±)nm : For two of the three transi-
tions, σ(−)nm = σ(+)nm = 1. For the third transitions, σ(−)nm = −σ(+)nm = −1.
If the detunings from resonance are chosen such that
δ12 + δ23 − δ13 = 0, the Hamiltonian H(±)I becomes time-
independent, except for the slowly varying envelopes of the fields.
In the following, the frequencies are chosen such that this condition
is fulfilled. To obtain dimensionless units, we scale all energies with
some energy E0. A natural choice is E0 = Erot , where Erot = h̵2B is the
rotational energy, and the rotational constant B is defined in Eq. (1).
Time is then given in units of t0 = h̵/Erot , and frequencies are given
in units of 1/t0.

One possibility for enantioselective population transfer is
to use adiabatic following of field-dressed eigenstates.6,7,9–11 In
other words, enantioselectivity of the cyclic coupling should be
reflected in the field-dressed eigenvalues. Figure 2 therefore displays
the instantaneous eigenvalues E fd,(±)

n obtained by diagonalizing

H(±)I (t) = H(±)I [Eq. (13)] for a constant field envelope and reso-
nant (a) as well as near-resonant (b) excitation, as a function of the
overall phase Φ = Φ12 + Φ23 − Φ13 [cf. Eq. (16)]. Note that the val-
ues ±1Erot and ±2Erot for the energy of the field-dressed states for
Φ = 0 result from the assumption that all matrix elements H̃(±)ij have
unit magnitude. Detuning from resonance lifts the degeneracy of
the field-dressed eigenstates within one enantiomer which occurs at
Φ = 0, π, and 2π. Enantioselectivity in the adiabatic regime requires
the two enantiomers (marked by solid and dashed lines, respectively)
to have a different field-dressed spectrum. As shown in Fig. 2, this is
the case for all phases except Φ = π/2 and Φ = 3π/2 for both resonant
and near-resonant excitations.

Thus, the eigenvalues of the field-dressed Hamiltonian already
indicate that enantioselective population transfer is possible, as is
also discussed in Ref. 12, provided specific inauspicious phases are
avoided. The difference in the field-dressed spectra suggests to real-
ize enantioselective population transfer by keeping the system in
the same field-dressed state at all times, i.e., to use adiabatic exci-
tation. This regime is inspected in Sec. III B. Enantioselective excita-
tion of rotational states by nonadiabatic excitation is investigated in
Sec. III C.

B. Enantioselectivity via simultaneous adiabatic
and diabatic passage

We assume the system to be initially in its ground state,
∣ψ(±)I (t = 0)⟩ = ∣1⟩. The time evolution of the system occurs in an
adiabatic way if the state remains in the same field-dressed eigen-
state ∣ψ(±)I (t)⟩. Adiabatic population transfer between two fieldfree
molecular states can be realized, for example, using linearly chirped
pulses which induce rapid adiabatic passage.31 An application of
rapid adiabatic passage to enantioselective excitation is shown in
Fig. 3, where the solid (dashed) line presents the enantiomer

FIG. 2. Eigenvalues of H(±)I as a function of the overall phase Φ for (a) zero detuning from resonance, i.e., δ12 = δ23 = 0, and (b) δ12 = δ23 = 0.5/t0. The two enantiomers

are indicated by solid and dashed curves, respectively. All matrix elements H̃(±)ij are assumed to have unit magnitude.
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FIG. 3. (Left) Energy of the field-dressed eigenstates during the interaction with linearly chirped pulses. (Right) Population of the fieldfree states |n⟩ (top n = 1, middle
n = 2, and bottom n = 3) with the envelope of the pulses shown in gray (all three pulses are switched on and off simultaneously). The chirp is defined be the detuning
δ0

12 = δ
0
23 = 2/t0 [see Eq. (17)]. The phases are Φ = 0 for panels (a) and (b), π/4 for panels (c) and (d), and π/2 for panels (e) and (f).
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(+) [(−)]. The left panels show the energies of the field-dressed eigen-
states for the two enantiomers, while the populations of the fieldfree
states are depicted on the right. All three electric fields are switched
on and off simultaneously; the envelopes of the fields are indicated
by gray lines. The pulses are chirped such that

δnm(t) = −δ0
nm +

2δ0
nm

∆t
t (17)

for nm = 12 or nm = 23 and ∆t is the interaction time. Note that at
t = 0, the highest energy field-dressed state corresponds to the
fieldfree state |1⟩.

Figure 3(a) shows the energies of the field-dressed eigenstates
for Φ = 0. If the system is initially in the fieldfree ground state |1⟩, the
(−) enantiomer (dashed lines) evolves adiabatically along the highest
energy field-dressed eigenstate and is transferred, after the interac-
tion, to the fieldfree state |3⟩, as shown Fig. 3(b). For the enantiomer

(+) (solid lines), the two highest field-dressed states cross at t = ∆t/2,
where the detuning is zero. Therefore, the enantiomer (+) evolves
diabatically and is transferred to the fieldfree state |2⟩. Thus, for
Φ = 0, the interaction leads to enantioselective population
transfer.

