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ABSTRACT
We report two schemes to generate perfect anisotropy in the photoelectron angular distribution of a randomly oriented ensemble of poly-
atomic molecules. In order to exert full control over the anisotropy of photoelectron emission, we exploit interferences between single-photon
pathways and a manifold of resonantly enhanced two-photon pathways. These are shown to outperform nonsequential (ω, 2ω) bichromatic
phase control for the example of CHFClBr molecules. We are able to optimize pulses that yield anisotropic photoelectron emission thanks to
a very efficient calculation of photoelectron momentum distributions. This is accomplished by combining elements of quantum chemistry,
variational scattering theory, and time-dependent perturbation theory.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5111362., s

I. INTRODUCTION

Modern XUV and x-ray sources are increasing in bright-
ness, time resolution, and phase stability,1,2 and these advances
will lead to the use of light to probe and control the dynamics of
electrons in molecules on their natural time scales. Additionally,
coincidence measurement techniques3–5 and laser alignment6–8 are
improving the ability to recover the molecular frame in XUV and
x-ray experiments. However, at light sources where it is imprac-
tical to perform coincidence experiments, or in systems of grow-
ing complexity where alignment or analysis of the fragmentation
is difficult, complementary methods are required to obtain sensi-
tive, differential information. The anisotropic photoelectron dis-
tributions induced by breaking parity symmetry are one example
of a possible complementary technique.9–24 In the photoelectron
circular dichroism (PECD) technique,9,13,25–33 chiral molecules are
used to break parity symmetry and the differential photoelectron
angular distribution (PAD) for ionization by left and right circu-
larly polarized light is measured. This technique has recently been
extended to time-resolved studies,34,35 illustrating its promise as

a probe of dynamics. However, in the XUV and x-ray regimes,
the techniques for generation and control of highly coherent cir-
cularly polarized light sources are limited. In addition, differen-
tial techniques complementary to coincidence measurements that
can probe the structure and dynamics in achiral molecules are also
desired.

An alternative to PECD is the control of anisotropy in a
single PAD using multiphoton pathways, where the light fields
are used to break parity symmetry.36 Such studies generally focus
on using two-color pulses to manipulate the phase between two
quantum pathways. Two-pathway coherent control of the PAD
in nonsequential bichromatic (ω, 2ω) photoionization has been
reported in atomic systems,16,17,19,37–39 which are invariant under
rotation operations. In particular, a high degree of left-right asym-
metry (≈100%) has been reported in theoretical studies of atomic
hydrogen40 and neon19 by interfering a single-photon ioniza-
tion channel and one resonantly enhanced two-photon ionization
pathway.

In molecular systems, on the other hand, single and multi-
photon ionization processes are highly spherically asymmetric.41–44
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Consequently, frame-rotation effects can be observed in bichromatic
coherent control of asymmetries in the molecular PAD.15,22,45 In this
context, a high degree of anisotropy (100%) has been measured in
the phase-controlled bichromatic ionization of aligned molecular
NO15 and it has been calculated with nuclear motion for aligned
H+

2 .14,20 The sensitivity of the PAD to the field helicity may also be
exploited for the purpose of controlling the asymmetry in the PAD.
For instance, a high-degree of asymmetry from (prealigned) single-
electron H+

2 was reported in phase-controlled bichromatic ioniza-
tion using co- and counter-rotating field polarization components
of attosecond UV fields.22

While the coherent control calculations in Refs. 14, 20, and
22 assume molecular alignment, the experimental conditions might
be such that the initial orientation of the target cannot be unam-
biguously defined. Consequently, an equiprobable orientation dis-
tribution is often assumed by integrating over all possible molec-
ular orientations with a homogeneous probability distribution.46–48

Without laser alignment techniques, the efficiency of two-color con-
trol of anisotropy may be obscured by orientation averaging or it
may be completely suppressed. Although the orientation averaging
approach has become the gold standard for theoretical studies on
chiro-optical discrimination in rotationally isotropic media,23,24,49–51

the question of whether the anisotropy in the PAD persists after the
orientation averaging in linearly polarized bichromatic ionization
remains yet to be answered.

Polarization-shaped pulses, wherein the instantaneous polar-
ization52 or helicity changes dynamically over time,53–58 offer
another degree of freedom for control.55,59,60 However, the efficiency
of shaping the polarization of the driving field in the specific context
of resonantly enhanced multiphoton ionization (REMPI) to achieve
perfect anisotropy in a randomly ensemble of molecules is, to the
best of our knowledge, not known. In particular, whether nonse-
quential bichromatic (ω, 2ω) phase control36 or sequential wave
packet evolution-based pump-probe61 schemes suffice to achieve
perfect anisotropy in randomly oriented molecules or whether a
more general control scheme based on coherent control52 is needed
remains an open question.

In order to answer these questions, we first show that the
anisotropy in linearly polarized bichromatic ionization does persist
after orientation averaging. As a second step, we identify the limita-
tions of this approach to achieve perfect anisotropy in a randomly
oriented ensemble of CHFClBr molecules. We then demonstrate
how to achieve perfect anisotropy by exploiting quantum path-
way interferences between single-photon ionization pathways and
a manifold of REMPI paths driven by linearly polarized multicolor
fields.

Additionally, we investigate the influence of the polarization
state (linear, circular left, and right) of the driving field and extend
our analysis to the case of polarization shaped pulses. We opti-
mize the time-dependence of the polarization state by combining
fields with simultaneous counter-rotating components,59,60 i.e., by
combining multicolor fields circularly polarized along left and right
polarization directions. We show that quantum interferences driven
by polarization-shaped fields results in perfect anisotropy in the
orientation-averaged PAD. We find that the individual contribution
of each circularly polarized component induces very modest asym-
metry, whereas a combination of components leads to a much larger
effect.

We are able to find the optimal REMPI pathways using quan-
tum optimal control theory.62 This requires a method for calculating
the photoionization dynamics of molecules that can be repeated for
a number of different laser pulses efficiently. We use a combina-
tion of quantum chemistry to describe the bound states, variational
scattering theory to calculate dipole matrix elements between bound
states and photoionized states, and time-dependent perturbation
theory to describe the dynamics. We have implemented this tech-
nique in Ref. 24 and have extended it here to pulses with arbitrary
polarization state.

This work is organized as follows: In Sec. II, we present
the details of the derivation of the orientation-averaged PAD.
In Sec. III A, we construct a control scheme based on multiple
REMPI pathways and compare its performance in maximizing the
anisotropy of the PADs of a randomly oriented ensemble of CHBr-
ClF molecules against that of the two-color coherent control driven
by bichromatic (ω, 2ω) pulses. Finally, we extend our findings to
the case of polarization-shaped pulses in Sec. III B and Sec. IV
concludes.

II. THEORETICAL FRAMEWORK
A. Laboratory-frame orientation averaged PAD

We first detail our methodology to calculate the orientation
averaged photoelectron momentum distribution in the laboratory
frame of reference, which is formulated in the strict electric dipole
approximation. In what follows, primed and unprimed bold sym-
bols are used to define vector quantities in the fixed laboratory (R′)
and molecular (R) frames of reference, respectively, with R being
rotated relative to R′ by Euler angles γR = (α,β, γ).63 Neglect-
ing relativistic effects and assuming fixed nuclei during the inter-
action, the Schrödinger equation for the many electron system in R
reads

i
∂

∂ t
∣ΨN
(t; γR)⟩ = [Ĥ0 − E(t; γR) ⋅ r̂]∣ΨN

(t; γR)⟩, (1)

where Ĥ0 = Ĥ0 +Ĥ1 refers to field-free Hamiltonian, with Ĥ0 and Ĥ1
being the mean-field Fock operator and the residual Coulomb inter-
action,64 respectively. Finally, E(t; γR) is the electric field in R. The
polarization components of the driven field are known in the labo-
ratory frame. It can thus be defined in terms of the (fixed) spherical
unit vectors, e′μ0 , with μ0 = ±1, 0,63 relative to R′, namely,

E′(t) = ∑
μ0=0,±1

E ′μ0(t) e
∗′
μ0 , (2a)

where (∗) denotes the complex conjugation and E ′μ0(t) are the polar-
ization unit components of the field in R′. The Cartesian compo-
nents of the spherical unit vectors are defined in the usual man-
ner and given in Eq. (A1c) in Appendix A. Upon projection of e∗′μ0

into R, as detailed in Appendix A, the molecular-frame orientation-
dependent dipole interaction reads

E(t; γR) ⋅ r̂ =∑
μ0

(−1)μ0E ′μ0(t)∑
μ
D(1)μ,−μ0

(γR) r̂μ, (2b)

where D(1)μ,μ0(γR) are the elements of the Wigner rotation matrix.63,65
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Accounting for one-particle one-hole excitations only, the
many-body wave function is described by the TDCIS ansatz66

∣ΨN
(t; γR)⟩ = α0(t; γR) e−iεot ∣Φ0⟩ + ∑

i,a
αai (t; γR) e

−iεai t ∣Φa
i ⟩

+∑
i
∫ dkαki (t; γR) e

−iεki t ∣Φk
i ⟩, (3)

where α0(t; γR), αai (t; γR), and αki (t; γR) are time-dependent
coefficients and |Φ0⟩ refers to the Hartree-Fock ground state.
∣Φa

i ⟩ = ĉ†a ĉi∣Φ0⟩ describes the one-particle one-hole excitation from

an initially occupied orbital φi to an initially unoccupied Hartree-
Fock orbital φa with orbital energy 𝜖a, whereas ∣Φk

i ⟩ describes the
excitation to scattering continuum state φ−k with energy |k|2/2. We
denote the Fock energy of a single determinant as ε, e.g., ε0 = ∑i𝜖i.
For the calculations presented here, we further restrict the con-
figuration space in Eq. (3) to excitations from the highest occu-
pied molecular orbital (HOMO, labeled i0) only. The Hartree-Fock
orbitals were obtained using the MOLPRO67,68 program package at the
aug-cc-pVDZ basis set69 level.

