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Shaped pulses obtained by optimal control theory often possess unphysically broad spectra. In principle, the spectral
width of a pulse can be restricted by an additional constraint in the optimization functional. However, it has so far
been impossible to impose spectral constraints while strictly guaranteeing monotonic convergence. Here, we show that
Krotov’s method allows for simultaneously imposing temporal and spectral constraints without perturbing monotonic
convergence, provided the constraints can be expressed as positive semi-definite quadratic forms. The optimized field is
given by an integral equation which can be solved efficiently using the method of degenerate kernels. We demonstrate
that Gaussian filters suppress undesired frequency components in the control of non-resonant two-photon absorption.

Keywords: optimal control theory; multi-photon absorption

1. Introduction

Optimal control theory (OCT) is a versatile mathematical
tool to find external fields that drive the dynamics of a
quantum system toward a desired outcome [1]. The controls
are, e.g. the electric field of a laser pulse or the magnetic
field amplitude of radio-frequency (RF) pulses. The under-
lying mechanism enabling the control are quantum interfer-
ences of light and matter [1,2]. OCT consists in formulating
the physical target as a functional of the field which is
then optimized. Typically, many solutions to the control
problem exist [3], and it depends on additional constraints
which of these solutions is found by an OCT algorithm.
Such additional costs can be used to identify solutions that
are feasible in control experiments, for example in feed-
back loops with shaped femtosecond laser pulses [4] or
sequences of RF pulses in high-resolution nuclear mag-
netic resonance [5]. The constraints ensure, for example,
a maximally allowed amplitude or smoothly switching the
pulses on and off [6]. In principle, a constraint to ensure a
given spectral width of the pulse can be formulated analo-
gously [7]. It is highly desirable to include such a constraint
since the spectral width is fixed in a given experiment. In or-
der to compare theoretically calculated and experimentally
obtained pulses, it is necessary to restrict the bandwidth of
the calculated pulses to the experimental value. However,
so far it has been impossible to impose spectral constraints
while strictly guaranteeing monotonic convergence of the
optimization algorithm. Without a spectral constraint, the
optimized pulses often possess extremely broad spectra with
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frequency components that are physically not necessary and
cannot be realised experimentally, see, e.g. Ref. [7].

To obtain control over the frequency components of the
optimal pulse, two alternatives to imposing spectral con-
straints as part of the optimization functional have recently
been discussed. (i) The field can be expanded into fre-
quency components, and the expansion coefficients, not
the field itself, are optimized [8]. This approach requires
a concurrent update of the field ε(ti ) for all ti at once and
cannot be combined with a sequential update. (ii) The op-
timized field can be filtered at the end of each iteration
step to eliminate undesired frequency components [9–15].
The challenge consists in implementing the filtering in a
way that does not destroy convergence of the algorithm.
Formally, a filter can be obtained from a cost functional.
However, the corresponding Lagrange multiplier which is
decisive for the convergence of the algorithm, remains un-
determined [10,13]. An educated guess for the Lagrange
multiplier was shown to work under certain assumptions
on the pulse and for sufficiently slow increase of the unde-
sired frequency components [10,13]. It is nonetheless dis-
satisfying that monotonic convergence cannot be ensured
in general. An alternative filtering approach that strictly
enforces convergence interpolates between the unfiltered
field obeying monotonic convergence and the completely
filtered field destroying convergence. The strength of the
filter is then chosen in such a way that the filter barely avoids
breaking the convergence [11]. This approach comes with
considerable extra numerical effort since the interpolation
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requires additional optimization runs for each value of the
interpolation parameter.

Here, we demonstrate that spectral constraints can be
included in the optimization functional without perturbing
monotonic convergence using Krotov’s method [16–19].
The spectral constraint is expressed via its Fourier transform
as an integral over time. The corresponding integral kernel
must be written as a positive semi-definite quadratic form.
We show that this is the only requirement that needs to
be met to ensure monotonic convergence. The modified
update formula for the field corresponds to an inhomoge-
neous Fredholm equation of the second kind, i.e. an integral
equation of the form f (t) = g(t) + λ

∫ b
a K (t, t ′) f (t ′) dt ′,

where the inhomogeneity g(t) and the kernel K (t, t ′) are
given and one seeks the solution f (t). Such equations arise
frequently in inversion problems and the theory of signal
processing and can be solved efficiently using the method
of degenerate kernels. Employing this approach, we apply
Krotov’s method including spectral constraints to the opti-
mal control of non-resonant two-photon absorption.

