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1. Introduction

Control refers to the ability to steer a dynamical system from 
an initial to a final state with a desired accuracy; optimal con-
trol does so with minimum expenditure of effort and resources. 
A famous example is the Apollo space mission where optimal 
control was used to safely land the spacecraft on the moon. 
The essence of this control task can be stripped down to a text-
book example where students calculate the change in accel-
eration, that is, the rate of burning fuel, required to reach the 
moon’s surface with zero velocity. This example highlights 
the central role of optimal control in any type of engineering, 
its importance being rivaled only by feedback, a subject not 
covered in this review.

In quantum optimal control [1], Newton’s equations gov-
erning the motion of the spacecraft are replaced by the 
quant um mechanical laws of motion, of course. In contrast, 
the control, corresponding for example to a radio-frequency 
(RF) amplitude or the electric field of a laser, is assumed to be 
classical. Quantum optimal control represents one variant of 

quantum control [2] and is closely related to coherent control 
[3]. The latter requires exploitation of quantum coherence, i.e. 
matter wave interference. In contrast, quantum control could 
also refer to inducing a desired dynamics, for example by 
amplitude modulations that avoid driving certain transitions, 
without matter wave interference.

Despite its prominence in mathematics and engineering  
[4, 5], optimal control was only introduced to NMR spectroscopy  
[6, 7] and to the realm of matter wave dynamics [8–10] in the 
1980s. In the latter case, the idea was to calculate, via numer-
ical optimization, laser fields that would steer a photoinduced 
chemical reaction in the desired way [8–13]. It was triggered 
by the advent of femtosecond lasers and pulse shaping capa-
bilities that opened up seemingly endless possibilities to cre-
ate intricate laser pulse trains. While a controlled breaking 
of chemical bonds was indeed demonstrated soon after [14], 
the pulses were obtained by closed-loop optimizations in the 
experiments [15] rather than from theoretical calculations. 
In experimental closed-loop optimization, a shaped pulse is 
applied to the sample, and the outcome is measured. Based 
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on the outcome, the pulse shape is modified, typically by a 
genetic algorithm. However, even for a chemical reaction as 
simple as breaking the bond in a diatomic alkali molecule, 
the calculated optimized laser field cannot directly be used in 
the experiment [16]. The reason for this is two-fold: the way 
in which the optimized laser fields are obtained is rather dif-
ferent in theory and experiment. Whereas the field in calcul-
ations is shaped as a function of time [13, 17], experiments 
employ spectral shaping [18]. As a result, calculated pulses 
are often incompatible with experimental pulse shaping capa-
bilities. Second, the theoretical modeling is simply not accu-
rate enough. This results in pulses which are optimal for the 
‘wrong’ dynamics and which can therefore not directly be 
applied in the experiments.

These obstacles are not present, or at least much less 
severe, in other fields of application [1]. Once the timescale of 
the relevant dynamics is nanoseconds or slower, pulse shap-
ing in the experiment is also performed in the time domain 
[19]. While device response might still be an issue [20, 21], 
the overall approaches in theory and experiment are similar in 
spirit. Moreover, Hamiltonians and relaxation parameters may 
be known much more accurately than is currently the case in 
photoinduced chemical reactions. A prominent example is 
NMR where the development of optimal control in theory and 
experiment went hand in hand, yielding beautiful results, for 
example on arbitrary excitation profiles [22], or robust broad-
band excitation [23, 24].

Given these observations, quantum information process-
ing (QIP) and related technologies offer themselves as an 
obvious playground for quantum optimal control: in these 
applications, typically the quantum system to be controlled 
is well characterized, and timescales are sufficiently slow to 
use electronics for pulse shaping. Not surprisingly, quantum 
optimal control has attracted much interest in these fields over 
the last decade. This included the adaptation of optimal con-
trol tools, for example to gate optimization [25–27], creation 
of entanglement [28–30], or measurement [31]. Gate optim-
izations were carried out for almost all QIP platforms, notably 
comprising ions [32], atoms [33–35], nitrogen vacancy (NV)  
centers in diamond [36, 37], and superconducting qubits  
[38, 39]. Other QIP tasks, such as state preparation [40–44], 
transport [45–47], and storage [48], have also been the subject 
of optimal control studies. These tasks are not only relevant for 
quantum computing and communication but also for related 
applications that exploit coherence and entanglement, for 
example quantum sensing or quantum simulation. Protocols 
derived with optimal control have by now reached a matu-
rity that allows them to be tested in experiments. Examples 
include the crossing of a phase transition studied with trapped, 
cold atoms [49, 50]; the improvement of the imaging capabili-
ties of a single NV center [51]; and the creation of spin entan-
glement [52], quantum error correction [37] and matter wave 
interferometry [50, 53].

All of these examples share a generic feature that is typical 
for quantum engineering: control over the system, which inev-
itably also brings about noise, needs to be balanced with suf-
ficient isolation of the desired quantum features. This sets the 
theme for controlling open quantum systems. Traditionally, a 

quantum system is defined to be open when it interacts with its 
environment [54, 55]. This interaction results in loss of energy 
and phase information. It can be modeled phenomenologi-
cally within the semigroup approach or microscopically, by 
embedding the system in a bath. Besides coupling to a bath, 
the dynamics of a quantum system becomes effectively dis-
sipative also when the system is subject to measurements or 
noisy controls.

Dissipative processes pose a challenge to quantum control. 
At the same time, desired dissipation may act as an enabler 
for control. We will review control strategies in both cases and 
then explain how optimal control theory can be used to adapt 
them to more complex quantum systems.

