
Journal of Luminescence 81 (1999) 171—181

Spectrum, lifetime distributions and relaxation in a dimer with
strong excitonic—vibronic coupling
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Abstract

The fine structure of the complex quantum spectrum of a dimer constituted by monomers with a finite lifetime in the
excited states and a strong excitonic—vibronic coupling has been investigated in detail. Lifetime distributions of
the spectrum are analysed for different system parameter sets. It is shown that in case of an asymmetric configuration the
spectrum may be characterised by a broad distribution of the lifetimes of the eigenstates. This can give rise to a strongly
varying relaxation behaviour, which is due to the mixing of the monomer spectra with two different excitonic lifetimes in
the dimer spectrum. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The coupling between excited states and vibronic
degrees of freedom of the environment is a basic
mechanism that influences transfer and relaxation
properties in molecular systems. In the case of
a bath of oscillators, the implications of this coup-
ling for the excitation propagation have been inten-
sively studied (see, e.g. Ref. [1]) and extended to
include relaxation effects such as the interplay be-
tween propagation and quenching [2]. In the last
years there is, however, a growing interest in the
properties of a nonlinear situation when the excited
states strongly couple to selected vibrational
modes. A dimer model describing the nonlinear
properties of excited states strongly coupled to
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a single vibrational mode has been investigated
([3,4,8] and references therein). In the full quantum
description of this dimer model one finds that the
spectrum displays features intermediate between
regular and irregular structures [5]. These features
of the spectrum have been characterised as “incipi-
ence of quantum chaos”. In this case the spectrum
is very sensitive to changes of the system para-
meters.

In this paper we demonstrate the sensitive de-
pendence on the parameters by extending the dimer
model to the asymmetric case and to finite lifetimes
of the excitations. We consider complex excitation
energies with an imaginary part describing the
finite lifetime. The finite lifetime or decay rate is due
to some excitation quenching or relaxation mecha-
nism inside the monomers, which removes the exci-
tation from the excited transfer states. We note that
electron or excitation transfer related to optical
properties has been experimentally studied in the
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presence of quenching, e.g. in porphyrin based mo-
lecular compounds linked to a benzoquinone quen-
cher molecule [6]. We show that for an asymmetric
dimer and a strong coupling of the excitation to the
vibrational mode a broad intrinsic lifetime or decay
rate distribution in the complex eigenstates of the
dimer may occur. As a consequence strongly vary-
ing relaxation behaviour is obtained.

2. Model

We consider a dimer described by the Hamil-
tonian
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where DnT(DmT) is the exciton state at the nth (mth)
molecule with the on-site energy eJ

n
, c

n
the ex-

citon—phonon coupling constant and »
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the trans-
fer matrix element, n, m"1,2. The variables of the
intramolecular vibrations of the two monomers
constituting the dimer are q
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duced to a single mode since only the relative
displacement is coupled to the excitation. Excita-
tion quenching on the monomers of the dimer is
modelled by complex site energies, eJ
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where the real part e
n
denotes the excitation energy

and C
n

denotes the decay rate or inverse lifetime
due to an excitation quenching or relaxation mech-
anism. Passing to dimensionless variables by
measuring the energy in units of 2», H"H/2»,
(+"1), one obtains
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Here pL
i
are the standard Pauli-matrices, i"x, z,

and we use the spin representation of the two-site
system representing the monomer states D1T and D2T
by the spin up and spin down states, respectively.
The dimensionless relative displacement and the

corresponding momentum are Q"J2»(q
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)/J2». The Hamiltonian (2) de-
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The parameter p expresses the coupling strength of
the excitation to the vibration, and r is the
adiabatic parameter. The sums e

`
and C

`
repres-

ent the centre of mass of the excitation band and
relaxation rates, whereas the differences e

~
and

C
~

are asymmetry parameters. We note that the
symmetric case with equal decay rates on the
monomers, i.e. C

1
"C

2
"C, (C

`
"C, C

~
"0), re-

sults in the same decay rate C for all dimer states.
Therefore we considered the nontrivial case
C
~
O0.
We found it useful to consider the formation of

the spectrum of Eq. (2) as the result of a mixing of
adiabatic reference states connected with the
adiabatic potentials. These potentials are cal-
culated in a standard way by solving the Q-depen-
dent eigenvalue problem for the adiabatic part of
Eq. (2). One finds the two adiabatic potentials
ºB
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(Q) for the upper (#) and lower (!) adiabatic
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The potentials ºB
!$