Figures 3(c) and 3(d) show the field-dressed eigenstates and the
population of the fieldfree states for Φ = π/4. Here, the field-dressed
states of the two enantiomers have different spectra, but there is no
degeneracy between different field-dressed states. As a consequence,
both enantiomers evolve adiabatically along the highest field-dressed
state and are finally transferred to the same fieldfree state |3⟩. The
slight difference in the population during the interaction is a result
of the different field-dressed spectra. For Φ = π/2, shown in Figs. 3(e)
and 3(f), the population difference vanishes, as expected from the
discussion in Sec. III A, because the field-dressed states of the two
enantiomers have identical spectrum.

FIG. 4. Population of the fieldfree states |n⟩ (small top n = 1, middle n = 2, and bottom n = 3 panels) for simultaneous [panels (a) and (b)] and sequential [panels (c) and (d)]
resonant excitation with Φ = 0 (left) and Φ = π/2 (right). The two enantiomers are indicated by solid and dashed curves, and the envelope of the pulses is indicated in gray.
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In general, we find that an exact crossing of the field-
dressed states occurs only if Φ = 0, the detunings are zero, and
∣H̃(±)12 ∣ = ∣H̃(±)13 ∣ = ∣H̃(±)23 ∣. For other sets of parameters, small avoided
crossings lead to selective but incomplete population transfer. Max-
imum enantioselectivity is only obtained when one enantiomer
undergoes adiabatic evolution, whereas the other one simultane-
ously evolves diabatically, i.e., for Φ = 0, π, and 2π. It also requires
the three electric fields to be present at the same time. This can be
achieved if the fields are turned on and off simultaneously, as shown
here.

The application of rapid adiabatic passage to enantioselective
excitation has been proposed in Refs. 6 and 9, where time-delayed
but overlapping sequences of three pulses are employed to achieve
cyclic population transfer. Such a sequential excitation of the three
transitions opens more possibilities to optimize the driving fields,
and coherent control has indeed been used to find pulse parameters
for which small avoided crossings between field dressed states lead to
selective population transfer.6,9 However, the resulting parameters,
i.e., the phases of the laser pulses, are specific to the pulse sequence.
In contrast, with our more elementary model for cyclic population
transfer, we can directly relate the phase condition to the existence of
an exact crossing between the field-dressed states, as shown above,
and are thus able to directly identify the interference mechanism
enabling cyclic population transfer.

C. Enantioselectivity via Rabi oscillations
in nonadiabatic excitation

We assume again the initial state to be ∣ψ(±)I (t = 0)⟩ = ∣1⟩.
Without detuning from resonance, excitation with three pulses leads
to the creation of a wavepacket consisting of all field-dressed states
which results in Rabi oscillations. The corresponding population of
the fieldfree states |n⟩ can be seen in Fig. 4. In the top part of Fig. 4,
all three pulses are switched on and off simultaneously. For Φ = 0,
one of the Rabi frequencies is equal to zero since two of the field-
dressed eigenstates are degenerate, as shown in Fig. 2(a). As a result,

the three states cannot be populated selectively [cf. Fig. 4(a)]. For
Φ = π/2 [cf. Fig. 4(b)], occurrence of three different Rabi frequencies
leads to enantioselective population of the two excited states, |2⟩ and
|3⟩. Remarkably, we find that enantioselective population transfer
can be achieved for any phase Φ ≠ 0. For Φ → 0, however, the time
required for separation approaches infinity.

Instead of applying the three pulses simultaneously, they can
also be switched on and off one after the other, as shown in the
bottom part of Fig. 4. Here, the first pulse is a π/2-pulse which cre-
ates a 50/50-superposition between the states |1⟩ and |3⟩. The sec-
ond pulse, a π-pulse, leads to population transfer from |1⟩ to |2⟩.
Finally, the third pulse connects states |2⟩ and |3⟩, where construc-
tive vs destructive interference causes the enantioselective excitation
of states |2⟩ and |3⟩, respectively. This is essentially the scheme
that has been realized in the microwave experiments reported in
Refs. 17–19, 21, and 22. Note that any possible π/2-π-π/2-pulse
sequence starting with the initially populated state can be used for
enantioselective excitation. The order of the pulses determines for a
given enantiomer which final state is populated. Applying, for exam-
ple, the first π/2-pulse to the transition between states |1⟩ and |3⟩ and
the π-pulse to the transition |2⟩→ |3⟩ leads to selective population of
the states |1⟩ and |3⟩ at the end of the sequence. This is in contrast to
a simultaneous application of all three pulses, where the final states
are always |2⟩ and |3⟩, provided that |1⟩ is the initially populated
state.