Neglecting the residual Coulomb interaction, the coupled equa-
tions for the expansion coefficients read

α̇0(t; γR) = i∑
μ0 ,μ
(−1)μ0D(1)μ,−μ0

(γR)E ′μ0(t)[∑
i
(ri,i ⋅ eμ)α0(t; γR) + ∑

i,a
(ri,a ⋅ eμ)ei(𝜖i−𝜖a)t αai (t; γR) + ∑

i
∫ dk (ri,k ⋅ eμ)ei(𝜖i−𝜖k)t αki (t; γR)], (4a)

α̇ai (t; γR) = i∑
μ0 ,μ
(−1)μ0D(1)μ,−μ0

(γR)E ′μ0(t)[(ra,i ⋅ eμ)ei(𝜖a−𝜖i)tα0(t; γR) + ∑
b≠a
(ra,b ⋅ eμ)e

i(𝜖a−𝜖b)t αbi (t; γR) −∑
j≠i
(ri,j ⋅ eμ)ei(𝜖j−𝜖i)t αaj (t; γR)

+
⎛

⎝
(∑

j
rj,j − ri,i + ra,a) ⋅ eμ

⎞

⎠
αai (t; γR) + ∫ dk(ra,k ⋅ eμ)ei(𝜖a−𝜖k)t αki (t; γR)], (4b)

α̇ki (t; γR) = i∑
μ0 ,μ
(−1)μ0D(1)μ,−μ0

(γR)E ′μ0(t)[(rk,i ⋅ eμ)ei(𝜖k−𝜖i)tα0(t; γR) + ∑
b
(rk,b ⋅ eμ)e

−i(𝜖b−𝜖k)t αbi (t; γR) −∑
j
(ri,j ⋅ eμ)ei(𝜖j−𝜖i)t αkj (t; γR)

+
⎛

⎝
(∑

j
rj,j − ri,i + rk,k) ⋅ eμ

⎞

⎠
αki (t; γR) + ∫

k′≠k
dk′(rkk′ ⋅ eμ)e

i(𝜖k−𝜖k′ )t αk
′

i (t; γR)], (4c)

where rp,q ⋅ eμ = ⟨φp∣r̂μ∣φq⟩. The coefficients αki (t; γR) describe the
transition amplitude from an initially occupied orbital i to a con-
tinuum state with energy εk = ε0 − 𝜖i + |k|2/2 in the direction k/|k|
with respect to the molecular frame of reference, R. Since this state
is not an eigenstate of the Fock operator,70 it is an assumption that it
can be written as such in Eq. (4c). Similarly, αk

′

i (t; γR) describe this
transition in the laboratory frame, R′.

To model an ensemble of randomly oriented molecules, we
average over all Euler angles γR. The orientation-averaged photo-
electron momentum distribution is obtained upon integration over
γR and incoherent summation over the initially occupied contribut-
ing orbitals i in the Hartree-Fock ground state,

d2σ
d𝜖k dΩk′

= ∑
i∈{occ}

∫ ∣α
k′
i (t; γR)∣

2 d3γR, (5)

for t → ∞ and with k′ denoting the momentum measured in
the laboratory frame. We illustrate how to transform the TDCIS
coefficients into the laboratory frame in Sec. II C.

B. Electron dynamics: Time-dependent perturbative
treatment

The photoionization process is captured by the coefficients
αk
′

i (t; γR) and requires an accurate description of the scatter-
ing components of the wave function in Eq. (3). For a many-
electron system with no symmetry, exact numerical simulation
of the electron dynamics represents a formidable computational

challenge with prohibitive computational cost. We circumvent this
by solving Eq. (4) perturbatively. A second-order approximation
is suitable to manipulate quantum interferences between conven-
tional opposite-parity pathways to control the anisotropy of pho-
toelectron emission.16–19 It can also describe the necessary dynam-
ics of same-parity (two-photon) pathways.24 Equation (5) simplifies
to

d2σ
d𝜖k dΩk′

≈ ∫ ∣α
k′ (1)
i0 (t; γR) + αk

′ (2)
i0 (t; γR)∣

2d3γR (6)

for t → ∞ and with αk
′ (1,2)
i0 (t; γR), the first (second) order correc-

tion. The differential cross section in Eq. (6) can be written in terms
of the associated Legendre polynomials PM

L (⋅),

d2σ
d𝜖k dΩk′

=∑
L,M

βL,M(𝜖k)P
M
L (cos θk′) e

iMϕk′ . (7)

Following Ref. 24, we write the photoelectron momentum dis-
tribution defined in Eq. (6) in terms of the individual contribu-
tions from one- and two-photon ionization processes and their
interference,

d2σ
d𝜖k dΩk′

=
d2σ1ph

d𝜖k dΩk′
+

d2σ2ph

d𝜖k dΩk′
+

d2σint

d𝜖k dΩk′
. (8)

The contribution from one- and two-photon processes defined by
the first two terms in the rhs in Eq. (8) reads (for n = 1, 2)

J. Chem. Phys. 151, 074106 (2019); doi: 10.1063/1.5111362 151, 074106-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

d2σnph

d𝜖k dΩk′
= ∫ α(n)k

′

i0 (t; γR)α∗(n)k
′

i0 (t; γR)d3γR

=∑
L,M

βnphL,M(𝜖k)P
M
L (cos θk′) e

iMϕk′ . (9)

The expansion coefficients β1ph(2ph)
L,M (𝜖k) correspond to the orientation-

averaged anisotropy parameters71 associated with the first (second)
order correction. Defining the complex-valued term,

βintL,M = ∫ α(1)k
′

i0 (γR)α∗(2)k
′

i0 (γR)d3γR, (10)

the contribution from the interfering pathways to the photoelectron
spectrum reads

d2σint

d𝜖k dΩk′
= ∫ (α

(1)k′
i0 (t; γR)α∗(2)k

′

i0 (t; γR) + c.c.)d3γR

=∑
L,M
(βintL,M(𝜖k) e

iMϕk′ + c.c.)PM
L (cos θk′). (11)

First- (αk
′ (1)
i0 ) and second-order (αk

′ (2)
i0 ) terms describe direct

single-photon photoionization from φi0 to φ−k′ and resonant two-
photon photoionization from φi0 to φ−k′ via different unoccupied
orbitals φa, respectively.