(Q) are complex due to the asym-
metry C

~
in the decay rates, in Eq. (7) the origin of
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the complex energy plane was shifted to e
`
!iC

`
(the real parts of Eq. (7) are the adiabatic potentials
while the imaginary parts of Eq. (7) can be viewed
as the Q-dependent lifetimes of the adiabatic states).
Introducing the Hamiltonians of the adiabatic ref-
erence systems associated with ºB

!$
(Q), the forma-

tion of the spectrum of Eq. (2) can now be under-
stood as a mixing of the two adiabatic reference
systems which is produced by the nonadiabatic
couplings. Although a quantitative investigation
of the role of the nonadiabatic couplings over
the range of all the parameters and a broad
energy interval is not feasible, we will discuss the
manifestations of these couplings in the structure of
the complex spectrum from a qualitative point
of view.

3. Results

3.1. Spectrum and decay rates

We investigated the fine structure of the complex
spectrum of the Hamiltonian Eq. (2) by numerical
diagonalisation in a spin-oscillator product basis.
The oscillator states were represented by standard
Hermitian polynomials and the spin states were
represented by the eigenstates of pL

z
. The dimension

of the matrix ranged from N"1000 in the sym-
metric case to N"3000 for the asymmetric case,
the first 700—1000 eigenvalues and eigenstates
were used in the analysis. Different values of
the parameters p, r as well as the asymmetry
parameters e

~
and C

~
were considered. The

parameters e
`

and C
`

only cause a rigid shift of
all the eigenvalues in the complex plane, they are
irrelevant for the structure of the spectrum. We
therefore rescaled the spectrum by shifting e

`
and C

`
to the origin. We note that the decay

rates obtained for a given value of C
~

are represen-
tative for all different C

1
and C

2
having one and the

same value of C
~

. For a given C
~
,the actual decay

rates of the eigenstates are easily found by adding
C
`

to the imaginary parts of the complex eigen-
values.

Analysing the complex eigenvalue plane we
found that the ranges of the asymmetry parameters
e
~

and C
~

can be divided into the following

characteristic regions:
(A) Small values of the asymmetry parameters:

e
~
"0, C

~
@1.

(B) Intermediate / large values of the site energy
asymmetry and small values of the lifetime asym-
metry: e

~
&0.1,2,1/e

~
'1 and C

~
@1.

(C) Arbitrary values of the site energy asymmetry
e
~

and intermediate large/values of the lifetime
asymmetry: C

~
&0.1,2,1/C

~
'1.

In case (A) the effect of the asymmetry upon the
lifetimes is negligibly small: The majority of the
numerically obtained decay rates are close to zero
with a few scattered off. An example for this type of
behaviour is given in Fig. 1a. This situation can
also be understood from a perturbational point of
view: Considering the whole asymmetric part in the
Hamiltonian Eq. (2) as a perturbation of the sym-
metric case, one finds that in first order perturba-
tion theory the asymmetry is proportional to
the occupation difference z of the monomers,
which vanishes for the eigenstates of a symmetric
dimer.

In case (C) the decay rate asymmetry results in
a splitting of the lifetimes into two branches located
around the values $C

~
, i.e. the spectrum of decay

rates is close to the values C
1
, C

2
of the monomers

(taking into account the rigid shift by C
`

). This
behaviour of the spectrum of decay rates is illus-
trated in the complex eigenvalue spectrum of
Fig. 1b for C

~
"1 (decay rate asymmetry is twice

the transfer matrix element). The obtained rates are
almost equal to the unperturbed monomer values
over the complete energy range. From Fig. 1c it can
be seen that the formation of two well separable
branches of decay rates starts with the intermediate
value C

~
"0.05. The splitting of the spectrum of

decay rates into two branches approaching the
lifetimes of the monomers can be interpreted as
follows: For a strong asymmetry, the decay rate at
least at one of the monomers becomes greater than
the transfer rate, i.e. the transfer is suppressed due
to the fast decay. Then no substantial mixing of the
monomer spectra by the transfer can be expected,
i.e. the spectrum approaches that of the isolated
integrable monomers.