In the following, we investigate the effects of a (small) detuning
from resonance on the enantioselectivity of nonadiabatic excitation.
Figure 5 displays the selectivity ∣P(+)n − P(−)n ∣, where P(±)n is the pop-
ulation of state |n⟩, with n = 1, 2, 3 of the enantiomer (+) or (−).
We consider a constant detuning δ12 = δ23 such that the condition
δ12 + δ23 − δ13 = 0 is fulfilled. Figure 5(a) shows the selectivity
for excitation with the same pulse sequence as the one displayed
in Figs. 4(c) and 4(d). The rapid oscillation of the selectivity as
well as the overall decline as the detuning increases can be under-
stood if the excitation process is regarded as three two-level systems
which are excited successively. In a two-level system, detuning from

FIG. 5. Enantioselectivity as a function of the detuning from resonance of the fieldfree states |n⟩ (top n = 1, middle n = 2, bottom n = 3 panels) for sequential (a) and
simultaneous (b) excitation with Φ = 0 (dashed), Φ = π/4 (dotted), and Φ = π/2 (solid).
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resonance results in an additional phase of the excited states which
leads to a mismatch with the phase condition for selective excita-
tion. For small detunings, this can be compensated for by changing
the overall phase Φ. For example, for the pulse sequence considered
here, Φ = π/2 (solid line) leads to maximal selectivity for δ12 = δ23 =
0, while for δ12 = δ23 ≈ 0.1, the phase Φ = 0 leads to maximal selec-
tivity. With increasing detuning, the selectivity declines for all values
ofΦ since detuning from resonance results in incomplete population
transfer.

The selectivity as a function of the detuning from resonance for
simultaneous excitation of all three levels can be seen in Fig. 5(b).
Since all three pulses are applied at the same time and condition,
δ12 + δ23 − δ13 = 0 holds, the additional phases for each transition
cancel, and rapid oscillation of the selectivity does not occur. For
Φ = π/2 (solid line), the selectivity declines with increasing detuning
due to the incomplete population transfer. Moreover, for nonzero
detuning, the degeneracy of the field-dressed states at Φ = 0 is lifted
(see Fig. 2). Therefore, excitation with Φ = 0 (dashed line) also
becomes enantioselective with increasing detuning.

Enantioselective excitation with three pulses with pulse areas
of π and π/2, respectively, has been experimentally demonstrated in
microwave three-wave mixing experiments17–23 and has also been
discussed in Ref. 13. Here, we have simulated this process in the
nonadiabatic regime. This has allowed us to show that the pulses
can be applied both simultaneously or sequentially, without overlap
in time, provided the total phase is not equal to zero. Moreover, we
have demonstrated that a small detuning from resonance reduces
the amount of selectivity, an effect that can be partly overcome by
adjusting the phase of the electric fields.

D. Comparison between adiabatic
and nonadiabatic excitation

We have identified two complementary mechanisms for enan-
tioselective population transfer—adiabatic following of a field-
dressed eigenstate for one enantiomer with simultaneous diabatic
dynamics for the other enantiomer compared to fully nonadiabatic
dynamics of both enantiomers. While in the simultaneous adiabatic-
diabatic regime enantioselective population transfer requires the
overall phase to strictly be Φ = 0, it can be achieved for nonadi-
abatic dynamics with all phases Φ ≠ 0. Moreover, enantioselective
excitation in the adiabatic-diabatic regime requires an exact cross-
ing of the field-dressed energy eigenstates which translates into the
requirement that all three pulses overlap in time. This is not neces-
sary, if the rotational states are excited resonantly in the nonadia-
batic regime. Here, the pulses can be applied simultaneously as well
as sequentially. Sequential excitation comes with the advantage that
the parameters for each pulse can be optimized separately. This is
important, for example, when one of the three dipole matrix ele-
ments is much smaller than the other two, as discussed in Sec. IV.
With sequential nonadiabatic excitation, it is thus easier to find con-
ditions for optimal selectivity than in the adiabatic-diabatic regime
where the parameters of all pulses have to be controlled simulta-
neously. It should be noted that chirped pulses can also be used
sequentially to create a sequence of three pulses with pulse areas of
π and 2π. The first enantioselective microwave three-wave mixing
experiments have been conducted this way.19 In that work, chirp-
ing the pulses does not provide a realization of the simultaneous

adiabatic and diabatic passage proposed in Sec. III B. Rather, it is
a different way to implement the excitation scheme described in
Sec. III C.

IV. APPLICATION TO REAL MOLECULES
We now lift two idealizing assumptions made in Sec. III,

namely, that all states can be addressed individually and that all tran-
sition matrix elements have the same magnitude. In other words, we
investigate enantioselectivity for a realistic molecular structure but
continue to assume the molecules to be initially in their ground state,
i.e., at zero temperature. We discuss the application of both excita-
tion schemes to purely rotational excitation of chiral molecules with
C1-symmetry in Sec. IV A and to rovibrational excitation of axially
chiral systems in Sec. IV B.

A. Application I: Rotational spectroscopy
As an example, we consider the chiral molecule menthol with

rotational constants and dipole moments summarized in Table I.
An enantioselective cycle can be realized by the combination of
microwave pulses depicted in Fig. 6, where the transitions driven
by Ex, Ey, and Ez are of a-type, c-type, and b-type, respectively. Fol-
lowing the convention in microwave spectroscopy, we denote the
rotational states by ∣JτM⟩ = ∣JKa ,Kc ,M⟩ in the following, where Ka and
Kc are the quantum numbers of a prolate and oblate symmetric top,
respectively. The population of a rotational level JKa ,Kc is averaged
over the corresponding 2J + 1 M-states.