C. Variational scattering states
The scattering states required for the evaluation of the dipole

matrix elements are obtained from variational scattering theory.72–74

Assuming no relaxation of the contributing orbitals, the total many-
body wave function Φk

i (r1, . . . , rN) can be defined, for any i ∈ {occ},
as an antisymmetrized product,

Φk
i (r1, . . . rN) = AN[φ−k (rN);Φi(r1, . . . , rN−1)], (12a)

where φ−k (rN) corresponds to the (molecular-frame) scattering com-
ponent of the wave function and Φi(r1, . . ., rN−1) corresponds to
the remaining N − 1 electron final state after ionization. We obtain
φ−k (r) by solving the scattering problem

[−
∇

2

2
−

1
r

+ V̂ −
k2

2
]φ−k (r) = 0, (12b)

with scattering boundary conditions75,76 for the outgoing wave
φ−k (r) at large distances r→∞, and where V̂(r) describes the short-
range part of the electron-ion interaction. Equation (12b) and its
dipole matrix elements are computed using a locally modified ver-
sion of the ePolyScat program package.72–74 The bound unoccu-
pied Hartree-Fock orbitals that are kept in the time-dependent per-
turbation expansion are chosen to be those that are orthogonal to the
scattering orbitals. In this manner, Gaussian orbitals that attempt to
represent continuum states are discarded. In the molecular frame,
the direction of photoelectron emission is obtained by expanding
the scattering wave function into spherical harmonics,

φ−k (r) =∑
ℓ,m

φ−k,ℓ,m(r)Y
ℓ∗

m (θk,ϕk) , (13a)

where θk and ϕk correspond to the polar and azimuthal angles of
photoelectron emission in the molecular frame, respectively. In the
laboratory frame, this direction is defined by the angles (θk ′ , ϕk ′ ),
which is obtained by projecting Eq. (13a) into the laboratory frame.
In this frame, the scattering states take the form,

φ−k′(r) = ∑
ℓ,m,m′

φ−k,ℓ,m(r)D
(ℓ)†
m,m′(γR)Y

ℓ∗

m′ (θk′ ,ϕk′). (13b)

Applying first-order time-dependent perturbation theory to Eq. (4a)
and evaluating the individual matrix elements of Eq. (13a) result in

αk
′(1)
i0 (t; γR) = i∑

μ0 ,μ
(−1)μ0

∑
ℓ,m,m′

D(1)μ,−μ0
(γR)D(ℓ)†m′ ,m(γR)(rk,ℓ,m;i0 ⋅ eμ)

×Yℓ
m′(θk′ ,ϕk′)∫

t

−∞
ei(𝜖k−𝜖i0 )E ′μ0(t

′
)dt′. (14)

The dipole matrix element rk,ℓ,m;i0 = ⟨φ
−
k,ℓ,m∣r̂∣φi0⟩ now displays

indices for the partial wave quantum numbers ℓ and m of the con-
tinuum orbital and the ionized orbital φi0 , respectively. Similarly, the
expression for the second order correction of the scattering compo-
nent along the direction of photoelectron emission (θk ′ , ϕk ′ ) relative
to the laboratory frame becomes

αk
′(2)
i0 (t; γR) = −∑

μ0 ,ν0

(−1)μ0+ν0
∑
μ,ν

D(1)μ,−μ0
(γR)D(1)ν,−ν0

(γR) ∑
ℓ,m,m′

D(ℓ)†m′ ,m(γR)Y
ℓ
m′(θk′ ,ϕk′)[(rk,ℓ,m;i0 ⋅ eμ)∑

i
(ri,i ⋅ eν) ∫

t

−∞
e−i(𝜖i0−𝜖k)t

′

E ′μ0(t
′
)

× ∫

t′

−∞
E ′ν0(t

′′
)dt′′ dt′ + ∑

b
(rk,ℓ,m;b ⋅ eμ)(rb,i0 ⋅ eν)∫

t

−∞
e−i(𝜖b−𝜖k)t

′

E ′μ0(t
′
) ∫

t′

−∞
e−i(𝜖i0−𝜖b)E ′ν0(t

′′
)dt′′ dt′]. (15)

In Eq. (15), we further assume that the last two terms corresponding
to Eq. (4c) can be neglected, which is justified by the absence of IR
and high-energy XUV photon energies—that are required to make
the corresponding time integrals nonzero—in all pulses considered
here.

D. Laboratory-frame orientation-averaged anisotropy
parameters

The laboratory-frame orientation-averaged anisotropy param-
eters associated with one- and two-photon ionization pathways and
their interference defined in Eqs. (9) and (10) can be obtained using
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the expressions defined in Eqs. (14) and (15). Derivation of the
laboratory-frame anisotropy parameters involves cumbersome but
straightforward angular momentum algebra. We give explicit details
of the derivations in Appendix B. Here, we provide only their ellip-
ticity dependence in the view of listing a few selection rules and
requirements for nonvanishing asymmetry in the resulting angular
distribution when averaging over all orientations.

The anisotropy parameters β1ph
L,M(𝜖k), associated with the one-

photon ionization pathway (cf. Appendix B), can be expressed as

β1ph
L,M(𝜖k) = ∑

μ0 ,μ′
c(1ph)μ0 ,μ′ (L)(

1 1 L
−μ0 μ′0 −M

). (16a)

The exact form for the coefficients c(1ph)μ0 ,μ′ (L) is given in Appendix B1.
In particular for linearly polarized fields, i.e., μ0 = μ′0 = 0, the
Wigner 3j-symbol in Eq. (16a) vanishes for L odd. Consequently,
first order processes do not contribute to the asymmetry. For circu-
larly polarized light, however, μ0 and μ′0 can take values ±1, which
would lead to nonvanishing contribution for L = 1 and M = 0 pro-
vided that cancelations upon summation over the bound-continuum
dipole matrix elements with opposite sign “m” magnetic quantum
number, here absorbed in the coefficients c(1ph)μ0 ,μ′ , do not occur, i.e.,
for chiral molecules.46 The anisotropy parameters associated with
second-order processes read

β2ph
L,M(𝜖k) = ∑

μ0 ,ν0
μ′0 ,ν′0
Q1 ,Q2

c(2ph)−μ0 ,ν0 ,μ′0 ,ν′0 ,Q1 ,Q2
(L)( 1 1 Q1

−μ0 −ν0 μ0 + ν0
)

× (
1 1 Q2
−μ′0 −ν′0 μ′0 + ν′0

)(
Q1 Q2 L

−μ0 − ν0 μ′0 + ν′0 −M
).

(16b)

Derivation and explicit form for the coefficients β2ph
L,M(𝜖k) are

detailed in Appendix B2. The selection rules for two-photon process
are analogous to that described for the one-photon counterpart. In
particular, the third Wigner symbol in Eq. (16b) vanishes for L odd
for linearly polarized fields as the first and second Wigner symbols
vanish for odd Q1 and Q2, respectively.

Finally, in Appendix B3, we show that the laboratory-frame
orientation-averaged anisotropy parameter associated with the
interference between both photoionization pathways, defined in
Eq. (10), has the following structure:

βintL,M(𝜖k) = ∑
Q1 ,Q2

∑
μ0 ,μ′0

∑
ν′0

c(int)μ0 ,μ′0 ,ν′0 ,Q1 ,Q2
(L)

× (
1 1 Q2
−μ′0 −ν′0 μ′0 + ν′0

)(
1 Q2 L
−μ0 μ′0 + ν′0 −M

). (16c)

In contrast to Eqs. (16a) and (16b), the interference between one-
and two-photon ionization pathways may lead to nonvanishing
anisotropy parameters for L odd when the driving field is linearly
polarized. This feature persists even after the orientation averaging.
In fact, the second Wigner symbol in Eq. (16c) does not vanish for
L odd and Q2 even, for M = 0, when μ0 = μ′0 = ν′0 = 0. Even values
for Q2 are allowed by the first Wigner 3j- symbol. In the following,

we describe our optimization approach to manipulate the anisotropy
parameters using different photoionization schemes and polariza-
tion configurations in the quest to maximize the anisotropy in the
photoelectron emission.

E. Control of the photoionization dynamics
In order to control the photoionization dynamics, we consider

coherent control of wave packet interference mediated by linearly
polarized or polarization shaped pulses. In the first instance, the
pulse is assumed to be linearly polarized—parallel to the e′z = e′0
axis—and defined as a coherent superposition of N subpulses,

E(t) ⋅ e′0 = E ′0(t) =
N

∑
j=1

E ′0,j(t), (17a)

where E ′0,j(t) is the subpulse carrying the frequency ωj and parame-
terized according to

E ′j,0(t) = hj(t − τj) cos Ωj(t), (17b)

with Ωj(t) = ωj(t − τj) + ϕj and where hj(⋅) is a Gaussian envelope of
the form

hj(t − τj) = E0,j × e−(t−τj)
2/2σj . (17c)

The pulse parameters E0,j ωj, and ϕj define the peak field amplitude,
central frequency, and carrier envelope phase of the jth subpulse
with full width at half maximum FWHM = 2

√
2 ln 2σj whose peak

intensity is delayed by τj with respect to t = 0.
For polarization-shaped fields, we consider pulses with circu-

lar right (CRP) and left (CLP) rotating polarization directions and
define the driving field as a linear combination thereof,

E′(t) = E′R(t) + E′L(t). (18)

The CRP and CLP components are defined from the point of view
of the emitter and parameterized following the guidelines detailed in
Appendix C.

For further inspection of the electron dynamics driven by
polarization shaped pulses, we define ζ j(t) as the helicity of the sub-
pulse carrying the frequency ωj, which we write in terms of the
differential quantity59,77

ζj(t) =
∣E′R,j(t)∣ − ∣E′L,j(t)∣
∣E′R,j(t)∣ + ∣E′L,j(t)∣

, (19)

with E′R,j(t) (E′L,j(t)) being the portion of the field with CRP (CLP)
carrying the frequency component ωj.