2. Spectral constraints in Krotov’s method

In optimal control theory, the optimization problem is for-
mulated by stating the target and additional constraints in
functional form,

J [{ψk}, ε] = JT [{ψk(T )}] + Ja[ε] + Jb[{ψk}] , (1)

where JT denotes the target at final time T and {ψk(t)}
is a set of state vectors describing the time evolution of
the system. ε(t) is a real function representing the control
variable, e.g. the electric field amplitude of a laser pulse.
All additional constraints are assumed to depend either on
the control or on the states,

Ja =
∫ T

0
ga(ε, t) dt , Jb =

∫ T

0
gb({ψk}, t) dt . (2)

A common choice for ga(ε, t)minimizes the pulse intensity
or change in pulse intensity [18],

ga(ε, t) = λ0

S(t)

[
ε(t)− ε(0)(t)

]2 = λ0

S(t)
[�ε(t)]2 , (3)

with λ0 a weight to favor solutions with lower pulse ampli-
tude and S(t) a shape function to smoothly switch the pulse
on and off. Jb can be used to restrict the time evolution
to a subspace of the Hilbert space or to optimize a time-
dependent target, see Ref. [19] and references therein.

Minimization of the functional (1) yields a set of coupled
equations for the states and the control. The non-linear
optimization method developed by Konnov and Krotov [16]
provides a general, monotonically convergent algorithm.
Given Equation (3) for ga , it updates the control at iteration
step i + 1 according to [19]

ε(i+1)(t) = ε(i)(t)+ S(t)

λ0
Im

{∑
k

〈
χ
(i)
k (t)

∣∣∣∣∂Ĥ
∂ε

∣∣∣∣ψ(i+1)
k (t)

〉

+ 1

2
σ(t)

∑
k

〈
�ψk(t)

∣∣∣∣∂Ĥ
∂ε

∣∣∣∣ψ(i+1)
k (t)

〉}
, (4)

where |�ψk(t)〉 = |ψ(i+1)
k (t)〉 − |ψ(i)k (t)〉 and Ĥ is the

Hamiltonian of the system. The adjoint states |χk(t)〉 are
propagated backwards in time with the boundary condition
|χk(T )〉 determined by the final-time target JT . The choice
of the function σ(t) allows for ensuring monotonic con-
vergence [16]. The specific form of σ(t) depends on the
optimization functional and the equations of motion. It can
be estimated analytically or determined numerically, based
on the optimization history [19].

Constraints on the spectrum of the control have to be
included in the cost functional Ja . Monotonic convergence
requires a well-defined sign of Ja [18,19]. A general ex-
pression that fulfills this requirement is obtained by writing
Ja as a quadratic form. In the frequency domain, necessary
to formulate spectral constraints, the cost functional thus
becomes

Ja(ε) =
∫ ∞

−∞
�ε(ω)K̄ (ω)�ε∗(ω) dω

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
�ε(t)K (t − t ′)�ε(t ′) dt ′ dt ,

where a real kernel function K̄ in the frequency domain
and its Fourier transform K in the time domain have been
introduced. The desired spectral constraints are thus imple-
mented by the kernel function. Given Equation (5) for Ja ,
the function ga , defined in Equation (2), takes the form

ga(ε, t) = 1

2π

∫ T

0
�ε(t)K (t − t ′)�ε(t ′) dt ′ . (5)

Since the field and thus the change in the field are zero
outside of the interval [0, T ], integration can be restricted to
[0, T ]. In Krotov’s method, monotonic convergence can be
ensured if the kernel K (t − t ′) is positive semi-definite [19].
This follows directly from the condition for the change of
the functional due to changes in the control to be positive
[18,19] which in turn translates into ga being a convex func-
tion. Equivalently in the frequency domain, K̄ (ω) has to be
positive semi-definite. Monotonic convergence is therefore
guaranteed if

K̄ (ω) ≥ 0 ∀ ω . (6)

Since derivation of the update equation requires evalu-
ation of ∂ga/∂ε as a function of time [17–19], the Fourier
transform of K̄ (ω) should have a closed form in addition
to being positive semi-definite. For numerical stability, it
is furthermore desirable to use smooth kernels. A suitable
choice fulfilling these requirements are Gaussian kernels,
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K̄ (ω) = λa −
∑

i

λi
b

2

[
exp

(
− (ω − ωi )

2

2σ 2
i

)

+ exp

(
− (ω + ωi )

2

2σ 2
i

)]
,

K (t − t ′) = 2πλaδ(t − t ′)−
∑

i

λi
b(2πσ

2
i )

1/2

× cos[ωi (t − t ′)] exp

(
−σ

2
i (t − t ′)2

2

)
.