Enantioselectivity via adiabatic passage for one enantiomer
with simultaneous diabatic passage for the other enantiomer is
examined in Fig. 7 for chirped microwave pulses (indicated in gray)
and Φ = 0. In this regime, as mentioned in Sec. III B, the popula-
tion transfer is enantioselective if there is an exact crossing between
the energies of two field-dressed states. This translates into the con-
dition that all transition matrix elements, which are proportional to
the dipole moments, µa, µb, µc times the corresponding field ampli-
tudes, have the same magnitude. Since for menthol, µb ≪ µa, the
small b-type dipole moment has to be compensated by a higher
intensity of the corresponding electric field. We therefore choose
the field strengths such that µaEx = µcEy = µbEz . A selectivity of
approximately 95% is obtained in Fig. 7 for a pulse duration of
5.6 µs. By further optimization of the parameter—field strengths,
pulse duration, and detuning from resonance—completely adi-
abatic excitation and therefore 100% of separation may be
achieved.

Nonadiabatic population transfer between rotational states of
menthol is shown in Fig. 8. Again, maximal selectivity requires the
transition matrix elements to have the same magnitude. If the three
pulses are switched on and off simultaneously, this is realized, as
in Fig. 7, by adapting the field strengths. The resulting population

TABLE I. Rotational constants and magnitude of dipole moments for menthol and
carvone. Data are taken from Refs. 32 and 33.

A (MHz) B (MHz) C (MHz) µa (D) µb (D) µc (D)

Menthol 1779.8 692.63 573.34 1.3 0.1 0.8
Carvone 2237.21 656.28 579.64 2.0 3.0 0.5
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FIG. 6. Lowest rotational states of a prolate asymmetric top molecule such as
menthol. The arrows indicate the transitions driven by the electric fields Ex , Ey ,
and Ez . The rotational energy levels are labeled JKaKc.

transfer can be seen in Fig. 8(a), where we obtain nearly 100% selec-
tivity despite the small level spacing and differences in the pulse
intensities. Nonadiabatic excitation with nearly 100% selectivity can
also be realized by a sequential interaction without any overlap of
the three pulses, shown in Fig. 8(b). Here, it is convenient to use
the same field strength for all three pulses and compensate for the
different magnitudes of the dipole moments by changing the pulse
durations.

Nonadiabatic excitation for another chiral molecule, namely,
carvone (see Table I for the parameters) is shown in Fig. 9. The
same rotational levels are addressed as for menthol (cf. Figs. 6
and 8), but the energy difference between the levels 110 and 111
is even smaller, 0.12 B = 80.9 MHz in carvone compared to
0.17B = 119.3 MHz in menthol. For similar field strengths as in
Fig. 8(a), only 50% selectivity is obtained for carvone [cf. Fig. 9(a)].
In this case, for carvone, the level spacing between 110 and 111 is
so small that the two states cannot be addressed separately. The
fast oscillations of the populations in levels 000 and 111 indicate
additional nonresonant excitation. By decreasing the field strength
[cf. Fig. 9(b)], nonresonant excitation is reduced and the selectivity

FIG. 7. Adiabatic population transfer for the rotational levels 000 (top), 110 (mid-
dle), and 111 (bottom) of menthol, averaged over M-states. The two enantiomers
are indicated by solid (blue) and dashed (red) lines. The envelope of the (simul-
taneously applied) pulses is indicated by gray lines. The maximal intensities are
Iz = 6.3 W/cm2, Iy = 0.1 W/cm2, and Ix = 0.04 W/cm2. The detuning [Eq. (17)] is
δ0

12 = δ
0
23 = 0.01B. Time is given in units of t0 = ̵h/Erot ≈ 1.4 ns. Here, Φ = 0.

increases. Note that here, the lowest field intensity must not exceed
I = 0.009 W/cm2.

In summary, enantioselectivity can be realized via both
adiabatic-diabatic passage and nonadiabatic excitation in real
molecules such as menthol and carvone. However, care needs to
be taken to identify three-level cycles with sufficient level spac-
ing to allow for separate addressing. This becomes more difficult
for heavier molecules with a dense rotational spectrum. In con-
trast, at well separated energy levels, the interaction time can be
significantly reduced by using commercially available high-power

FIG. 8. Nonadiabatic population transfer for the rotational states |000⟩ (top), |110⟩ (middle), and |111⟩ (bottom) of menthol. The frequencies of the three pulses are resonant to
the transitions between the three states. The two enantiomers are indicated by solid (blue) and dashed (red) lines, and the envelope of the pulses is indicated by gray lines.
The maximal intensities are (a) Iz = 6.3 W/cm2, Iy = 0.1 W/cm2, and Ix = 0.04 W/cm2, and (b) Ix = Iy = Iz = 6.3 W/cm2. Time is given in units of t0 = ̵h/Erot ≈ 1.4 ns. In all
cases, Φ = π/2.
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FIG. 9. Population of the rotational states 000 (top), 110 (middle), and 111 (bottom) of carvone. The frequencies of the three pulses are resonant to the transitions between the
three states. The two enantiomers are indicated by solid (blue) and dashed (red) lines. The envelope of the pulses is indicated by gray lines. The maximal intensities are (a)
Iz = 0.14 W/cm2, Iy = 0.38 W/cm2, and Ix = 5.64 W/cm2, and (b) Iz = 0.009 W/cm2, Iy = 0.02 W/cm2, and Ix = 0.23 W/cm2, and time is given in units of t0 = ̵h/Erot ≈ 1.5 ns.
Here, Φ = π/2.