The photoelectron observable I(𝜖, θk′) is an energy- and angle-
resolved measurable quantity proportional to a photoelectron prob-
ability distribution defined in Eq. (8) and given by24

I(𝜖, θk′)∝
d2σ

d𝜖k dΩk′
∣

ϕk′=π/2
. (20)

We define the intensity-normalized anisotropy of the PAD as

A(𝜖k, θk′) =
I(𝜖k, θk′) − I(𝜖k,π − θk′)

I0
, (21)
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where θk ′ is defined by the photoelectron direction of emission with
respect to the light propagation direction for circularly polarized
light or with respect to the light polarization direction for linearly
polarized fields and where I0 corresponds to the photoelectron peak
intensity

I0 = max
𝜖k ,θk′

I(𝜖k, θk′). (22)

Next, we define the optimization problem by

arg max
E′(t)∈U

{max
𝜖k ,θk′
∣A(𝜖k, θk′)∣}, (23)

where U is the subset of feasible solutions, i.e., constraints that the
parameters defining each component of the electric field E′(t) must
fulfill such as maximal peak intensity, maximal duration (FWHM),
allowed frequency components, or maximal time-delay between two
distinct frequency components. The functional form of the driving
field is parameterized according to Eq. (17) for linearly polarized
fields and using Eqs. (C1c) and (C1d) for fields with time depen-
dent helicity. These parameters are optimized using a gradient-free
sequential update-based method detailed in Ref. 78 to maximize
the anisotropy of photoelectron emission probability as defined in
Eq. (23).

Throughout the text, the term anisotropy will be used to refer to
the quantity defined in Eq. (21), which will be expressed in percent-
age (of I0). Perfect anisotropy is thus only obtained when, for some
optimal kinetic energy 𝜖∗k and emission angle θ∗k′ , the anisotropic
component of the photoelectron signal corresponds to the peak
intensity I0.

III. NUMERICAL RESULTS
A. Photoelectron anisotropy with linearly
polarized fields

We start by considering nonsequential phase-controlled
bichromatic (ω, 2ω) ionization from a randomly oriented ensemble
of CHBrClF molecules driven by linearly polarized fields, with polar-
ization direction parallel to the z′-axis. Figure 1 shows the left-right
anisotropy of photoelectron emission as a function of the photon

FIG. 1. Left-right asymmetry in the PAD as a function of the photon energy and
phase difference between the fundamental and second harmonic of a linearly
polarized bichromatic (ω, 2ω) pulse.

energy (second harmonic) and relative phase between both colors.
This corresponds to the typical scenario discussed in Refs. 16, 17,
19, and 37–40. The asymmetries shown in Fig. 1 were obtained by
considering a 1 : 2 ratio of fundamental to second harmonic, with
I0 = 1011 W/cm2 for the fundamental. A pulse with a width of
23 fs was used for both colors. This ratio leads to comparable ion-
ization yields from both pathways, inducing a noticeable break of
symmetry in the PAD, which is independent of the chiral nature of
the target16,17,36,40 as the field is linearly polarized. The anisotropy
originates from a coherent wave packet interference between single-
and two-photon photoionization pathways. Periodic oscillations of
the anisotropy as a function of the relative phase can be observed,
confirming the coherent nature of the control mechanism. Over-
all, the left-right anisotropy exhibits moderate values not exceeding
±20% for the chosen field parameters. In what follows, we will dis-
cuss the efficiency and limitations of bichromatic coherent control
for achieving perfect anisotropy in randomly oriented photoionized
molecules.

To answer the question whether perfect anisotropy (100%) in
a randomly oriented sample of molecules is achievable by coherent
control using suitably shaped ionizing pulses beyond the nonse-
quential bichromatic case, we optimize multicolor fields, defined in
Eq. (17), first constraining the polarization state to linear and the
maximal peak intensity to not exceed 1.0 × 1012 W/cm2. This inten-
sity threshold has been found to be an appropriate upper limit for
the validity of the perturbation treatment in bichromatic photoion-
ization studies.16 Figure 2(a) displays the left-right asymmetry in the
PAD obtained upon optimization of the linearly polarized multi-
color field. The corresponding PAD, shown in Fig. 2(b), exhibits per-
fect left-right anisotropy (100%) exactly at a photoelectron kinetic
energy of 10 eV with maximal probability of photoelectron emis-
sion parallel to the field polarization axis and minimal probabil-
ity of emission antiparallel to this axis. In order to investigate the
coherent mechanism leading to the anisotropy of 100% displayed
in Fig. 2(a), we analyze the optimized frequency components and
spectral phases in Fig. 3. In detail, the photon energy distributions
shown in Fig. 3 at 7.1 eV and 14.8 eV ensure resonant photoioniza-
tion of the HOMO—through the LUMO—to a final photoelectron
kinetic energy of 10 eV. The lowest photon energy of 7.1 eV corre-
sponds to the resonant transition energy between the HOMO and
LUMO, with orbital energies corresponding, at the aug-cc-pVDZ
level, to −11.878 eV and −4.803 eV, respectively. Interestingly, the
double-peaked photon energy distribution shown in Fig. 3 at 10.8 eV
and 11.1 eV has a fourfold purpose with nested contributions to the
excitation-ionization steps: It contains

(a) the required photon energy of 10.97 eV (first peak) to excite
the transition HOMO→ LUMO + 1,

(b) the photon energy of 11.063 eV (second peak) to resonantly
excite the transition HOMO→ LUMO + 2,

(c) the appropriate photon energy of 10.97 eV (second peak) to
ionize the LUMO + 1 to a photoelectron kinetic energy of
exactly 10 eV, and

(d) within the spectral distribution around 10.8 eV, the photon
energy of 10.814 eV to ionize the LUMO + 2 (first peak) also
at 10 eV.

Finally, the spectrum of the optimized field also contains the photon
energy of 21.875 eV—at an intensity of 4.11 × 109 W/cm2—which is
required to ionize the HOMO at a photoelectron kinetic energy of
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FIG. 2. (a) Optimized anisotropy in the PAD corresponding to the multiple-REMPI scheme, achieving 100% of asymmetry at a photoelectron kinetic energy of 10 eV and
angles θk′ = 180○ and θk′ = 0○. (b) Corresponding photoelectron momentum distribution with zero probability of photoelectron emission at θk′ = 180○ and maximal ionization
probability at θk′ = 0○. (c) Schematic energy representation of the photoionization process leading to the observed asymmetry.

10 eV. Simultaneous removal of the frequency components around
(i) 7.1 eV and 10.8–11.1 eV in Fig. 3 or (ii) those around 10.8–11.1 eV
and 14.8 eV, or (iii) that centered at 21.9 eV alone results in zero left-
right asymmetry. In cases (i) and (ii), the required photon energies
to induce resonantly enhanced two-photon ionization at a photo-
electron energy of 10 eV probing the first three lowest unoccupied
molecular orbitals are inaccessible. In case (iii), these even-parity
photoionization pathways are enabled but the odd-parity pathway
is disabled. For linearly polarized light, interferences between same-
parity photoionization pathways do not break the asymmetry as
discussed in Sec. II D. Consequently, no anisotropy is observed
in (iii). Conversely, removing only the photon energies of 10.8–
11.1 eV, which induce resonant ionization probing the LUMO + 1
and LUMO + 2, or those corresponding to 7.1 eV and 14.8 eV, which
promote resonant ionization through the LUMO, results in nonva-
nishing anisotropy at 10 eV. These observations suggest a control
mechanism based on coherent wave packet interferences mediated
by one-photon ionization and a manifold of two-photon ionization

FIG. 3. Optimized electric field spectrum (blue) and spectral phase (dashed red
line) leading to the left-right anisotropy of photoelectron emission of 100% shown
in Fig. 2. The optimal field contains the required photon energies to generate two-
photon (7.1–14.8 eV) and single-photon (21.9 eV) pathways that constructively
interfere at 10 eV, as schematized in Fig. 2(c): The low frequency component at
7.1 eV in resonantly excites the LUMO. The peaks at 10.8 and 11.1 eV—within their
bandwidth—resonantly excite the LUMO + j orbitals, for j > 1. The energy required
for the ionization of the resonantly exited LUMOs at a photoelectron kinetic energy
of 10 eV is available within the spectral bandwidth around the peak at 14.8 eV.
The 21.9 eV frequency is responsible for single-photon ionization of the LUMO at
a photoelectron kinetic energy of 10 eV.

pathways. Furthermore, altering the spectral phase shown in Fig. 3,
while keeping the power spectrum unchanged, dramatically alters
the resulting asymmetry, leading to significantly smaller magnitudes
(below 10%, depending on the spectral phase modifications), con-
firming the coherent nature of the control mechanism. We therefore
conclude that the enhancement mechanism is mediated by construc-
tive quantum interferences between the different portions of the
coherent photoelectron wave packet resulting from the odd-parity
single-photon ionization channel and a manifold of even-parity res-
onant ionization pathways involving the first three molecular excited
states.