(7)

Note that we choose symmetric Gaussian kernels since we
consider here real fields.An extension to complex controls is
straightforward. For (approximately) non-overlapping
Gaussians in the frequency domain, monotonic convergence
is obtained if

λi
b ≤ 2λa ∀ i . (8)

The first term in Equation (7) reproduces Equation (3) with
λ0 = λa and S(t) = 1. For λi

b > 0, the kernel (7) imple-
ments a frequency pass for �ε(t) around the frequencies
ωi . For λi

b < 0, a frequency filter for�ε(t) around the fre-
quenciesωi is obtained. Due to the condition (8), frequency
passes are not guaranteed to be effective, i.e. the λi

b might
be too small for the spectral constraint to gain sufficient
weight. For frequency filters, no such restriction exists.
A work-around to create effective frequency passes consists
therefore in adding up sufficiently many frequency filters.
Moreover, an amplitude constraint with non-constant shape
function can be reintroduced additively in the time domain
for λi

b < 0, setting λa = 0. This does not perturb monotonic
convergence since both amplitude and frequency constraint
preserve monotonic convergence individually.

Following the prescription of Ref. [19], the update equa-
tion for Gaussian band filters around frequencies ωi and an
additional amplitude constraint imposed by a shape function
λ0/S(t) is obtained as

ε(i+1)(t) = ε(i)(t)+
∑

i

λi
b S(t)

2πλ0
(2πσ 2

i )
1/2

×
∫ T

0
cos[ωi (t − t ′)] exp

(
−σ

2
i (t − t ′)2

2

)

×
(
ε(i+1)(t ′)− ε(i)(t ′)

)
dt ′ + S(t)

λ0

×Im

{∑
k

〈
χ
(i)
k (t)

∣∣∣∣∂Ĥ
∂ε

∣∣∣∣ψ(i+1)
k (t)

〉

+ 1

2
σ(t)

∑
k

〈
�ψk(t)

∣∣∣∣∂Ĥ
∂ε

∣∣∣∣ψ(i+1)
k (t)

〉}
. (9)

This is an implicit equation for ε(i+1)(t). It is possible to
rewrite Equation (9) as a Fredholm integral equation of the

second kind for �ε(t) = ε(i+1)(t)− ε(i)(t),

�ε(t) = I (t)+ γ

∫ T

0
K(t, t ′)�ε(t ′) dt ′. (10)

The inhomogeneity I (t) depends on the unknown states
{ψ(i+1)

k (t)}.They can be approximated by calculating�ε(t)
according to Equation (4), i.e. without frequency constraints.
Propagating the states under that field yields an approxima-
tion of I (t). In our applications this turned out to be suffi-
cient. However, if the quality of the resulting approximation
of I (t) is not good enough, the field obtained from a first
solution of the Fredholm equation can be used to propagate
the states and obtain an improved approximation of I (t).
This procedure can be repeated iteratively until the desired
accuracy is reached. The remaining question is then how to
solve the integral equation (10).

Often, Fredholm equations of the second kind are solved
numerically [20] by quadrature of the integral,∫ T

0
K(t, t ′)�ε(t ′) dt ′ 	

N∑
j=1

w jK(t, t j )�ε(t j )

such that

�ε(tk) 	 I (tk)+ γ

N∑
j=1

w jK(tk, t j )�ε(t j ) ,

or collocation, i.e. expanding�ε(t) into orthonormal basis
functions c j (t) on [0, T ],

�ε(t) =
N∑

j=1

a j c j (t) .