We now turn to the results of case (B) for which
we obtained nontrivial lifetime distributions. Typi-
cal results of complex eigenvalue spectra obtained
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Fig. 1. Complex eigenvalue spectra Ej illustrating cases (A) and
(C). (a) Case A — small asymmetry. The parameters are p"2,
r"0.1, e

~
"0, C

~
"0.01. In the complex plane of the eigen-

values Ej, the majority of decay rates (the imaginary parts of the
Ej) are close to zero. (b) Case C — large lifetime asymmetry, the

for different parameters p, r and e
~

, but one and the
same small asymmetry value C

~
"0.01 are repre-

sented in Figs. 2—4.
In Fig. 2 the complex eigenvalue spectrum is

presented for intermediate coupling, p"2, and in-
termediate asymmetry, e

~
"0.5. As can be seen

from Fig. 2, for this case the decay rates have
moved away from zero forming two strands with
a pattern of transitions between them. Note the
difference to case C in Fig. 1b where the two
branches are close to the value of C

~
, whereas in

the present case the mean values of the decay rates
in the strands are an order of magnitude smaller
than C

~
. The two strands of lifetimes are located in

the region where the lower and the upper adiabatic
potentials, º~

!$
(Q) and º`

!$
(Q), overlap. One can

understand the formation of these strands as due to
a mixing of the complex adiabatic eigenstates asso-
ciated with º~

!$
(Q) and º`

!$
(Q). This mixing is

produced by the nonadiabatic couplings and it is
a signature of nonintegrability and chaos of the
system, as can be shown by considering the mixed
quantum—classical dynamics deduced from the
Hamiltonians Eq. (1), Eq. (2) [3,5].

This interpretation is confirmed by the analysis
of the complex eigenvalue spectrum in Fig. 3a for
a case with strong coupling, p"50, but otherwise
the same parameters as in Fig. 2. Part of the decay
rates has shifted away from zero and now fills the
complex plane up to values of the order of the input
parameter C

~
. However, most of the rates are close

to zero, which is due to the relatively small asym-
metry parameter in this case. Again we point out
the close relation of the complex spectrum to the
adiabatic potentials (shown in Fig. 3b): The spread
in the decay rates starts at an energy equal to the
minimum of the upper adiabatic potential. In order
to illustrate that the mixing starts indeed in the
region of the minimum of the upper potential

b

parameters are p"2, r"1.0, e
~
"0.01, C

~
"1. A complete

splitting of the decay rates in the Ej-plane into two branches at
C
~
"$1 has occurred. (c) Transition to the case C — formation

of two branches in the distribution of the decay rates for inter-
mediate values of the lifetime asymmetry. The parameters are
p"2, r"0.1, e

~
"0.01, C

~
"0.05.
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Fig. 2. Case B — Complex eigenvalue spectrum Ej for intermediate coupling and asymmetry. The parameters are
p"2, r"0.1, e

~
"0.5, C

~
"0.01. It can be seen how the decay rates move away from zero forming two branches with a pattern of

transitions between them.

º`
!$

(Q), in Fig. 3a the numerical results for the
region below this minimum are displayed as well.
The two branches, into which the decay rate spec-
trum below this minimum separates, are due to the
lower adiabatic potential º~

!$
(Q). This separation

can also be found by a simple calculation: For the
small value of C

~
, C

~
"0.01, one can approximate

the square root in Eq. (7). One finds in first order of
C
~
, that Im º~

!$
(Q)"C

~
sign Q, i.e. the decay rates

due to the single potential are given by $C
~
. This

confirms that the structure in the decay rates of
Fig. 3a is due to the mixing of states in the overlap
region of the two potentials.

Finally, in Fig. 4, the decay rates are presented
for a strong coupling, p"20, and a large asym-
metry, e

~
"10. Below the minimum of the upper

adiabatic potential we observe a regular structure
as in Fig. 3. Immediately above the minimum of the
upper potential we find a broad distribution of the
decay rates which have completely moved away
from zero and fill the complex plane more

homogenously than the decay rates in Fig. 3a.
However, small regular structures are still embed-
ded in the distribution.