Asymmetries in the PADs are well-known to be sensitive to the
photoelectron kinetic energy see, e.g., Refs. 19 and 40 for bichro-
matic ionization in linearly polarized fields. In order to disentangle
the contributions from the final continuum state (here defined by
the continuum state with energy 10 eV at which the multiple-REMPI
achieves perfect anisotropy) and those originating from the ioniza-
tion pathways (defined by the multiple-REMPI paths), we optimize
linearly polarized fields to maximize the left-right asymmetry at the
same photoelectron kinetic energy of 10 eV, but constraining the
optimized pulse spectrum to bichromatic (ω, 2ω) components. This
corresponds to (fixed) photon energies carried by the fundamen-
tal and second harmonic of ω = 10.939 eV and 2ω = 21.878 eV,
respectively. It is worth noting that both control approaches, namely,
multiple-REMPI and bichromatic schemes, share the photon energy
of 2ω = 21.878 eV and both being optimized at the same photoelec-
tron kinetic energy, any difference in the outcome is thus solely due
to an intermediate-pathway effect.

Figure 4(a) shows the maximal achievable anisotropy at a pho-
toelectron energy of 10 eV obtained with the linearly polarized opti-
mized bichromatic (ω, 2ω) pulse. With a maximal left-right asym-
metry of 52% at 10 eV, the performance of the bichromatic (ω, 2ω)
ionization scheme is significantly inferior to the multiple-REMPI
scheme. The smaller asymmetry obtained in the bichromatic sce-
nario can be explained by the fact that resonant excitation driven
by the fundamental is not fully achieved. In fact, the two-photon
pathway is in resonance at −0.939 eV, which lies between the orbital
energies of LUMO + 1 (−0.974 eV) and LUMO + 2 (−0.8136 eV), as
depicted in Fig. 4(b).

Therefore, for an objective comparison between the bichro-
matic and multiple-REMPI approaches, we further optimize
linearly polarized fields using both schemes but within a range of
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FIG. 4. (a) For a photoelectron kinetic energy of 10 eV, a maximal anisotropy of
52% is obtained with the optimized bichromatic (ω, 2ω), in contrast to 100% for
the multiple-REMPI scheme shown in Fig. 2. (b) Photoionization scheme for the
optimized bichromatic (ω, 2ω) pulse.

different photoelectron kinetic energies. Figure 5 displays the
maximal achievable left-right asymmetry obtained with both, the
multiple-REMPI (solid-blue line) and the bichromatic (ω, 2ω)
(dotted-dashed red line) schemes. The oscillations in Fig. 5 illus-
trate the sensitivity of the anisotropy to the final continuum state
for the different control schemes. Nevertheless, and with no excep-
tion, the multiple-REMPI scheme systematically outperforms the
bichromatic (ω, 2ω) counterpart.

It is worth noting that decreasing the number of (resonant)
interfering paths results in an overall decrease in the left-right asym-
metry. For instance, the 3-color (LUMO) case shown in Fig. 5
(dashed-green line) corresponds to a particular case of the multiple-
REMPI scheme where only a single even-parity two-photon path-
way, in resonance with the LUMO, interferes with the odd-parity
ionization channel.

B. Optimal control in multicolor polarization-shaped
fields

Extension of the multiple-REMPI scheme to circularly polar-
ized fields provides an additional degree of freedom for the

FIG. 5. Maximal achievable anisotropy for different photoionization schemes: lin-
early polarized bichromatic (ω, 2ω) pulse (dotted-dashed red line), multiple-REMPI
(filled blue line), and 3-color (LUMO) case (dashed-green) discussed in the text.

possible interfering pathways. Here, quantum interferences between
opposite-parity and even-parity two-photon ionization paths can be
exploited to exert control over the forward-backward asymmetry
in the photoelectron emission probability.24 We find that fixing the
field polarization state to either left- or right-circular for all optical
pathways leads to a maximal forward-backward asymmetry of 68%
at 6.5 eV and 64% at 10 eV. These results clearly indicate that the
orientation-averaged asymmetry in PAD is sensitive to the details of
the polarization of the driven field.

It is nevertheless possible to retrieve perfect forward/backward
anisotropy, i.e., 100%, in the direction of photoelectron emission
by shaping the polarization state of the driving field in time. In
other words, we render the helicity of the field polarization time-
dependent. This can be achieved by introducing different pulse
durations, phases, and time delays to the pulses with projection in
counter-rotating directions.59

We test this approach to maximize the forward-backward pho-
toelectron emission probability at a photoelectron kinetic energy
of 10 eV. This energy corresponds to the photoelectron kinetic
energy at which a perfect anisotropy of 100% was obtained using the
optimized linearly polarized pulse (cf. Fig. 2). Figure 6(a) displays
the resulting asymmetric component of the PAD. The optimized
forward-backward anisotropy amounts to 100% at the kinetic pho-
toelectron energy 𝜖∗k of 10 eV along the direction θ∗k′ = 135○. The
optimized momentum distribution shown in Fig. 6(b) exhibits van-
ishing emission probability in the direction defined by θk ′ = 45○

and maximal photoemission probability at 135○ for 10 eV. Here,
θk ′ corresponds to the polar angle with respect to the light propa-
gation direction—assumed to define the z′-axis—and correspond-
ing to θk ′ = 0○. The optimized field with time-dependent helicity
is shown in Figs. 7(a) and 7(b), showing the optimized circularly
right and left rotating components, respectively. The multicolor field
with time-dependent helicity is able to reach a forward-backward
asymmetry of 100%, in contrast to 64% reached by optimizing
the field with fixed (left or right) helicity, i.e., time-independent
helicity.

In order to quantify the main contribution to the enhance-
ment, we further inspect the spectral components for each

FIG. 6. (a) Asymmetric component in the forward-backward photoelectron emis-
sion probability obtained with the optimized multicolor field with time-dependent
helicity. The field has been optimized to maximize the anisotropy of photoelectron
emission at a photoelectron kinetic energy of 10 eV. Corresponding photoelectron
momentum distribution shown in (b).
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FIG. 7. Projection of the circularly right [(a) and (c)] and left [(b) and (d)] rotating
components of the optimized field into the x′- axis. A time delay τ ≈ 24 fs between
both counter-rotating components is observed in the temporal [(a) and (b), dashed
black lines] as well as in the frequency domain [cf. (c) and (d), dashed green lines].
However, within a given rotating direction, left or right, all frequency components
are perfectly synchronized.

counter-rotating component. Figures 7(c) and 7(d) display the pro-
jections onto the x′- axis of the time-frequency distribution for
the circularly right (c) and left (d) rotating fields. By compar-
ing Figs. 7(c) and 7(d), it is apparent that a non-negligible time
delay separates the time-frequency distribution along both counter-
rotating directions, which could also already be noted in Figs. 7(a)
and 7(b). Interestingly, for a given rotation direction—left or right—
all frequency components are synchronized with no appreciable
time-delay among them [cf. Figs. 7(c) and 7(d)].

Another remarkable difference between the optimized right
and left rotating fields concerns their spectral distribution. While
the optimized rotating fields, E′R(t) and E′L(t) share the photon ener-
gies of 10.8 eV, 10.9 eV, 11.06 eV, and 21.87 eV [cf. Figs. 7(b)
and 7(d)], the photon energy required for the excitation of the
LUMO (7.074 eV) is only contained in the circularly right polar-
ized component [cf. Fig. 7(b)]. Conversely, the photon energy of
14.803 eV—required for the ionization of the LUMO—is only
present along its counter-rotating counterpart [cf. Fig. 7(d)]. The
Wigner-Ville distribution function in Figs. 7(c) and 7(d) indicates
that the photon energies required for the excitation and ionization of
the LUMO—7.05 eV and 14.80 eV—share a common time window
of about ≈60 fs—which can also be seen in Figs. 8(a) and 8(c)—
suggesting nonsequential resonant excitation-ionization probing the
LUMO as part of the optimal ionization mechanism: the reso-
nant excitation of the LUMO is mediated by the clockwise rotating
component, whereas ionization at a photoelectron kinetic energy
of 10 eV is ensured by the counter-clockwise component of the
field.