microwave radiation sources with field intensities of several W/cm2.
For nonadiabatic excitation, since the fields can be applied sequen-
tially, the two control parameters, pulse duration and field strength,
can be optimized separately for each pulse. In recent microwave
experiments,22 enantioselective excitation has been realized with
sequences of partially overlapping microwave pulses. While it might
have practical advantages to use overlapping pulses, our simula-
tions show that for nonadiabatic excitation, temporal overlap of the
pulses is not required to achieve enantioselectivity, as it has also been
demonstrated in earlier microwave experiments.20,23

B. Application II: Rovibrational spectroscopy
A much larger frequency range can be made accessible for

enantioselective population transfer by a combination of infrared
and microwave excitations. By partly replacing the nonvanishing
Cartesian projection of the permanent dipole moment by transi-
tion dipole moments, the results obtained in Secs. II and III can be
directly transferred to rovibrational excitation. Rovibrational enan-
tioselective excitation can thus also be applied to chiral molecules
with C2-symmetry which have only one nonvanishing Cartesian
projection of the permanent dipole moment. We examine enantios-
elective population transfer of rovibrational states for HSOH as an
example axially chiral molecule. Although HSOH has C1-symmetry,
only one component of the dipole moment is reasonably strong,
namely, µb (see Table II). The results can thus be directly transferred
to chiral molecules with C2-symmetry, e.g., HSSH. Assuming that
coupling between vibrational and rotational states under fieldfree
conditions can be neglected, the molecular eigenstates can be written
as a direct product,

∣�rot⟩∣�vib⟩ = ∣JKa ,Kc ,M⟩∣�ν⟩. (18)

We restrict our considerations to one vibrational degree of freedom,
namely, the OH-stretch mode of HSOH. Note that the components

of the dipole moment in the molecule-fixed coordinate system, µ̂i
with i = a, b, c, are functions of the internal coordinates of the
molecule, i.e., of the OH-stretch mode. Starting in |0000⟩|�0⟩, i.e.,
the rovibrational ground state of HSOH, the states |1000⟩|�1⟩ and
|110±1⟩|�1⟩ are excited by z- and y-polarized infrared laser pulses,
whereas the transition between those states is driven by microwave
radiation. The relevant dipole and transition dipole moments are
listed in Table II. Since the intensity of an infrared pulse can eas-
ily be made about 100 times larger than that of microwave radia-
tion, one can compensate for the different magnitudes of the dipole
and transition dipole moments and ensure that all Rabi frequencies
have approximately the same magnitude. Thus, the combination of
IR and microwave radiation allows enantioselective excitation for
classes of molecules for which pure microwave three-wave mixing
spectroscopy is not possible because they have only one nonvan-
ishing or sufficiently strong component of the permanent dipole
moment.

TABLE II. Electric dipole- and transition-dipole moments for excitation of the OH-
stretch mode in HSOH and rotational constants of HSOH.

Transition Type µ (D)34 Intensity (W/cm2) µE/B

IR a 0.052 1300 0.0017
IR c 0.055 1000 0.0016
MW b 0.698 13 0.0023

Rotational constants (cm−1)

ν = 035 ν(OH) = 136

A 6.740 298 127(45) 6.655 692(25)
B 0.509 751 203 3(41) 0.509 018 2(16)
C 0.495 016 336 9(40) 0.494 781 7(17)
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FIG. 10. Population transfer in HSOH for the rotational states |'0⟩|0000⟩ (top), |'1⟩|1010⟩ (middle), and |'1⟩|110±1⟩ (bottom). (a) Adiabatic excitation with chirped pulses for
Φ = 0. (b) Nonadiabatic transfer with resonant pulses and Φ = π/2. The two enantiomers are indicated by solid and dashed curves, respectively, and the envelopes of the
pulses are indicated by gray lines (with maximal intensities denoted in Table II), and time is given in units of t0 = ̵h/Erot = 65 ps.