This topical review is organized as follows: section 2 briefly 
recalls the basic concepts in the theory of open quant um sys-
tems, introducing the distinction between Markovian and non-
Markovian dynamics in section 2.1 and addressing the issue 
of gauging success of control for open quantum systems in 
section 2.2. The problem of analyzing controllability of open 
quantum systems, an important prerequisiste for synthesizing 
control fields, is introduced in section 3.1. Progress in the con-
trol of open quantum systems is reviewed in sections 3.2 and 
4 with section  3.2 dedicated to control strategies that were 
constructed with analytical methods and section  4 cover-
ing numerical optimal control. In section 4.1, the numer ical 
methodology is explained in detail for a simple example, fol-
lowed by a discussion of the modifications required to adapt 
it to more advanced control targets. The remainder of sec-
tion  4 reviews applications of numerical optimal control to 
open quantum systems, starting with examples for fighting or 
avoiding decoherence in section  4.2. Control strategies that 
rely on the presence of the environment are discussed in sec-
tions 4.3 and 4.4. Section 5 concludes.

2. Open quantum systems

The state of an open quantum system is described by the den-
sity operator ρ̂S which is an element of Liouville space. Any 
theory that aims at the control of an open quantum system is 
faced with two basic prerequisites—the ability to calculate the 
system’s dynamics, ˆ ( )ρ tS , and the ability to quantify the suc-
cess of control.

2.1. Markovian versus non-Markovian dynamics

Formally, the time evolution of any open quantum system can 
be described by a dynamical map, ( )ˆ ( ) ˆ ( )ρ ρ= Dt 0S t S,0  which 
is completely positive and trace preserving (CPTP) [55]. The 
dynamical map is divisible if it can be written as the composi-
tion of two CPTP maps = ′ ′D D Dt t t t,0 , ,0 ⩽∀ ′t t. If the dynami-
cal map is divisible, the open system’s time evolution is 
memoryless and called Markovian. Various scenarios can lead 
to Markovian dynamics, weak coupling between system and 
environment together with a decay of environmental correla-
tions much faster than the timescales of the system dynamics 
being the most common case [55]. However, open systems 
often exhibit pronounced memory effects, in particular in 
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condensed matter experiments, which reflect characteristic 
features of the environment. The dynamics are then called 
non-Markovian. Memory effects are caused by structured 
spectral densities, nonlocal correlations between environ-
mental degrees of freedom and correlations in the initial sys-
tem-environment state [56, 57].

In the Markovian case, the dynamics can be described by 
a master equation in Lindblad form [55]. In general, it needs 
to be solved numerically to determine ˆ( )ρ t . This can be done 
with arbitrarily high precision [58]. However, the computa-
tional effort may quickly become challenging due to the expo-
nential scaling of the size of Hilbert and Liouville space. To 
date, room for improvement seems to be limited [59, 60].

The situation is worse for non-Markovian dynamics, where 
a unified framework such as the master equation in Lindblad 
form does not exist. A variety of methods have been developed 
[61], each with different assumptions and hence a different 
range of applicability. They include time-local non-Marko-
vian master equations  [55], stochastic unravellings [62–64], 
and an auxiliary density matrix approach [65]. A common fea-
ture of these methods is their ability to correctly describe ther-
malization of the system. Slightly different in philosophy are 
methods which attempt to solve the dynamics of both system 
and environment [66, 67]. It is key to account only for the part 
of the environment that is relevant for the system’s dynamics, 
i.e. for the ‘effective modes’, which can be spins or harmonic 
oscillators. The underlying idea is that of quantum simulation 
on a classical computer [68], where the true environment is 
replaced by a surrogate one that generates the same dynamics. 
If one is interested in short times, the number of modes in the 
surrogate Hamiltonian can be truncated with a prespecified 
error [69]. Longer propagation times than those computation-
ally affordable with exact dynamics of system and environ-
ment become possible by separating the environment into 
two baths, one that is responsible for the memory effects and 
that is modeled by effective modes as explained above, and a 
second one that by itself would lead to Markovian dynamics 
only. The secondary bath can be accounted for in terms of a 
Markovian master equation in Lindblad form [38, 70] or via 
a stochastic unravelling using a single secondary bath mode 
[71]. A more comprehensive overview over methods to tackle 
non-Markovian dynamics is found in [61].

Understanding the influence of memory effects requires the 
ability to quantify them. An obvious way to define a measure 
of non-Markovianity is to quantify deviation from divisibility 
[72, 73]. Interestingly, this corresponds to an increase of cor-
relations if the system is bi- or multipartite [73, 74]. Other 
measures to capture memory effects focus on specific features 
such as recoherence and information backflow. These can be 
characterized in terms of distinguishability between quantum 
states [75–77], re-expansion of the volume of accessible states 
[78], or the capacity to reliably transmit quantum information 
[79]. A comprehensive overview over the different measures 
is found in [56], and an illustrative comparison for a toy model 
is presented in [80].

The proposed non-Markovianity measures can be classified  
in a hierarchy by generalizing the notion of divisibility  
[81, 82]. While this is gratifying from a theoretical perspective, 

it is still an open question of how non-Markovianity can be 
measured in a condensed phase experiment. Although some 
of the measures have been evaluated in experiment [83, 84], 
dissipation in these examples was either engineered or artifi-
cial, in the sense that different degrees of freedom within one 
particle were considered to play the role of system and bath. A 
true condensed phase setting is more challenging due to lim-
ited control and thus limited access to measurable quantities.