The electron dynamics involving the LUMO + 1 and LUMO + 2
turns out to be more complicated as both counter-rotating fields
share the photon energies centered around 10.8 eV and 11.06 eV,
which we recall, have the fourfold purpose of exciting and ionizing

FIG. 8. (a)–(f) Electric field helicity ζ j (t) for a subpulse carrying the frequency ωj
as a function of time (solid-orange line). The optimized field contains subpulses
carrying frequencies ωj with simultaneous projections along both counter-rotating
polarization directions. When both counter-rotating components share the same
frequency ωj , the time-delay between the subpulses carrying ωj has a twofold
role: first, it synchronizes the resonant excitation-ionization processes between
the contributing resonant photoionization paths and second, it defines the temporal
profile of the helicity (along with pulse FWHM, phases, peak intensity) to achieve
100% anisotropy by exploiting the sensitivity of the PAD to the temporal changes of
the field polarization direction, which was not possible when a circularly polarized
field with constant helicity, i.e. [ζ(t) = ±1], was prescribed to achieve the same
goal.

the LUMO + 1 and LUMO + 2 at a final photoelectron energy of
10 eV, as already discussed in the case of linearly polarized fields
in Sec. III A. Indeed, according to the time-frequency distribu-
tion in Fig. 7(d), the left rotating component induces nonsequential
excitation-ionization of the LUMO + 1 and LUMO + 2. In addi-
tion, the circularly right polarized component of the field does so,
although slightly later. However, since both counter-rotating com-
ponents share a common time-window, a rich but complex reso-
nant excitation-ionization—probing the LUMO + 1 and LUMO +
2—driven by the portion of the field with time-dependent helicity
occurs.

Finally, the part of the field carrying a photon energy of
21.878 eV—which induces single-photon ionization of the HOMO
to a final photoelectron kinetic energy of 10 eV—is also decom-
posed as a linear combination along both counter-rotating direc-
tions, resulting in a time dependence for the pulse helicity. We
show the field helicity for some relevant frequency components
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of the optimized pulse: constant helicity ζ j(t) = ±1 for fre-
quency components not shared by both counter-rotating directions
[cf. Figs. 8(a) and 8(c)] and a highly oscillatory time-profile for
the frequency components simultaneously shared by both polar-
ization directions [Figs. 8(b) and 8(d)–8(f)]. In the latter sce-
nario, the electric field polarization direction evolves in a nontrivial
fashion.

The origin of the time-delay between the right and left circu-
larly polarized fields shown in Fig. 7 is investigated in Figs. 8(a)
and 8(c), showing the temporal profile of the electric field ampli-
tude for the subpulses with photon energies of 7.1 eV and 14.8 eV.
In fact, it can be observed in Fig. 8(a) that the time at which the
pulse carrying the photon energy of 7.1 eV reaches its half maximum
(at t = 0 fs) is precisely aligned with the peak position of the ionizing
field [cf. Fig. 8(c)], which reaches its peak maximum also at t = 0 fs.
It can also be noted that the FWHM of the pulse in Fig. 8(a) coin-
cides with half the overall duration of the ionizing pulse, defined by
the time interval between the peak position of the ionizing pulse at
t = 0 fs and the time when the ionizing pulse is over (t ≈ 42 fs) in
Fig. 8(c). As a result and under such particular conditions, the effi-
ciency of the resonantly enhanced two-photon ionization is greatly
enhanced, as the transient population of the LUMO is efficiently
ionized.

Figure 9(a) (solid-red lines) shows the energy-resolved asym-
metry along the optimal direction of photoelectron emission
θ∗k′ = 135○ obtained when both optimized fields components E′L(t)
and E′R(t − τ) are simultaneously used for propagation. This sce-
nario corresponds to the polarization-shaped case, leading to a per-
fect asymmetry (100%) at 10 eV. To further inspect the role of the
polarization shaping, we examine the partial contribution to the total
anisotropy arising from each counter-rotating component. This is
performed by isolating the optimized CRP and CLP components of
the overall field. Independent propagation then leads to the partial
contributions. The resulting partial anisotropies are shown in blue
filled circles and green empty squares in Fig. 9(a). The individual
contribution from the CRP and CLP rotating components accounts
for only 15% and 9%, respectively.

Remarkably, the partial contributions of each rotating compo-
nent share the same sign at all angles and, in particular, at 135○

FIG. 9. (a) Anisotropy as a function of the photoelectron energy along the optimal
direction of photoelectron emission θ∗k′ = 135○. (b) Anisotropy as a function of the
emission angle for the optimal photoelectron energy 𝜖∗k of 10 eV.

[cf. Fig. 9(b)]. Even more remarkable is the fact that the leading con-
tribution arises from coherent wave packet interference that origi-
nates from ionization channels driven by counter-rotating compo-
nents (dotted-dashed black line), which contributes with 76% of the
total asymmetry in the direction 135○. Such an interference term
arises from the mixed terms involving the product ∝ E ′+1E

′
−1 + cc.

For the optimal set of parameters, the interference term does not
vanish upon the orientation averaging.

The fact that both counter-rotating components independently
contribute with equal sign for the anisotropy, at the optimal pho-
toelectron energy, is also a remarkable feature resulting from the
pulse shaping. In fact, the asymmetry is expected to change sign
under ellipticity reversal, e.g., from CRP to CLP, provided that both
rotating components have the same pulse parameters, i.e., phases
and delays. However, this is not the case here. This suggests a
strong interplay between the optimal phases and time delays of
each counter-rotating component that are adjusted by the optimiza-
tion algorithm in such a way that enforces an equal sign for the
partial anisotropies obtained with each individual counter-rotating
component, which further enhances the asymmetry from 76% to
100%.

Thus, the isolated contribution from both counter-rotating
directions to the asymmetry amounts modestly, with 24% of the total
anisotropy, while the contribution from their interference reaches
76%. Because such interferences are absent in the case of constant
ζ(t)—for which a maximal anisotropy of only 64% at 10 eV is
obtained—and owing to the fact that the time-dependence of the
helicity is inherently encoded in the interference term, the high
degree of anisotropy is attributed to the polarization shaping of the
ionizing multicolor field.

IV. CONCLUSIONS
We have identified two control schemes that achieve perfect

anisotropy in a randomly oriented ensemble of molecules without
symmetry. Bichromatic control can achieve anisotropy in the PAD
even after orientational averaging; however, its efficiency to achieve
perfect anisotropy was found to be limited. By extending the two-
pathway control approach to a resonantly enhanced multiphoton
ionization-based control formalism, we are able to recover full con-
trol of the photoelectron dynamics. The REMPI scheme involves
interferences between odd-parity single-photon ionization pathway
and a manifold of even-parity resonantly enhanced two-photon
ionization pathways, which probe different molecular orbitals. We
have shown that for linearly polarized fields, the control scheme
based on multiple-REMPI outperforms bichromatic control for all
photoelectron energies.

By generalizing the multiple-REMPI approach to polarization-
shaped fields with time-dependent helicity, we have shown that
the forward-backward anisotropy in the PAD can also be sig-
nificantly enhanced. This is achieved by controlling the tempo-
ral profile of the field helicity. The control mechanism is based
on interference within a manifold of photoionization pathways
driven by fields with counter-rotating polarization directions. Inter-
estingly, the isolated contributions of each optimized counter-
rotating component produce only relatively moderate anisotropy.
We have shown that perfect anisotropy (100%) is only achieved
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when both optimized counter-rotating components are utilized
simultaneously.

Nonadiabatic effects due to nuclear motion occurring at
the time scales considered here may affect the resulting degree
of anisotropy as the fingerprints of nonadiabatic dynamics are
imprinted in the entangled nuclear-photoelectron wave packet.79,80

Such nonadiabatic effects may be incorporated using standard
molecular dynamics techniques, which treat the nuclear motion clas-
sically. The photoelectron wave packet and molecular orbitals would
then be required to be updated accordingly, for each classical nuclear
configuration. The resulting nuclear motion and subsequent hole
dynamics might be used as an implicit source of control. This may be
achieved by shaping pulses that would not only select the appropri-
ate photoionization pathways but also initiate the optimal nonadia-
batic dynamics to influence the entangled photoelectron wave packet
in the desired manner.

With the ability to achieve perfect anisotropy in small
molecules, we envision using the multiple-REMPI scheme as a sen-
sitive probe of electron dynamics. Further design of the pulses
would be advantageous, for example, to differentiate between long-
lived dynamic species and multiple product channels. In this way,
different measures of the anisotropy of the PADs of complex
molecules can be designed to reveal their complex molecular dynam-
ics. We also foresee extending this control procedure to more com-
plex systems and pulse types, including those with three-photon
processes.
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APPENDIX A: FRAME ROTATIONS
For completeness, we provide in this section the details of

the derivation of the relevant quantities involving the frame rota-
tions presented in the text. Hartree atomic units (a.u.) are used
throughout.