3.2. Relaxation

For the calculation of the relaxation we chose the
particular case of an asymmetric dimer with
a quenching rate placed at one of the monomers of
the dimer only, C

1
"C and C

2
"0. In this case

C
`
"C

~
"C/4», i.e. the spectrum of the complex

rates as displayed in the figures of the preceding
section has to be shifted up by the value
C
`
"C/4» in the complex plane in order to obtain

the particular decay rates. We note that for this
configuration the lower part of the distribution of
decay rates is located immediately above zero, i.e.
states with particularly small decay rates or long
lifetimes are generated. We checked that all the
numerically obtained states have a positive decay
rate.
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Fig. 3. Case B — Complex eigenvalue spectrum Ej (a) for intermediate asymmetry, but large coupling, p"50, with the other parameters
as in Fig. 2 (r"0.1, e

~
"0.5, C

~
"0.01). A substantial part of the decay rates has moved away from zero and fills the complex plane up

to values of the order of C
~
"0.01. In (b) the adiabatic potentials are plotted for the selected parameters. The spread of the decay rates

due to mixing of the reference systems starts above the energy corresponding to the minimum of the upper adiabatic potential.
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Fig. 4. Case B — Complex eigenvalue spectrum Ej for large asymmetry and large coupling. The parameters are p "20, r"0.1,
e
~
"10, C

~
"0.01. Above the minimum of the upper adiabatic potential a broad distribution of decay rates with small regular

structures embedded can be seen.

To investigate the relaxation behaviour, we com-
puted the expectation value SR(t)T"SW(t)DW(t)T of
the total occupation probability from the state vec-
tor DW(t)T. As initial states DW(0)T wave packet states
of the form

DW(0)T" +
j/0

DEjTSEjDQ, P, a
`
,a

~
T, +

j/0

ejDEjT

(8)

were prepared. Here DEjT are the eigenstates of the
Hamiltonian Eq. (2). The states DQ, P, a

`
a
~
T are

product states, DQ, P, a
`
a
~
T"DQ, PTDa

`
, a

~
T.

Here the oscillator part DQ, PT is a Gaussian wave
packet with expectation values Q and P for coordi-
nate and momentum, Da

`
, a

~
T constitutes the spin

part fixing the exciton amplitudes, a
`

and a
~

are
the occupation probabilities of the left or right
monomer in the dimer, respectively. Then the state
vector was propagated in time according to

DW(t)T" +
j/0

e~*EjtDEjTSEjDQ, P, a
`
, a

~
T, (9)

where Ej is the complex eigenvalue of the eigenstate
DEjT. The propagation of the state DW(t)T was com-
puted at least up to the time t

.!9
"(2C

.*/
)~1,

where C
.*/

,minjIm Ej is the minimal decay rate
of the complex spectrum for a given parameter set.
Note that in our case the dimensionless time scale is
set by the unit of time equal to +/2».

In Figs. 5—7 the relaxation SR(t)T of wave
packets prepared with different initial energies is
shown. According to Eq. (8) the initial energy E is
given by E"+jReEjDejD2. In parts (a) of these
figures SR(t)T is shown in a semilogarithmic plot,
whereas in parts (b) the spectrum of decay rates,
Cj"ImEj, and the square magnitude of the expan-
sion coefficients from which the packet is built up,
DejD2, versus the eigenstate number is displayed.

We start with a wave packet of low energy in
Fig. 5. The parameters and the spectrum are as in
Fig. 3. The dominant contribution to this low en-
ergy wave packet is due to expansion coefficients
from eigenstates with eigenvalues in the regular
part of the spectrum below the minimum of the
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Fig. 5. Relaxation of a wave packet with a low initial energy, ReE"!4.95. The initial conditions are Q"10, P"0, a
`
"0, a