Current interest in non-Markovian dynamics is fueled by 
the revival of genuine quantum properties such as quantum 
coherence and correlations that non-Markovianity entails. 
It has sparked the hope to exploit non-Markovianity as a 
resource. Quantum control in particular, which relies on prop-
erties such as coherence, should be more powerful in the non-
Markovian compared to the Markovian regime.

2.2. Measuring success of control in open quantum systems

When the goal is to control an open quantum system, the abil-
ity to gauge success of control is even more important than 
that to measure the degree of non-Markovianity. Any suitable 
figure of merit needs to fulfill two conditions: (i) it should take 
its optimum value if and only if the control target is reached; 
(ii) it needs to be computable. An obvious control target is to 
drive a given initial state to a desired target state. The corresp-
onding figure of merit is the projection onto the target state. 
For open quantum systems, this is given in terms of the Hilbert 
Schmidt product of the state of the system at the final time and 
the target state,

{ ( ˆ ) ˆ }ρ ρ= DF Tr .TT ,0 initial target (1)

This figure of merit has been used for example in control stud-
ies of cooling where the timescales of the dissipative process 
and the coherent system dynamics are comparable [85, 86]. 
Typically, the target for cooling is a pure state. Sometimes 
the timescale of dissipation is much slower than that of the 
coherent dynamics. This situation is encountered when using 
femtosecond lasers for laser cooling [87]. In order to avoid 
the very long propagation times for repeated cooling cycles 
consisting of coherent excitation and spontaneous emission as 
well as the expensive description in Liouville space, one can 
expand ρ̂initial in a basis of Hilbert space vectors and tailor the 
dynamics of the Hilbert space vectors such that the target will 
be reached irrespective of the initial state [88]. The construc-
tion of the proper figure of merit in that case will be discussed 
below in section 4.3.

An important control target in the context of quantum 
information processing is the implementation of unitary 
operations, or quantum gates. This corresponds to simultane-
ous state-to-state transitions for all states in the logical basis 
[25–27]. A straightforward way to express this control target 
in Liouville space is given by [89, 90]

D∑ ρ ρ=
=

+
F

d

1
Tr ,

j

d

j T jT
1

,0

2

O O{ ˆ ˆ ˆ ( ˆ )} (2)

where Ô denotes the desired target operation, defined on the 
logical subspace of dimension d. The set of ρ̂j forms a suitable 
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orthonormal basis of the d2-dimensional Liouville (sub)space 
or, more simply, all d2 matrices for which one entry is equal 
to one and all other zero. The Hilbert Schmidt product in 
equation (2) checks how well the actual evolution, ( ˆ )ρDT j,0 , 

matches the desired one, ρ
+

jO Oˆ ˆ ˆ . The scaling of equation (2) 
with system size d restricts its use to examples with very few 
qubits.

If the target is the implementation of a unitary operation, 
and not an arbitrary dynamical map, much fewer resources 
are required to gauge success of control. This observation is 
at the basis of all current proposals to estimate the average 
gate fidelity [91–95], which forego the full knowledge of DT ,0 
that is obtained in quantum process tomography in favor of 
efficiency. One way to understand the reduction in effort is to 
start from equation (2) and ask how many states are required 
in the sum to have a well-defined figure  of merit, i.e. a  
figure of merit that takes its optimum value if and only if the 
target operation is realized. Surprisingly, the answer to this 
question is three, independent of system size [39, 96]:

D∑ ρ ρ=
=

+
F

1

3
Tr .

j
j T jT

1

3

,0O O{ ˆ ˆ ˆ ( ˆ )} (3)

One state in equation (3) measures the departure from uni-
tarity or, more precisely, from unitality in the logical subspace, 
and two more states are necessary to distinguish any two 
unitaries1. The latter requires two states because one needs 
to determine the basis in which the unitary is diagonal and 
then check whether the phases on the diagonal are identical. 
Only two states are required because it is possible to construct 
one density operator that ‘fixes’ the complete Hilbert space 
basis, ˆ ⟩⟨ρ λ ϕ ϕ= ∑ | |=i

d
i i i2 1 , using one-dimensional orthogonal 

projectors, ⟩⟨ϕ ϕ| |i i , with non-degenerate eigenvalues, λ λ≠i j.  
A variant of equation  (3) is obtained by replacing the two 
states for the basis and phases by d states 〉〈ρ ϕ ϕ= | |j i i . This is 
still a reduction compared to the d2 states in equation (2) and 
was found to lead to faster convergence in control calculations 
than equation (3) [39]. Evaluation of both equation (3) and its 
d  +  1 state variant are much more efficient than that of equa-
tion (2) [39].

Both equations (2) and (3) target implementation of a spe-
cific unitary Ô. For difficult control problems, where a numer-
ical search can easily get stuck, it is desirable to formulate the 
control target in the most flexible way. For example, instead 
of implementing a specific two-qubit gate such as CNOT, it 
may be sufficient to realize a gate that is locally equivalent to 
CNOT, i.e. that differs from CNOT by local operations. The 
corresponding figure of merit is based on the so-called local 
invariants [29, 97]. Similarly, one can formulate a figure of 
merit for targeting an arbitrary perfect entangler [98, 99]. 
Since these figures of merit are based on the local invariants 
which in turn are calculated from the unitary evolution, exten-
sion to non-unitary dynamics requires to first determine the 
unitary part of the overall evolution. This is possible, using 

the same mathematical concepts that have led to equation (3) 
[100].