In both cases, solution of the integral equation is reduced
to solving a system of linear equations. Alternatively, a
Fredholm equation of the second kind can be solved by
approximating K(t, t ′) by a degenerate kernel, KN (t, t ′) =∑N

j=1 α j (t)δ j (t ′) [20]. Solution of a Fredholm degenerate
integral equation again reduces to solving a system of linear
equations. For our purposes, an approach based on degen-
erate kernels [21,22] turns out to be the best option. It is
more stable than collocation and similar to the quadrature
of the integral but more direct since the kernel rather than
the integral is approximated. The solution to Equation (10)
is then given by

�ε(t) = I (t)+
N∑

j=0

X jα j (t) (11)

with α j (t) defined in Equation (12) and X j the solution of
the system of linear equations (13).

3. Control of non-resonant two-photon absorption

We apply Krotov’s method including spectral constraints,
Equation (9), to non-resonant two-photon absorption in
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sodium atoms. The goal is to transfer population from level
|3s〉 to |4s〉. Due to selection rules, this is possible only
by absorption of two photons with the transition dipoles
provided by the off-resonant |np〉 levels with the main con-
tribution coming from |3p〉. We do not invoke an adiabatic
elimination of all off-resonant levels, i.e. our Hamiltonian
includes {|3s〉, |4s〉, |np〉} with n = 3, . . . , 8 and the cor-
responding s − p transition dipole moments, taken from
Ref. [23]. Our example thus corresponds to the standard
quantum control problem of population transfer, Schrödin-
ger dynamics and linear light–matter coupling which can be
solved by the first-order variant of Krotov’s method [19], i.e.
σ(t) = 0 in Equations (4) and (9). Within this model, two
control strategies are available to transfer population from
|3s〉 to |4s〉– resonant two-color one-photon transitions with
frequenciesω3s,3p andω3p,4s or an off-resonant two-photon
transition with frequency close to ω3s,4s/2.

Non-resonant two-photon absorption has been studied
experimentally for ns to (n +1)s transitions in alkali atoms
in the weak [24–26], strong [27–29] and intermediate field
regime [30–33]. To date, optimal control calculations of
non-resonant two-photon absorption have been hampered
by a spectral spread of the field. The resulting spectral
widths by far exceed experimentally realistic values. As a
result, only solutions using one-photon transitions are found
while the experimental result of non-resonant two-photon
control [24–33] could not be reproduced. Here we employ
optimal control theory with spectral constraints to enforce
a non-resonant two-photon solution. We use Gaussian fre-
quency filters around the one-photon frequencies to sup-
press resonant dipole transitions.

Figure 1 compares the optimal pulses and their spectra
obtained by Krotov’s method with (bottom panel) and with-
out (top panel) spectral constraint, cf. Equations (9) and (4).
The frequency filters around the one-photon transition fre-
quencies are indicated in red in Figure 1(d). The central
frequency of the guess pulse is taken to be exactly the two-
photon transition frequency. Its peak amplitude is about a
fourth of that of a two-photon π -pulse. Despite the guess
pulse being fairly close to a non-resonant two-photon solu-
tion, the optimization algorithm yields a pulse that uses the
resonant one-photon transitions, cf. the three small peaks
in Figure 1(b). This is rationalized in terms of the intensity
which should increase as little as possible according to the
constraint (3) and resonant transitions requiring a lot less
intensity than non-resonant ones. Increasing the spectral
width comes at no ‘cost’ for the optimization algorithm
when no spectral constraint is present. Thus solutions that
use resonant one-photon transitions and have a broad spec-
tral width are the natural ones for optimization without
spectral constraint. Once the spectral constraint is included,
the optimization algorithm increases the pulse amplitude
until a two-photon Rabi frequency of π is hit. The spectrum
of the optimal pulse is hardly modified compared to that of
the guess pulse.

(a) (b)

(c) (d)

Figure 1. Optimized pulses and their spectra with ((c)+(d))
and without ((a)+(b)) spectral constraint. The Gaussian filters
employed in the spectral constraint are shown in red. (The color
version of this figure is included in the online version of the
journal.)

(a)

(b) (c)

Figure 2. Convergence toward the optimum (a) and dynamics
under the optimized pulses with (c) and without (b) spectral
constraint. (The color version of this figure is included in the online
version of the journal.)

Imposing an additional constraint results in a more diffi-
cult optimization problem. This is illustrated by Figure 2(a)
which compares the convergence toward the optimum for
optimization with and without the spectral constraint. In
order to reach the optimum within an ‘error’, ε = 1 − |JT |,
of 10−3 the number of iterations is increased from 71 to
87. The slower convergence of the algorithm with spectral
constraint is attributed to optimization under two conflict-
ing costs – keeping the intensity as low as possible while
avoiding certain spectral regions. The algorithm needs to
balance the two conflicting costs, which results in a more
difficult optimization problem.