~
"1,

with the parameters as in Fig. 3. The semilogarithmic plot of the relaxation SR(t)T in (a) shows the fast and slow decay rates of the
regular part of the spectrum in the short and long time behaviour of SR(t)T. In between these short and long time parts there is a decay
with an intermediate rate due to a small contribution of the irregular part of the spectrum in the wave packet. Exponential
approximations to the three parts of SR(t)T are indicated (see legend). The eigenstates, from which the wave packet is built up, are shown
as the squared expansion coefficients, DejD2, versus the eigenstate number, j, in (b). The main contribution to the wave packet expansion is
due to the regular part of the spectrum. However, there is also a small contribution from the irregular part as shown in the insert.
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Fig. 6. Relaxation of a wave packet with an intermediate initial energy, ReE"!0.55. The initial conditions are Q"0, P"0,

a
`
"a

~
"1/J2, with parameters as in Fig. 4. The relaxation SR(t)T in (a) shows a continuous flattening in the course of time. The

contributions in the wave packet expansion are due to eigenstates from both the regular and irregular parts of the spectrum, as can be
seen from the plot of Cj and DejD2 versus the eigenstate number, j, in (b).
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Fig. 7. Relaxation of a wave packet with a high initial energy, ReE"13.71. The initial conditions are Q"10, P"0, a
`
"1, a

~
"0,

with parameters as in Fig. 4. The relaxation SR(t)T in (a) shows a flattening which can be approximated by a stretched exponential (thin
line). A simple exponential fit to SR(t)T is also shown (dashed line); (b) shows that the contributions in the wave packet expansion are due
to the irregular part of the spectrum.
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upper adiabatic potential (Fig. 5b). Therefore one
expects a biexponential decay with a fast rate at
short times and a slow rate at long times. These
rates indeed show up as the straight lines in the
short and long time behaviour of SR(t)T indicate
(Fig. 5a). However, there is also a part with a decay
intermediate between the fast and slow parts, vis-
ible in the Fig. 5a). This intermediate part is due to
a small contribution from the irregular part of the
spectrum which is shown in the insert of Fig. 5b).
This illustrates that a low energy wave packet is not
necessarily built up from states of the low energy,
regular part of the spectrum only. A small weight of
states from the high energy part, although not con-
tributing significantly to the initial energy, may
show up in the relaxation in the course of time.

In Fig. 6a the relaxation of a wave packet with
intermediate energy is shown. The parameters are
as in Fig. 4. It can be seen from Fig. 6b that now
the spectrum of eigenstates which mainly build up
the state vector consists of two parts with eigen-
values from both the regular and irregular parts of
the spectrum. Correspondingly, we observe a decay
with changing rates: Initially the relaxation SR(t)T
is dominated by the fast rates of the regular part
and then flattens in the course of time due to the
small rates contained in the irregular part of the
distribution. We note that the preparation of the
initial state in this case is as in an optical low
temperature excitation. In this case the oscillator
packet is initially placed in the region of the vibra-
tional ground state around Q"0, there is no
momentum transfer implying P"0, and the light
induced exciton amplitudes at the monomers are
equal.

Finally, in Fig. 7a the relaxation of a wave
packet of high energy is shown. It is obtained by
selecting an initially displaced wave packet at
Q"10. The parameters are as in Fig. 6, but now
the packet is mainly built up from the irregular part
of the decay rate spectrum only, as shown in
Fig. 7b. Accordingly we observe a relaxation
SR(t)T shifting continuously from faster to slower
decay rates. In Fig. 7a we also present a fit of
SR(t)T by a stretched exponential of the form
SR(t)T"exp[!(at)p]. It is seen that most part of
the decay is well represented by this dependence

with p"0.78(1. In regard to this we point out an
analogy to anomalous relaxation in disordered sys-
tems, where stretched exponential decay is familiar
(see, e.g. Ref. [7]). In a disordered system such
a decay is due to e.g. luminescence quenching in
a random environment of excitation traps. In the
present case the origin of the distribution of decay
rates is completely different and it is an intrinsic
property of the quantum states.

4. Conclusions

Finite lifetimes of excited states of the monomers
in an asymmetric dimer with a strong excitonic—
vibronic coupling can give rise to a broad distribu-
tion of relaxation rates. As a consequence different
relaxation behaviour may arise ranging from near
biexponential decay to decays approximated by
stretched exponential like dependences. The results
should be of interest from an experimental point of
view, for time resolved luminescence experiments at
low enough temperatures, when the strong coup-
ling of the excitation to a single vibrational mode
dominates over temperature related bath effects.
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