3. Control of open quantum systems

The theory of controlling an open quantum system can be 
divided into two main questions—analysis of controllability 
and synthesis of controls (called motion planning in the clas-
sical automatic control community): when the goal is to real-
ize a certain desired dynamics, it is worthwhile to check first 
whether performance of the task is possible at all, before start-
ing to search for controls that lead to the target. Section 3.1 
briefly reviews the current state of the art in controllability 
analysis of open quantum systems, whereas section 3.2 sum-
marizes strategies for control synthesis that are based on 
certain properties of the system’s interaction with its environ-
ment, and optimal control theory as a tool for control synthe-
sis will be presented in section 4.

3.1. Controllability of open quantum systems

Controllability analysis provides the mathematical tools for 
answering the question of whether the target is reachable 
[101]. In particular, a complete framework exists for finite-
dimensional systems undergoing unitary dynamics: separat-
ing the Hamiltonian into drift and control terms,

∑= + u t ,
j

j j0H H Hˆ ˆ ( ) ˆ
 (4)

the system is controllable provided the Lie algebra spanned by 
the nested commutators of 0Ĥ  and Ĥj is full rank [2, 102, 103].  
The elements of the Lie algrebra can be interpreted as tan-
gential vectors, i.e. as the directions, of the unitary evol-
ution (which is an element of a Lie group). If evolution into 
all directions can be generated, the system is controllable. 
Controllability can also be viewed in terms of connectivity 
between Hilbert space basis states [104]; it then corresponds 
to the presence of the respective matrix elements.

For open quantum systems, the evolution is not unitary 
anymore, and analysis of the Hamiltonian alone is not suffi-
cient to decide controllability: the dissipative part of the evol-
ution may prevent or enable certain states to be reached. For 
example, even if the full rank condition for the Lie algebra 
of the Hamiltonian is fulfilled, fast decoherence will inhibit 
transitions between pure states by turning any pure state into 
a mixed one. Merely the presence of non-vanishing matrix 
elements in the Hamiltonian is thus not sufficient to decide 
controllability. Their magnitude matters as well, in particular 
of those in the drift Hamiltonian 0Ĥ  that cannot be tuned by 
external controls uj. To date, rigorous controllability analysis 
does not take such a dependence on operator norms, or com-
peting time scales into account.

As a result, one needs to turn to numerical search for most 
open quantum systems, even for an example as simple as the 
central spin model [105]. This is rather unsatisfactory since a 
numerical search cannot provide rigorous answers to control-
lability, in particular lack thereof (in the sense of reachability 

1 The problem is slightly more involved if one seeks an estimate of the error 
instead of a simple yes-no answer. It is addressed in [95, 211, 212]. For 
control applications, however, equation (3) and variants are sufficient [39].
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of the target with a predetermined error ε), due to its local 
character. An extension of controllability analysis to the 
needs of open quantum systems would address this issue but 
remains an open problem to date. It would be particularly rel-
evant for open quantum systems with almost unitary dynam-
ics, which are often encountered e.g. in quantum technology 
applications.

As an example where the dissipative part of the overall 
evolution enables certain states to be reached, consider cool-
ing which turns mixed states into pure ones. Obviously, con-
trollability analysis based on the Lie rank condition for the 
Hamiltonian alone cannot provide any information on time 
evolutions which change the purity of the system’s state, 

ρ=P tTr S
2{ }ˆ ( ) .

By and large, controllability of open quantum systems still 
remains uncharted territory to date [1]. This refers in part-
icular to dynamic controllability where the analysis accounts 
for available dynamical resources such as coupling to exter-
nal fields and environmental degrees of freedom, or meas-
urements, in contrast to kinematic controllability. The latter 
implies existence of a dynamical map that transforms any 
initial state into the target state. While this existence can be 
proven for finite-dimensional systems [106], it is of limited 
relevance for practical applications since, in general, one can-
not derive any dynamical information from the proof.

To tackle controllability of open quantum systems, two 
routes can be followed: either one starts from a complete 
description of the system and its environment, or one consid-
ers the reduced description of the system alone. In the first 
case, the tools of controllability analysis for unitary dynamics 
can be employed. This way it was possible to show, for exam-
ple, that even for completely controllable system-environment 
dynamics, cooling is possible only if the environment contains 
a sufficiently large virtual subsystem which is in a state with 
the desired purity [107]. While exact solution of the combined 
system-environment dynamics is extremely challenging (and 
impossible in many cases), controllability analysis from this 
perspective is expected to significantly advance our under-
standing already for simple models and for generic questions, 
as in the example of [107]. Moreover, it appears to be promis-
ing for two reasons—it does not rely on a priori assumptions 
on the reduced dynamics, and most likely it will benefit from 
recent progress in the controllability of infinite-dimensional 
systems [108–111].

Rigorous controllability analyses for reduced dynamics 
have been limited to date to the Markovian case [112–117]. 
In particular, the sets of reachable states were characterized 
[112], and the Lindblad operators were shown to form a Lie 
wedge [114]. While the Lie wedge provides a sufficient, but 
not necessary condition for controllability, necessary but not 
sufficient criteria can be identified by considering isotropy of 
the generator of the dissipative motion [117]. Numerically, 
non-Markovian dynamics were shown to lead to SU(N ) con-
trollability (in the sense of reachability of the target with a 
predetermined error ε) for a system whose Hamiltonian allows 
for realization of SO(N) operations only [70]. However, no rig-
orous analysis of controllability for non-Markovian dynamics 

has been performed to date; it is not yet clear whether and 
under which conditions non-Markovian effects can improve 
controllability of an open quantum system.