In the laboratory frame R′, the electric field E′(t) reads

E′(t) = ∑
μ0=0,±1

E ′μ0(t) e
∗′
μ0 , (A1a)

where (∗) denotes the complex conjugation and e∗′μ0 denotes the
spherical unit vectors such that

E′(t) ⋅ e′μ0 = E ′μ0(t). (A1b)

As stated in the text, E ′μ0(t), for μ0 = ±1, 0, refer to polarization
unit components of the field in R′. In this frame, the spherical unit
vectors are defined in terms of their Cartesian counterparts,

e′± = ∓
1
√

2
(e′x ± e

′
y) (A1c)

together with e′0 = e′z . Projection of the field components into
the molecular frame—which is rotated of Euler angles63,65 γR with
respect to the laboratory frame—is obtained by writing the spheri-
cal unit components e′μ0 in terms of their counterparts eμ0 associated
with the molecular frame,

e′μ0 = ∑
μ=0,±1

D(1)μ,μ0(γR) eμ. (A1d)

Recalling that e∗μ0 = (−1)μ0e−μ0 , we find

E(t; γR) =∑
μ,μ0

(−1)μ0E ′μ0(t)D
(1)
μ,μ0(γR) eμ, (A1e)

where D(1)μ,μ0(γR) correspond the elements of the Wigner rotation
matrix.63,65 Similarly, we decompose the position operator into the
spherical unit basis, namely,

r̂ = ∑
μ′=0,±1

r̂μ′e∗μ′ . (A1f)

Using Eq. (A1e), the molecular-frame orientation-dependent dipole
interaction reads

E(t; γR) ⋅ r̂ =∑
μ0

(−1)μ0E ′μ0(t)∑
μ
D(1)μ,−μ0

(γR) r̂μ, (A1g)

which corresponds to the dipole interaction in the molecular frame
R given in Eq. (2b) in the text.

A second kind of rotation operations involves projection of
the direction of photoelectron emission from the molecular to the
laboratory frame coordinates as defined in Eq. (13b). This results
in the expressions for the first and second order corrections in the
laboratory frame of reference outlined in Eqs. (14) and (15), respec-
tively. However, instead of calculating αk

′(n)
i0 (t; γR) ⋅ αk

′(m)∗
i0 (t; γR),

directly from Eqs. (14) and (15), it turns out to be more convenient
to rotate the anisotropy parameters themselves instead of calculating
the anisotropy parameters from the rotated expansion coefficients.
Specifically, we follow the prescription:

(a) Keep the ionization amplitudes αk(n)i0 (t; γR), in the molecular
frame, defined by

αk(1)i0 (t; γR) = i∑
μ0 ,μ
(−1)μ0

∑
ℓ,m

D(1)μ,−μ0
(γR)(rk,ℓ,m;i0 ⋅ eμ)Y

ℓ
m′(θk,ϕk)∫

t

−∞
e−i(𝜖0−𝜖ki0 )E ′μ0(t

′
)dt′, (A2a)

for first order processes, and
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αk(2)i0 (t; γR) = −∑
μ0 ,ν0

(−1)μ0+ν0
∑
μ,ν

D(1)μ,−μ0
(γR)D(1)ν,−ν0

(γR)∑
ℓ,m

Yℓ
m′(θk,ϕk)[(rk,ℓ,m;i0 ⋅ eμ)∑

i
(ri,i ⋅ eν) ∫

t

−∞
e−i(𝜖i0−𝜖k)t

′

E ′μ0(t
′
)

× ∫

t′

−∞
E ′ν0(t

′′
)dt′′ dt′ + ∑

b
(rk,ℓ,m;b ⋅ eμ)(rb,i0 ⋅ eν)∫

t

−∞
e−i(𝜖b−𝜖k)t

′

E ′μ0(t
′
) ∫

t′

−∞
e−i(𝜖i0−𝜖b)E ′ν0(t

′′
)dt′′ dt′], (A2b)

for second order processes. For reasons that will become
clearer later, we seek to express the products αk(n)i0 (t; γR)
αk(m)∗i0 (t; γR) in terms of a product involving three Wigner
rotation matrices. To this end, it is convenient to express
the product D(1)μ,−μ0

(γR)D(1)ν,−ν0
(γR) in Eq. (A2b) in terms of

its irreducible representation using the elementary expres-
sion63,65

D(ℓ1)
m1 ,m′1
(γR)D(ℓ2)

m2 ,m′2
(γR) =∑

ℓ

(2ℓ + 1)D∗(j)−m12 ,−m′12
(γR)

×(
ℓ1 ℓ2 ℓ
m1 m2 −m12

)

×(
ℓ1 ℓ2 ℓ
m′1 m′2 −m

′
12
),

with m12 = m1 + m2 and m′12 = m′1 + m′2.
(b) When calculating αk(n)i0 (t; γR)αk(m)∗i0 (t; γR) a product involv-

ing the spherical harmonics, Yℓ
m′(θk,ϕk)Yℓ′∗

m′ (θk,ϕk) appears.
The strategy is to first express such a product in terms of its
irreducible representation, namely,

Yℓ
m(Ωk)Y

ℓ′∗
m′ (Ωk) = (−1)m

′
ℓ+ℓ′

∑
L=∣ℓ=ℓ′ ∣

ηLℓ,ℓ′ Y
L∗
m′−m(Ωk)

×(
ℓ ℓ′ L
0 0 0 )(

ℓ ℓ′ L
m −m′ m′ −m), (A3)

with ηLℓ,ℓ′ =
√
(2ℓ + 1)(2ℓ′ + 1)/4π and where we have

defined Ωk ′ = (θk ′ , ϕk ′ ).
(c) Next, we rotate the resulting spherical harmonic in Eq. (A3)in

the laboratory frame, R′, using the inverse of the frame
transformation defined in Eq. (A1d), namely,

YL
m−m′(Ωk) =

L

∑
M=−L

D(1)†M,m−m′(γR)Y
L
M(Ωk′). (A4)

(d) Finally, we write YL
M(Ωk′) in Eq. (A4) in terms of the associ-

ated Legendre polynomials63,65

YL
M(Ωk′) = (−1)M

¿
Á
ÁÀ(2L + 1)

4π
(L −M)!
(L + M)!

PM
L (cos θk′) e

iMϕk′ .

(A5)
(e) Following these steps, Eq. (A3) finally reads

Yℓ
m′(θk,ϕk)Yℓ′∗

m′ (θk,ϕk)

= (−1)m
′

ℓ+ℓ′

∑
L=∣ℓ−ℓ′ ∣

2L + 1
4π

√
(2ℓ + 1)(2ℓ′ + 1)( ℓ ℓ′ L

0 0 0 )

×(
ℓ ℓ′ L
m −m′ m′ −m)

L

∑
M=−L

¿
Á
ÁÀ(L −M)!
(L + M)!

×D(L)m′−m,−M(γR)P
M
L (cos θk′)e

iMϕk′ , (A6)

which transforms the anisotropy parameters from the molecular to
the laboratory frame of reference. Thus, this strategy is equivalent
to rotate the anisotropy parameters instead of performing the full
derivation using the rotated wave function coefficients. Apart from
significantly reducing the number of operations in the summations
when calculating the norm squared of first and second order correc-
tions, it has the advantage of leading to an expression for M = −L,
L in β(⋅)L,M(𝜖k), as a function of the polarization unit vectors 𝜖μ0 , 𝜖ν0

and 𝜖μ′0 , 𝜖ν′0 in a straightforward manner, which facilitates the analy-
sis of the selection rules for the anisotropy as a function of the field
polarization direction.

APPENDIX B: ORIENTATION-AVERAGED ANISOTROPY
PARAMETERS
1. Anisotropy parameters β1phL,M

Following the guidelines for rotating the anisotropy parame-
ters introduced in Appendix A, the orientation-averaged ionization
probability distribution for one-photon ionization measured in the
laboratory frame, R′, is obtained upon rotation of ∣αk(1)i0 (t; γR)∣

2—
using Eq. (A2a)—from the molecular to the laboratory frame or
reference, and integrating over all Euler angles γR. We find

∣αk
′(1)
i0 (γR)∣

2
=∑

L,M

(2L + 1)
4π

¿
Á
ÁÀ(L −M)!
(L + M)!∑μ0

(−1)−μ0Iμ0(k, t)∑
μ′0

I∗μ′0(k, t) ∑
ℓ,m,μ
(rk,ℓ,m;i0 ⋅ eμ) ∑

ℓ′ ,m′ ,μ′
(r∗k,ℓ′ ,m′ ;i0 ⋅ eμ′)(−1)μ

′+m′√
(2ℓ + 1)(2ℓ′ + 1)

×(
ℓ ℓ′ L
0 0 0)(

ℓ ℓ′ L
m −m′ m′ −m)P

M
L (cos θk′) e

+iMϕk′
∫

d3γR
8π2 D(1)μ,−μ0

(γR)D(1)−μ′ ,μ′0(γR)D
(L)
m′−m,−M(γR) (B1)
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for t →∞ and where we have defined

Iμ0(k, t) = ∫
t

−∞
E ′μ0(t

′
) ei(𝜖k−𝜖i0 )t

′

dt′. (B2)