Cyclic population transfer for HSOH in the adiabatic-diabatic
(a) and nonadiabatic (b) regimes is examined in Fig. 10. In Fig. 10(a),
we observe approximately 90% selectivity, although oscillations in
the population of states |'1⟩|1010⟩ and |'1⟩|110±1⟩ indicate that
the process is not entirely adiabatic. Nonadiabatic excitation, as
shown in Fig. 10(b), leads to almost 100% selectivity. These sim-
ulations suggest that enantioselective population transfer can also
be realized by a combination of infrared and microwave pulses.
Note that the pulse duration which is necessary to obtain approx-
imately adiabatic conditions is 10 times larger than that for nona-
diabatic excitation. The sub-Doppler linewidth of infrared transi-
tions in HSOH is of the order of 10–100 kHz. This corresponds
to lifetimes between 1.4 and 14 µs which need to be compared to
the transfer time for the enantioselective population transfer of 0.3
and 3 µs under nonadiabatic and adiabatic conditions, respectively.
These lifetimes are sufficiently long such that decoherence due to
spontaneous emission will not impede enantioselective population
transfer.

Using two infrared pulses and one microwave pulse (2IR +
MW) can be regarded as an excitation scheme that shifts the criti-
cal step of population transfer to an excited vibrational level. This
is of advantage in comparison to excitation with three microwave
pulses (3 MW), where incoherent thermal population of rotational
levels in the vibrational ground state reduces the efficacy of enan-
tioselective population transfer. (2IR + MW) addresses the ther-
mally unoccupied rotational levels in the excited vibrational state,
thus enabling coupling between fully coherent states. Any three-
wave mixing scheme needs three mutually phase coherent signals
for enantioselective population transfer. Fulfilling this condition is
more involved for a (2IR + MW) scheme than for (3 MW) excita-
tion, but possible. For example, it can be realized by phase-locking
two infrared signals to a common reference standard (e.g., frequency
comb) which is controlled by a microwave reference signal.

Enantioselective excitation of axially chiral molecules using
only infrared laser pulses and coherent excitation of three different
vibrational states (3IR) has been studied for the example of

HSSH.7,9,37 The alternative excitation (2IR + MW) scheme suggested
here offers several advantages compared to the (3IR) scheme. First,
it can be applied to molecules which have hybrid vibrational bands
with two different dipole components. In the case of HSOH, the
ν6 symmetric OH-stretch vibration can be excited by (2IR)-pulses
using the weak a- and c-type vibrational transition moments in
combination with a MW-pulse driving the strong permanent b-
type transition in the excited vibrational state. Second, compared
to (3IR)-excitation schemes, the use of at least one strong perma-
nent dipole moment is of advantage since it increases the yield of
population transfer significantly.

V. CONCLUSIONS
We have revisited the problem of exciting the two enantiomers

in a statistical mixture of randomly oriented chiral molecules to
different internal states using electric dipole transitions. This is
an important first step for the separation of enantiomers in gas
phase experiments.21,22 Combining group theoretical considerations
and numerical simulations for the simplest model as well as actual
molecules, we are able to provide a comprehensive picture of the
fundamental requirements to achieve enantioselectivity in differ-
ent excitation regimes for chiral molecules with both C1 and C2
symmetry.

In particular, we have provided a group-theoretical proof that
population transfer within a cycle of three molecular states is enan-
tioselective only if electric fields with three mutually orthogonal
polarization directions drive the transitions between the rotational
or rovibrational states. This is in accordance with earlier findings13

and corresponds to the experimental realization of enantioselec-
tive three-wave mixing.17–23 It clarifies earlier misconceptions in
the literature proposing excitation with only one or two differ-
ent polarization directions or ignoring the question of polarization
directions.5,6,11,12,38–40

Furthermore, we have identified two different regimes of enan-
tioselective population transfer using the three-level model: (i)
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Adiabatic passage of a level crossing between field-dressed eigen-
states for one enantiomer with simultaneous diabatic dynamics for
the other enantiomer results in enantioselective excitation. This
regime requires a specific choice of the overall phase (Φ = 0) and
adiabatic following of the field-dressed eigenstates which can be
enforced, for example, by strong and linearly chirped pulses. (ii)
Rabi oscillations between the rotational or rovibrational states lead
to enantioselective excitation for resonant nonadiabatic excitation
and a nonvanishing overall phase. In the latter case, the fields
can be applied either simultaneously or sequentially which leaves
more flexibility for pulse optimization. For example, recent exper-
iments have used partially overlapping pulse sequences,22 while in
other experiments, nonoverlapping sequences of pulses have been
applied.20,23

For population transfer in real molecular systems, using rota-
tional excitation by microwave pulses in menthol and carvone and
combined vibrational and rotational excitation by infrared and
microwave pulses in HSOH, we have confirmed enantioselectivity in
both regimes but find nonadiabatic excitation to be easier to imple-
ment. It allows, in particular, for much shorter pulse durations than
the adiabatic-diabatic scenario. This is important in view of possible
decoherence mechanisms.

In this study, we have considered molecules at T = 0 K in
order to identify fundamental limitations to enantioselective exci-
tation. In real experiments, even under “cold” conditions, many
molecular states are thermally occupied. In particular, for purely
rotational excitation, practically all three levels of any conceiv-
able cycle are initially populated. This leads to a significant reduc-
tion of selectivity21,22 compared to the results predicted here for
zero temperature. Replacing at least two of the rotational tran-
sitions by transitions between two different vibrational states
would allow us to alleviate this problem since, in “cold” exper-
iments, only the lowest vibrational state is thermally occupied,
and thus, only a single state of the three-level cycle initially pop-
ulated. This modification comes at the expense of phase lock-
ing the infrared and microwave pulses in order to ensure a well-
defined overall phase. Moreover, excited vibrational states have a
much shorter lifetime than rotational levels in the ground vibra-
tional manifold, introducing spontaneous emission as a possi-
ble decoherence mechanism, in addition to collisions with other
molecules.