3.2. Control strategies for open quantum systems

Control strategies that are obtained by analytical methods can 
be roughly divided into two classes—those that exploit sym-
metries in the system–bath interaction and those that make 
assumptions on the timescale of this interaction. In the first 
case, protection from decoherence is achieved by keeping 
the system’s state in a so-called decoherence-free subspace 
[118, 119]: if the system–bath interaction contains a sym-
metry, for example qubits couple indistinguishably to their 
environment, it is possible to construct a set of system states 
that are invariant under the system–bath interaction. These 
states form a decoherence-free subspace in the system’s total 
Hilbert space [118, 119]. Stimulated Raman adiabatic passage 
(STIRAP) and electromagnetically induced transparency rep-
resent examples for decoherence-free subspaces [119]. In the 
context of quantum information, two or more physical qubits, 
carried for example by atoms, can be used to encode one logi-
cal qubit that is decoherence-free [120]. Decoherence-free 
subspaces have been demonstrated, for example, in liquid-
state nuclear magnetic resonance [121] and with trapped 
ions [122]. Numerical methods can be employed to identify 
(approximate) decoherence-free subspaces [123] and to find 
an external control that drives the system dynamics into a 
decoherence-free subspace [124].

More generally, in physics the presence of a symmetry 
implies existence of a conserved quantity. In the context of 
decoherence, a symmetry in the system–bath interaction leads 
to a quantum number which is preserved under this interac-
tion. The eigenstates belonging to the preserved quantum 
number define a noiseless subsystem, i.e. a logical subsystem 
that is intrinsically protected from noise [125, 126]. The main 
limitation of this set of approaches is imposed by the existence 
of a suitable symmetry which is not necessarily available.

In the second case of control strategies that are built on 
assumptions on the timescale of the system–bath interaction, 
a trivial strategy is obtained for slow decoherence: one simply 
needs to perform the desired operation on a time scale much 
faster than that of decoherence. But this may not always be 
possible, and slow decoherence also allows for eliminating the 
effects of decoherence based on average Hamiltonian theory 
[127] or, in more intuitive terms, spin echo techniques from 
nuclear magnetic resonance and generalizations thereof. This 
set of strategies is often referred to as dynamical decoupling 
[128–131]. It relies on many quasi-instantaneous actions of 
control fields that do not allow the system to interact with its 
environment, creating an effective dynamics of the system 
alone.

Extensive work over the last two decades has allowed to 
account for e.g. pulse imperfections [132] and extend the 
technique beyond spin dynamics for which it was originally 
developed, for example to ions [133], and superconduct-
ing circuits [134]. The main limitation of the dynamical 
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decoupling approach is the finite duration of any control field 
which cannot always be made sufficiently short. By now 
dynamical decoupling has grown into a field of its own which 
has been covered by several reviews [129–131], and the reader 
is referred to these for a more in-depth analysis.

The time-dependent perspective used in dynamical decou-
pling can be translated into a frequency-space picture using 
the generalized transfer filter function approach [135, 136]. 
This allows to efficiently predict fidelities, at least for weak 
noise [137], and provides a connection to control strategies 
that decouple the system from its environment by engineering 
a spectral separation [138]. In particular, it was shown that the 
system–bath interaction can be cancelled, at least to second 
order, by choosing the time-dependence of the control field 
such that its spectrum becomes orthogonal to the bath or noise 
spectrum [138]. Such an approach requires weak coupling and 
negligible initial system–bath correlations. Moreover, the bath 
spectrum needs to be known. Another example of engineering 
a spectral separation is given by the protection of so-called 
edge states in topological insulators via band Liouvillians 
[139, 140].

In addition to clarifying the relation between time-domain 
based and frequency-domain based control strategies, the 
transfer filter function perspective also provides a practical 
tool for characterizing the noise spectral density [141]. Its 
applicability to a variety of physical platforms has already 
been demonstrated [141–143]. Noise spectroscopy provides 
an excellent starting point for deriving microscopic mod-
els for the system–environment interaction and thus a more 
thorough understanding of noise at the quantum mechanical 
level. It also allows for tailoring control synthesis to specific 
spectral features of the noise, either, if possible, by using the 
transfer filter function approach directly [136], or by exploit-
ing knowledge of these features using optimal control theory, 
in section 4 below.

4. Optimal control of open quantum systems

Quantum optimal control theory refers to a set of methods that 
synthesize external control fields from knowledge of the con-
trol target, including constraints, and the time evolution of the 
quantum system [1]. It is based on the calculus of variations, 
i.e. on formulating the control target as a functional of exter-
nal controls that realize the desired dynamics. Knowledge of 
the system’s time evolution enters implicitly via evaluation of 
the target functional and, possibly, its derivatives.

For a few exceptional cases, for example one or two spins 
(or qubits) [144–149], a harmonic oscillator [150, 151], or a 
sequence of Λ-systems subject to decay [152, 153], the exter-
nal controls can be determined using geometric techniques 
based on Pontryagin’s maximum principle [4]. Typically, 
however, the control problem cannot be solved in closed form, 
and one needs to resort to numerical optimization.

Most often, controlling open quantum systems is a difficult 
control task such that efficiency of the optimization algorithm 
is important. Therefore, mainly algorithms based on the target 
functional’s gradient have been employed for open quantum 

systems to date. They will be reviewed in section  4.1. The 
remainder of this section is dedicated to control strategies that 
were developed using numerical optimization, starting with 
strategies avoiding decoherence in section  4.2, followed by 
strategies exploiting the presence of the environment in sec-
tion 4.3 and 4.4.

4.1. Optimal control theory applied to open quantum systems

Conceptually the simplest control problem is represented 
by state-to-state transfer: given a known initial state, ρinitialˆ , 
at time t  =  0, find the external field that drives this state at 
final time t  =  T into the target state, ρ̂target, with prespecified 
error, ε. The corresponding target functional is found in equa-
tion (1) where dependence on the set of external controls {uj} 
is implicit in the time evolution, [{ }]=D D uT T j,0 ,0 .