Integration of Eq. (B1) over the Euler angles defines, according
to Eq. (9), the laboratory-frame orientation-averaged anisotropy
parameter β(μ0)1ph

L,M (𝜖k) corresponding to the first order process. Inte-
gration of a product involving three Wigner 3j- symbols can be

performed analytically,63,65

∫ D(ℓ1)
m1 ,m′1
(γR)D(ℓ2)

m2 ,m′2
(γR)D(ℓ3)

m3 ,m′3
(γR)

d3γR
8π2

= (
ℓ1 ℓ2 ℓ3
m1 m2 m3

)(
ℓ1 ℓ2 ℓ3
m′1 m′2 m′3

), (B3)

which gives, upon equating Eqs. (9) and (B1), the final expression,

β1ph
L,M(𝜖k) =

(2L + 1)
4π

¿
Á
ÁÀ(L −M)!
(L + M)!∑μ0

(−1)−μ0Iμ0(k, t)∑
μ′0

I∗μ′0(k, t) ∑
ℓ,m,μ
(rk,ℓ,m;i0 ⋅ eμ) ∑

ℓ′ ,m′ ,μ′
(rk,ℓ′ ,m′ ;i0 ⋅ eμ′)

∗
(−1)μ

′+m′√
(2ℓ + 1)(2ℓ′ + 1)

×(
ℓ ℓ′ L
0 0 0 )(

ℓ ℓ′ L
m −m′ m′ −m)(

1 1 L
μ −μ′ m′ −m)(

1 1 L
−μ0 μ′0 −M ), (B4)

which corresponds to the quantity displayed in Eq. (16a) in the
text.

2. Anisotropy parameters β2phL,M

To evaluate the laboratory-frame orientation-averaged
anisotropy parameters describing the contribution from second

order processes, β2ph
L,M(𝜖k), we employ the same strategy involving

the elementary angular momentum algebra detailed in Sec. B 1.
Using Eq. (A2b) and upon evaluation of the product αk(2)ß0

(𝜖k) ⋅
αk(2)∗ß0

(𝜖k), followed by projection of quantity into the laboratory
frame coordinates as indicated above, we find, with the help of
Eq. (9),

β2ph
L,M(𝜖k) =

(2L + 1)
4π

¿
Á
ÁÀ(L −M)!
(L + M)! ∑μ0 ,ν0

∑
μ,ν
(−1)−μ−ν

2

∑
Q1=0

g(Q1)
μ,ν,μ0 ,ν0 ∑

μ′0 ,ν′0

∑
μ′ ,ν′
(−1)μ

′

0+ν′0
2

∑
Q2=0

g(Q2)
μ′ ,ν′ ,μ′0 ,ν′0

×∑
ℓ,m
∑
ℓ′ ,m′
(−1)m

′√
(2ℓ + 1)(2ℓ′ + 1) ∑

p,p′≥i0
Sp′∗
μ′ ,ν′(k, ℓ′,m′)F p′∗

μ′0 ,ν′0
(t; k)Sp

μ,ν(k, ℓ,m)Fp
μ0 ,ν0(t; k)

×(
ℓ ℓ′ L
0 0 0 )(

ℓ ℓ′ L
m −m′ m′ −m)(

Q1 Q2 L
μ + ν −μ′ − ν′ m′ −m)(

Q1 Q2 L
−μ0 − ν0 μ′0 + ν′0 −M ). (B5)

Note that the limits on the sum over Q1 and Q2 imply that the two-
photon processes contribute with a polynomial order of L = 4 at the
most. In Eq. (16b), we have defined

g(Q)μ,μ′ ,μ′0 ,ν′0
≡ cQ (

1 1 Q
μ ν −μ − ν)(

1 1 Q
−μ0 −ν0 μ0 + ν0

), (B6a)

with cQ = (2Q + 1). The term Fp
μ0 ,ν0(t; k) in Eq. (B5) is given by

Fp
μ0 ,ν0(t; k) = ∫

t

−∞
ei(𝜖k−𝜖p)t

′

E ′μ0(t
′
)∫

t′

−∞
ei(𝜖p−𝜖i0 )t

′′

E ′ν0(t
′′
)dt′dt′′.

(B6b)

Finally, the term Sp
μ,ν(k, ℓ,m) in Eq. (B5) reads

Sp
μ,ν(k, ℓ,m) = (1 − δp,i0)(rk,ℓ,m;p ⋅ eμ) (rp,i0 ⋅ eν)

+ δp,i0 ∑
i∈occ
(rk,ℓ,m;p ⋅ eμ) (ri;i ⋅ eν) (B6c)

for p ≥ i0. From Eq. (B6a) and the fourth Wigner 3j-symbol in
Eq. (B5), it follows that second-order processes also lead to van-
ishing asymmetries in the PAD for linearly polarized fields. In fact,
Eq. (B6a) vanishes for Q odd, while the fourth Wigner 3j-symbol
Eq. (16b) requires Q1 + Q2 to be odd for L odd.
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3. Anisotropy parameters βintL,M

The contribution to the photoelectron momentum distribution originating from the interference between single- and two-photon
pathways is obtained using the same strategy employed in Secs. B 1 and B 2. Upon straightforward angular momentum algebra, we find

βintL,M(𝜖k) = −i
(2L + 1)

4π

¿
Á
ÁÀ(L −M)!
(L + M)! ∑μ,ℓ,m

(rk,ℓ,m;i0 ⋅ eμ)∑
μ0

(−1)−μ0
∫

t

−∞
E ′μ0(t

′
) e+(𝜖k−𝜖i0 )t′ dt′

× ∑
μ′0 ,ν′0

(−1)μ
′

0+ν′0 ∑
μ′ ,ν′

2

∑
Q2=0

g(Q2)
μ′ ,ν′ ,μ′0 ,ν′0

∑
ℓ′ ,m′
(−1)m

′

∑
p≥i0

Sp′∗
μ′ ,ν′(k, ℓ′,m′)Fp′∗

μ′0 ,ν′0
(t; k)

×
√
(2ℓ + 1)(2ℓ′ + 1)( ℓ ℓ′ L

0 0 0 )(
ℓ ℓ′ L
m −m′ m′ −m)(

1 Q2 L
μ −μ′ − ν′ m′ −m)(

1 Q2 L
−μ0 μ′0 + ν′0 −M ) (B7)

for t → ∞ and where the terms g(Q2)
μ,ν,μ0 ,ν0 , Sp′∗

μ′ ,ν′(k, ℓ′,m′), and

Fp′∗

μ′0 ,ν′0
(t; k) in Eq. (B7) are given in Eqs. (B6a)–(B6b), respectively.
From the third and fourth Wigner 3j-symbols in Eq. (B7),

it is apparent that the interference term βintL,M may contribute
to the anisotropy after the orientation-averaging, even for lin-
early polarized fields. In fact, for L odd and Q2 even, both sym-
bols do not necessarily vanish by selection rules, in contrast to
β1ph
L,M and β2ph

L,M . Conversely, for circularly polarized fields, or fields
with unequal counter-rotating components, all three orientation-
averaged anisotropy parameters may contribute to the anisotropy
in the photoelectron emission in the case of a chiral target. For
achiral targets, only interference term can be used to break the
asymmetry.

APPENDIX C: PULSE PARAMETERIZATION
FOR POLARIZATION SHAPED PULSES

For polarization shaped pulses, we consider a superposition of
pulses with different counter-rotating components, namely,

E′(t) = E′R(t) + E′L(t). (C1a)

Each rotating component, carrying circularly left and right polar-
ization, E′L,R(t), is projected into the polarization unit vectors, e′±,
according to

E′L,R(t) = E ′L,R
+ (t) e′∗+1 + E ′L,R

− e′∗−1, (C1b)

where the CRP and CLP components E ′ L,R
± = E′L,R ⋅ e′± are (indepen-

dently) parameterized according to

E ′R± (t) = ±
1
√

2

N

∑
j=1

hj(t − τj) e±iωj(t−τj)+ϕj (C1c)

for circularly right polarization (CRP). Its counter-rotating counter-
part takes the form

E ′L± (t) = ∓
1
√

2

N

∑
j=1

hj(t − τj) e∓iωj(t−τj)+ϕj , (C1d)

which allows us to retrieve the rotating field components in Carte-
sian coordinates

E′L,R =
N

∑
j=1

h(t − τj)
⎛
⎜
⎝

± cos Ωj(t)
− sin Ωj(t)

0

⎞
⎟
⎠

(C1e)

for circularly right (−) and left (+) polarization directions from
the source point of view in the laboratory frame of reference and
where Ωj(t) = ωj(t − τj) + ϕj. The pulse parameters in Eqs. (C1c)
and (C1d) are independently optimized for both counter-rotating
components.
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