Alternatively, one might consider to trap the molecules and
cool their rotational degrees of freedom before application of three-
wave mixing spectroscopy. However, to date, cooling rotations has
been limited to diatomic molecules.41–44 While laser cooling of
polyatomic molecules might, in principle, be feasible,45 cooling the
complex rotational structure of asymmetric top molecules is a
daunting task.46 An alternative method to prepare and measure
polyatomic molecules in single quantum states has recently been
proposed in Ref. 47. Which route will eventually allow the realization
of full enantioselectivity in chiral three-wave mixing experiments,
currently still remains an open question.
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APPENDIX: SYMMETRY REQUIREMENTS
FOR ENANTIOSELECTIVE EXCITATION

In this appendix, we use group theoretical arguments to deter-
mine the conditions for enantioselective excitation of rotational
states. For this purpose, we exploit different symmetry groups. (i)
The point group of a chiral molecule, C1 or C2, consists of sym-
metry operations that act on the internal molecular coordinates. It
determines whether the molecule has three (C1) or only one (C2)
nonvanishing projections of the permanent dipole moment. (ii) The
elements of the molecular rotation group act on the Euler angles and
are rotations about axes through the center of mass in the molecule
fixed frame. For an asymmetric top, the molecular rotation group is
D2.48 Using transformation properties with respect to the molecu-
lar rotation group, we prove the existence of enantioselective cycles
within the molecule fixed frame in Subsection 1 of the Appendix.
(iii) Rotations of an isolated molecule in free space about any axis
through the center of mass in the space fixed coordinate system
constitute the spatial rotation group K [or SO(3)]. The resulting
selection rules are expressed in the form of the Wigner 3j-symbols.
The spatial rotation group determines whether an enantioselective
cycle is independent of the spatial orientation of the molecule, i.e.,
whether it survives averaging over M-states, as we demonstrate in
Subsection 2 of the Appendix.

1. Proof that cyclic electric dipole excitation of three
rotational states must contain transitions with µa , µb ,
and µc

The symmetry group of an asymmetric top is D2, and its char-
acter table and the transformation properties of the asymmetric top
eigenfunctions ∣JτM⟩ = ∣JKa ,Kc ,M⟩ are recalled in Table III.48 Here, Ka
and Kc are the quantum numbers of a prolate and oblate symmetric
top, respectively. The interaction Hamiltonian [Eqs. (4)–(6)] can be
decomposed into its irreducible parts, namely,

Hxa,Hya,Hza ∼ Ba,
Hxb,Hyb,Hzb ∼ Bb,
Hxc,Hyc,Hzc ∼ Bc,

(A1)

whereHza denotes the term ofHz
int [Eq. (4)], which is proportional to

µa, and so on. The requirement for cyclic excitation of three molec-
ular states to be possible at all is that all three transition matrix

TABLE III. Character table of D2, the molecular rotation group for asymmetric top
molecules, and transformation properties of the asymmetric top eigenfunctions.48 The
transformation properties of the rotational states depend on whether the quantum
numbers Ka and Kc are even (e) or odd (o).

D2 E Rπa Rπb Rπc KaKc

A 1 1 1 1 ee
Ba 1 1 −1 −1 eo
Bb 1 −1 1 −1 oo
Bc 1 −1 −1 1 oe
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elements ⟨1∣H(12)
int ∣2⟩, ⟨2∣H(23)

int ∣3⟩, and ⟨3∣H(13)
int ∣1⟩ must be nonzero.

This can only occur if

Γ(∣1⟩) × Γ(H(12)
int ) × Γ(∣2⟩) = A,

Γ(∣2⟩) × Γ(H(23)
int ) × Γ(∣3⟩) = A,

Γ(∣3⟩) × Γ(H(13)
int ) × Γ(∣1⟩) = A,

(A2)

where Γ() denotes the irreducible representation of the rotational
states and the interaction Hamiltonians. Since for one-dimensional
irreducible representations Γi × Γi = A, Eq. (A2) is fulfilled only if

Γ(H(12)
int ) × Γ(H(23)

int ) × Γ(H(13)
int ) = A. (A3)

The product of the three one-dimensional irreducible representa-
tions can only result in the totally symmetric representation A if
all three irreducible representations Ba, Bb, and Bc are contained in
the left-hand side of Eq. (A3). We therefore conclude that the three
transitions have to be of a-type, b-type, and c-type.