This control problem was first stated in the context of 
laser cooling molecular vibrations [85, 154, 155]. The time 
evolution was modeled by a Markovian master equation  in 
Lindblad form, and later extended to a non-Markovian exam-
ple [86, 156]. For the sake of conceptual clarity, we present 
here the algorithm for a Markovian master equation,

[ ]ˆ
( ˆ) ˆ [ ( )] ˆ ( ˆ )ρ
ρ ρ ρ= = − +L L

t
u tH

d

d
i , ,D (5)

with the Hamiltonian of the form (4). For simplicity, we 
assume a single control u1 (t)  =  u (t) in equation  (4). In the 
example of laser cooling molecular vibrations, u(t) would be 
the electric field of a short laser pulse, and Ĥ1 in equation (4) 
the transition dipole moment of the molecule. The dissipative 
part of equation (5) is given by [55]

A A A A( ˆ ) ˆ ˆ ˆ { ˆ ˆ ˆ}
† †

L ⎜ ⎟
⎛
⎝

⎞
⎠∑ρ ρ ργ= −

1

2
, ,

k
k k k k kD (6)

where the Lindblad operators Âk model the various dissipative 
channels and {,} denotes the anti-commutator. For example, 
= | |k0kÂ 〉〈  for spontaneous decay from a level k to the ground 

state with rate γk, inversely proportional to the level’s lifetime.
Optimization algorithms are obtained by seeking an 

extremum of FT, see equation (1), with respect to the control, 
u (t). This can be done by direct evaluation of the extremum 
condition [157, 158] or by building in monotonic conv-
ergence a priori using Krotov’s method [85, 97]. The result-
ing set of coupled equations are, surprisingly, rather similar. 
The main difference is in the update of the control which can 
be performed concurrently [158], i.e. for all times t at once, 
or sequentially in time [85, 97, 157]. Guaranteed monotonic 
convergence is only obtained with a sequential update of the 
control. In this case, the equation for determining the control 
reads

σ
ρ

λ

∆ = −

=
∂
∂ ρ

+

+ +

Im
⎡

⎣
⎢
⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤

⎦
⎥
⎥

L

u t u t u t

S t
t

u
Tr .

i i

i

u

1

,i i1 1

( ) ( ) ( )

( ) ˆ ( ) ( ˆ )

( ) ( )

( )
( ) ( )

 (7)

S(t) denotes a shape function that can be used to switch the 
control on and off smoothly [159] or to impose an initial or 
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final ramp [70]; and λ is a parameter of the algorithm whose 
choice determines the step size in the change of the control. Its 
optimal value can be estimated in an automated way, similarly 
to a line search in quasi-Newton methods [160]. ˆ ( )σ t  denotes 
the so-called co-state or adjoint state, and the derivative with 
respect to the control is given by the commutator

L ⎡

⎣
⎢

⎤

⎦
⎥ρ

ρ
∂
∂

= −
∂
∂

ρ

+

+ + +u

u t

u
i , .

u u

i

,

1

i i i1 1 1

H( ˆ ) ˆ [ ( )] ˆ ( )

( ) ( ) ( )

For the common case of linear coupling to the control, as in 
equation  (4), the explicit dependence on u(i+1) vanishes and 
the commutator simply becomes H[ ˆ ˆ ]( )ρ +, i

1
1 . Nonetheless, the 

right-hand side of equation (7) depends on u(i+1) via ˆ ( )( )ρ + ti 1 , 
i.e. it is an implicit equation. Solution of the implicit equa-
tion can usually be avoided by a low order approximation in 
the iterative algorithm, employing two shifted time discretiza-
tions to represent the time dependence of states and control, 
ˆ( )ρ ti  and ( / )+∆u t t 2i  [27].

Equation (7) also depends on the state of system at time t, 
ˆ( )ρ t , and the co-state, ˆ ( )σ t . These are obtained by solving

[ ]ˆ ˆ [ ( )] ˆ ( ˆ )
( )

( ) ( ) ( )ρ
ρ ρ= − +L

t
u tH

d

d
i ,

i
i i i

D (8a)

with initial condition

ˆ ( ) ˆ( )ρ ρ= =t 0 ,i
ini (8b)

and

[ ]ˆ ˆ [ ( )] ˆ ( ˆ )
( )

( ) ( ) ( )σ
σ σ= − − L

t
u tH

d

d
i , ,

i
i i i

D (9a)

which is solved backward in time. The ‘initial’ condition is 
derived from the target functional at final time FT,

ˆ ( ) ˆ( ) ( )σ ρ= =t T .i i
target (9b)

This coupled set of equations needs to be solved iteratively, 
starting with some guess for the control, u(i=0)(t), where the 
index (i) denotes iteration.