While the increase in the number of iterations, when
adding the spectral constraint, is comparatively moderate,
a CPU time of about 370 s is needed for 10 iterations,
compared to only 6 s for the algorithm without spectral
constraint. This is due to the additional numerical effort
required in order to solve the Fredholm equation. This effort

D
ow

nl
oa

de
d 

by
 [

FU
 B

er
lin

] 
at

 1
1:

38
 1

3 
A

ug
us

t 2
01

4 



826 D.M. Reich et al.

scales with the number of time grid points but is independent
of the complexity of the system. The comparison of the CPU
time required with and without the spectral constraint will
be much more favorable for more complex systems. Then
most of the CPU time will be spent for the time propagation
whereas the solution of the Fredholm equation represents a
comparatively small add-on. Moreover, the numerical effort
for solving the Fredholm equation can be further reduced
by exploiting the bandedness of the matrix in Equation (13).

4. Summary

We have derived an extension of Krotov’s method for quan-
tum optimal control that allows for including constraints on
the control in the frequency and the time domain at the
same time. The key is to ensure a well-defined sign of the
integral over the spectral constraint which we have achieved
by expressing the constraint as a quadratic form. Kernels
consisting of sums over Gaussians, to be used either as fre-
quency passes or as frequency filters, turn out to be the most
practical choice. Since the Fourier transform of such a fre-
quency constraint is known analytically, a closed form of the
update equation is obtained. Monotonicity of the algorithm
imposes a limit on the weight of the constraint for frequency
passes. Therefore frequency passes may be inefficient. On
the other hand, frequency filters can be employed without
restriction. A practical work-around for frequency passes
thus consists in summing up sufficiently many frequency
filters.

The update equation that we obtain for Gaussian fre-
quency filters is an implicit equation in the control which
takes the form of a Fredholm integral equation of the second
kind. It can be solved accurately and efficiently using the
method of degenerate kernels [21,22]. Our results for non-
resonant two-photon absorption in sodium atoms show an
excellent restriction on the spectrum of the optimized pulse.
The new algorithm thus allows for reproducing experimen-
tally known control strategies for strong-field non-resonant
two-photon absorption [27–29]. It can also be used in con-
junction with quasi-Newton methods in order to achieve
faster convergence [34]. In future work, we will discuss in
detail how the spectral constraint allows for steering the
optimization pathway in the control landscape [35].
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Appendix 1. Method of degenerate kernels for the
numerical solution of Fredholm equations of the second
kind

To simplify notation, we map the time interval from [0, T ] to [0, 1].
A degenerate kernel is obtained by a tensor product ansatz for the
true kernel,

K(t, t ′) 	
N∑

j,k=0

d jkα j (t)βk(t
′) ,

with δ j (t
′) = ∑N

k=0 d jkβk(t
′), taking the basis functions to be

[21,22]

α j (t) = β j (t) =
⎧⎨
⎩1 − N

∣∣∣∣t − j

N

∣∣∣∣ , j − 1

N
≤ t ≤ j + 1

N
,

0, else .
(12)

N is the order of the approximation. At the grid points t = u/N ,
t ′ = v/N ,

KN

( u

N
,
v

N

)
=

N∑
j,k=0

d jkδ juδkv .

The choice of basis functions suggests for the coefficients

d jk = KN

(
j

N
,

k

N

)
= KN (t j , tk) ,

such that KN reasonably approximates K(t, t ′) on a time grid of
size N + 1.

It can be shown that the solution to Equation (10) is given by
Equation (11) with X j the solution of the following system of
linear equations, [

11N+1 − γC
]

X = γ b , (13)

with matrix elements

C jk =
n∑

i=0

K
(
t j , ti

) ∫ 1

0
αi (t) αk (t) dt ≡

n∑
i=0

K
(
t j , ti

)
Aik ,

where

Aik =
∫ 1

0
αi (t) αk (t) dt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3n
, for i = k = 0 or i = k = n

2

3n
, for i = k, 1 ≤ i ≤ n

1

6n
, for i = k + 1 or i = k − 1

0, else

and

bk =
∫ 1

0
I (t)

⎡
⎣ n∑

i=0

K (tk , ti ) αi (t)

⎤
⎦ dt .
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