2. Proof that enantioselective cyclic electric dipole
excitation of rotational states requires three mutually
orthogonal polarization directions

We consider the transition matrix elements between two rota-
tional states of an asymmetric top,

⟨J′′, τ′′,M′′
∣Hint ∣J′, τ′,M′

⟩ = ∑
K′ ,K′′

[cJ
′′ ,M′′
K′′ (τ′′)]

∗
cJ
′ ,M′
K′ (τ′)

× ⟨J′′,K′′,M′′
∣D1

MK ∣J
′,K′,M′

⟩, (A4)

where ⟨J′′,K′′,M′′
∣D1

MK ∣J′,K′,M′
⟩ are the transition matrix ele-

ments between two symmetric top eigenstates [cf. Eq. (7)], and
the coefficients cJ,MK (τ) are defined in Eq. (2). Since transitions are
allowed only between states with ∆J = 0, ±1, cyclic connection

between three states must either consist of three states with the same
J or two states with the same J and one state with J ± 1 (see Fig. 1).
We can, furthermore, distinguish between cycles containing states
with M = 0 and cycles where M ≠ 0 for all states, as shown in Fig. 11.
For the latter, two equivalent cycles exist with M > 0 and M < 0 for
all states. Transitions containing states with M = 0 can be regarded
as two equivalent three state cycles, sharing one or two states (those
with M = 0).13 We denote the three transition matrix elements of
a single cycle with H(±)12 , H(±)13 , and H(±)23 , with the subscript (±)
referring the enantiomers. An enantioselective cycle contains one
transition driven by µa, µb, and µc each so that

H(+)cycle = H(+)12 H(+)13 H(+)23 = −H(−)12 H(−)13 H(−)23 = −H(−)cycle. (A5)

To distinguish between cycles with M > 0 and M < 0, we use the
notation H(±)cycle(M > 0) and H(±)cycle(M < 0), with

∣H(±)cycle(M > 0)∣ = ∣H(±)cycle(M < 0)∣. (A6)

Cyclic excitation is enantioselective after averaging over M-states,
i.e., taking into account both equivalent cycles, if

H(±)cycle(M > 0) = +H(±)cycle(M < 0). (A7)

Equivalently, if

H(±)cycle(M > 0) = −H(±)cycle(M < 0), (A8)

averaging over the M-states leads to cancellation of enantioselec-
tive effects. In order to identify enantioselective cycles that survive
M-averaging, we make use of the permutation symmetry of the
Wigner 3j-symbols, which determine the transition matrix elements
(7). For fields with linear polarization along the z-axis (M = 0), the
transition matrix elements are proportional to

FIG. 11. Cyclic excitation schemes in the
presence of the M-degeneracy of the
rotational states including states with M
= 0 (a) or with M ≠ 0 for all states (b).
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(
J′ 1 J′

M′ 0 −M′) = −(
J′ 1 J′

−M′ 0 +M′) (A9)

for transitions with ∆J = 0 and

(
J′ + 1 1 J′

M′ 0 −M′) = (
J′ + 1 1 J′

−M′ 0 +M′) (A10)

for transitions with ∆J = ±1. For fields with linear polarization along
the x- and y-directions, M = ±1 and

(
J′ 1 J′

M′
±1 −(M′

± 1)
) = −(

J′ 1 J′

−M′
∓1 M′

± 1
) (A11)

for ∆J = 0 and

(
J′ + 1 1 J′

M′
±1 −(M′

± 1)
) = (

J′ + 1 1 J′

−M′
∓1 M′

± 1
). (A12)

for ∆J = ±1. Note further that for x- and y-polarized fields, the
interaction Hamiltonians [Eqs. (5) and (6)] can be split into two
parts,

Hα
int = Hα

int(M = 1) + Hα
int(M = −1), (A13)

where α = x, y and M = ±1 refers to the value of M in the Wigner
D-matrices DJ

MK , with

Hx
int(M = 1) = −Hx

int(M = −1) (A14)

and

Hy
int(M = 1) = +Hy

int(M = −1). (A15)
Combining all those symmetry rules, we define

H±
ij (M > 0) = σH±

ij (M < 0) (A16)

and summarize the possible values for σ in Table IV. According
to Eqs. (A5) and (A7), enantioselective cycles which are robust
to M-averaging must contain an even number of transitions with
σ = −1. Recalling that a cycle can consist of either three transitions
with ∆J = 0 or two transitions with ∆J = ±1 and one transition with
∆J = 0, we conclude the following:

a. Cyclic excitation with three fields with the same polarization
(z-polarization) contains one or three transitions with σ = −1
and is, therefore, not enantioselective.

b. Cyclic excitation with two polarization directions can be real-
ized with z-, x-, x-polarized fields or with z-, y-, y-polarized
fields. Combinations of those transitions also lead to one or
three transitions with σ = −1 and are not enantioselective.

TABLE IV. Sign σ for transitions with ∆J = 0 and ∆J = ±1 and interaction with electric
fields of linear polarization along the space-fixed z, x, and y axes.

Polarization ∆J = 0 ∆J = ±1

z −1 +1
x +1 −1
y −1 +1

c. The only way to realize enantioselective excitation that is
robust with respect to M-averaging is by using three fields
with x-, y-, and z-polarization. In this case, we have either
zero or two transitions with σ = −1, and thus, Eq. (A7) is
fulfilled.
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