The algorithm represented by equations (7)–(9) is straight-
forwardly extended from targeting a single state to targeting 
a unitary operation [39, 89, 90]: a unitary operation Û can be 
viewed as several simultaneous state-to-state transfers [26, 
27] which are all driven by the same control. Consequently, 
equation (7) becomes

( ) ( ) ˆ ( )
( ˆ )( )

( ) ( )
∑ σ

ρ

λ
∆ =

∂

∂
ρ= + +

Im

⎡

⎣

⎢
⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤

⎦

⎥
⎥

L
u t

S t
t

u
Tr ,

j

M

j
i j

u1 ,j
i i1 1

 (10)

and equations (8) and (9) need to be solved for M states ˆ ( )ρ tj  

and M co-states ˆ ( )( )σ tj
i  simultaneously. As explained in sec-

tion  2.2, it was first believed that the sum in equation  (10) 
has to run over M  =  d2 states where d is the dimension of 
the space on which the desired operation is defined [89, 90]. 
The initial conditions ˆ ( )ρ =t 0j  are then given by orthogo-
nal basis states spanning this space. Recently it was shown 
that M can be reduced all the way down to 3 in which case 

the states discussed in section 2.2 need to be taken as initial 
conditions ˆ ( )ρ =t 0j  [39]. The initial conditions for the co-
states are always given in terms of the desired target opera-

tion, σ ρ= ∼ =
+

t T t 0j jU Uˆ ( ) ˆ ˆ ( ) ˆ , up to a suitable normalization 
[39]. Moreover, weights may be introduced in ˆ ( )σ =t Tj  to 
speed up convergence by attaching different importance to 
different basis states ˆ ( )ρ =t 0j  [39].

Extension of the optimization algorithm to more flexible 
control targets, such as an arbitrary perfect entangler [98, 99]  
instead of a specific unitary, requires two steps. First, a 
modified target functional results in a modification of 
equation  (9b): the right-hand side of equation  (9b) will be 
replaced by the derivative of the new target functional with 
respect to the states, ρ̂j, evaluated at time t  =  T. For a target 
functional based on the local invariants, this requires, in part-
icular, the unitary part of the overall actual evolution to be 
determined, as explained in section 2.2. Second, dependence 
of the functional on the states ρ̂j may be non-convex. In this 
case, equation  (10) needs to be amended by a second term 
in its right-hand side [97] which depends additionally on the 

change in the states, ˆ ˆ( ) ( )ρ ρ−+
j
i

j
i1 . While the additional compu-

tational effort for evaluating the control update is negligible,  
storage of all ˆ( )ρ j

i  is necessary and may become a limiting 
factor when scaling up the system size. Such extensions of 
the optim ization algorithm to control targets other than a spe-
cific state or unitary have been applied to coherent dynamics 
[29, 97–99]. For open quantum systems, they are still under 
exploration.

Typically, more than one solution exists to a quantum con-
trol problem. When using the basic optimization algorithm 
presented above, it will then depend on the initial guess u(0)(t) 
which solution ( )�u t  the algorithm identifies. Two strategies 
can be employed in order to fine-tune the iterative search and 
guide it toward a solution with certain desired properties—
careful selection of the initial guess by scanning or preoptim-
ization [161] or use of additional constraints [162, 163]. In 
the first case, the initial guess needs to be parametrized in a 
suitable form, for example in terms of amplitudes and phases 
of Fourier components, or amplitudes, widths and positions 
of Gaussians. These parameters can easily be pre-optimized 
within a prespecified range employing a standard gradient-
free optimization method [161]. When the result is used 
as an initial guess in the optimization algorithm presented 
above, the ensuing fine-tuning will usually not lead to dras-
tic changes in the field, keeping it close to the parametrized 
form [161].

A more stringent way to enforce certain desired proper-
ties of the control solution is obtained by employing addi-
tional constraints [162, 163]. This comes at the expense of 
a modified optimization algorithm. An explicit description 
for deriving the modified algorithms is available when using 
Krotov’s method [97]. It allows for formulating constraints 
as a functional of the control, with the only condition that 
the functional be positive (or negative) semidefinite [163]. 
This requirement is necessary to ensure monotonic conv-
ergence. As an example, consider a spectral constraint on the  
control [163],
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[ ( )] ( ) ( ) ( )∫ ∫π
= ∆ − ∆′ ′ ′J u t u t K t t u t t t

1

2
d d ,

T T

spec
0 0

 (11)

where − ′K t t( ) is the Fourier transform of a spectral filter 
˜ ( ) ⩾ωK 0. As a result, the update equation  for the control 

becomes a Fredholm equation  of the second kind [163]. A 
judicious choice of the shape function S(t) allows for ana-
lytically solving the Fredholm equation in frequency domain 
such that the additional numerical effort for including the 
spectral constraint consists merely in two additional Fourier 
transforms [164]. More than one constraint may be employed 
at a time, with different weights allowing the importance of 
one compared to another to be emphasized [162, 164]. While 
additional constraints provide information that guides the 
optimization algorithm, they also restrict the space of admis-
sible solutions [165, 166]. Therefore care needs to be taken to 
balance their benefits and their disadvantages.

4.2. Fighting and avoiding decoherence

While it is probably the dream of every control engineer to 
discover unthought of control schemes, a more realistic sce-
nario starts from a known control strategy, as those described 
in section 3.2, and extends it to a wider range of conditions, 
new types of systems, or new types of dissipative processes 
using the optimization techniques described above.

One of the most popular control strategies in the area of 
quantum technologies currently is dynamical decoupling 
[130, 131]. While already powerful in itself, dynamical decou-
pling can be made more robust by numerical optimization 
that targets specific noise features that were previously unac-
counted for, using, for example, the gradient-ascent technique 
[167] or genetic algorithms [168]. In these examples, optim-
ization did not compromise feasibility of the pulse sequences. 
Moreover, the length of dynamical decoupling sequences can 
be minimized [169]. Dynamical decoupling and numerically 
optimized pulses can also complement each other, as recently 
demonstrated for entanglement generation and distribution in 
NV centers in diamonds [52].

A second successful control strategy described in sec-
tion 3.2 is based on decoherence-free subspaces and noiseless 
subsystems. These are somewhat less often used than dynami-
cal decoupling, mainly due to the difficulty of identifying 
them for more complex systems. While direct identification 
of decoherence-free subspaces is hampered by the pres-
ence of numerous traps in the search space [123], quantum 
optimal control may be used to dynamically identify them. 
Indeed, optimization of an open system’s dynamics for tar-
gets that rely on quantum coherence is intrinsically biased 
toward those subspaces in Hilbert (or Liouville) space that 
are least affected by decoherence [170]. For example, transfer 
of coherence and polarization between coupled heteronuclear 
spins was improved by cross-correlated relaxation optimized 
pulse (CROP) sequences and relaxation optimized pulse ele-
ments (ROPE) [144, 145, 171, 172]. Optimization can take 
both longitudinal and transveral relaxation into account [171]. 
The underlying mechanism was revealed to consist in tun-
ing cross-correlated to autocorrelated relaxation rates [144]. 

Counterintuitively, maximum polarization transfer between 
coupled spins was achieved with sequences that are longer 
than conventional ones [145], highlighting the importance of 
including the dissipative dynamics in the optimization.

Finally, if all regions in Hilbert space are similarly affected 
by decoherence, an obvious control strategy consists in beat-
ing decoherence by the fastest possible operation. This strat-
egy is faced, however, with the so-called quantum speed limit,  
i.e. a fundamental bound on the shortest operation time  
[173, 174]. For a two-level system, it can be estimated ana-
lytically [175]. For more complex systems, optimal control 
theory can be used as a tool to both identify the quantum 
speed limit and determine controls that drive the system at 
the quantum speed limit [46]. For example, the shortest pos-
sible duration of entangling quantum gates was determined 
for cold, trapped atoms [34] and for superconducting qubits 
[39, 176]. In quant um dots, phonon-assisted decoherence 
was minimized [177, 178]. Interestingly, the presence of the 
environ ment may improve the quantum speed limit [179, 
180]. This has not yet been explored systematically but could 
be done, using quant um optimal control.

4.3. Cooling and quantum reservoir engineering

The example of cooling [85, 86, 88, 148, 149, 155, 156, 181, 182]  
was already taken as reference to introduce optimal control of 
open quantum systems in section 4.1. Since cooling changes 
the purity of the state, it relies on the presence of the environ-
ment. When using the algorithm outlined in section 4.1, the 
control that drives the cooling process is determined for each 
initial state separately. Alternatively, one may seek a control 
that will lead to cooling irrespective of the initial state [88]. 
Such an approach is particularly useful if the timescales of the 
coherent and the dissipative dynamics is different, as in the 
case of optical pumping [87], which consists of many repeated 
cycles of excitation and spontaneous emission. The theor etical 
framework lends itself to generalization to quantum reservoir 
engineering which is why it is outlined in more detail in the 
following.

The idea is to start from an orthogonal basis for the space 
on which the initial states are defined and ensure transitions 
favorable to cooling for every basis state [88]. In the case of 
optical pumping, these are transitions into states from which 
spontaneous emission preferrably occurs to the cooling target. 
As is usual in quantum optimal control, this control task is 
stated in terms of a yield functional. Additionally, the con-
trol should not excite any population which has already been 
accumulated in the cooling target state. In other words, the 
cooling target should remain a steady state of the evolution. 
This requirement is translated into a second term in the optim-
ization functional, besides the yield. Moreover, it is often not 
possible to cool arbitrary initial states, due to limitations on 
control bandwidth. Instead, one can seek to cool states which 
are defined on a certain subspace. This results in an additional 
term in the optimization functional that suppresses leakage 
from this subspace in order to keep the cooling cycle closed. 
Finally, one needs to guarantee that for all basis states cooling 
occurs with the same efficiency; otherwise the cooling might 
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get stuck. This can be achieved either by imposing symmet-
ric excitation of all basis states or by having all basis states 
form an ‘assembly line’, i.e. enforce one specific excitation 
pathway for all states. All requirements need to be met simul-
tanously and, consequently, the optimization functional con-
sists of four terms—one for the yield, one of the steady state, 
one to suppress leakage and one to ensure symmetric excita-
tion or enforce a specific excitation pathway for all states [88].

Application of this optimization framework showed that 
laser cooling of molecular vibrations is possible even in cases 
where the molecular structure favors heating rather than 
cooling [88]. It also answers the question about the minimal 
requirement on the molecular structure to realize, with shaped 
pulses, cooling instead of heating, assuming no constraints on 
the control—existence of one state which undergoes spontane-
ous emission with moderate probability into the cooling target.

If the molecular structure is favorable to cooling vibrations, 
an optimized laser pulse results in a substantially smaller 
number of cooling cycles than an unshaped pulse [88]. A sim-
ilar speed up of the cooling due to pulse sequences obtained 
from quantum optimal control theory has also been reported 
for an optomechanical resonator [181] and for trapped, quasi-
condensed cold atoms [182].

Laser cooling can be viewed as a particular example of 
quantum reservoir engineering [183–185], where a desired 
state becomes the ‘ground state’ of a driven dissipative sys-
tem. It holds the promise of a particularly robust control strat-
egy. However, applications of quantum reservoir engineering 
have been limited to quantum optics to date. In condensed 
phase settings, both desired and undesired dissipative chan-
nels come into play, and non-Markovian effects may occur. 
Thus, quantum reservoir engineering in the condensed phase 
represents a challenging control problem.

As with any control problem, two questions need to be 
tackled—that of controllability and that of control synthe-
sis, i.e. what states are attainable and how can the necessary 
driving be realized. The first question has been answered for 
generic models, such as a two- and a four-level system and 
a harmonic oscillator, that undergo Markovian dynamics 
[186]. The obtained understanding of controllability can be 
exploited to construct dissipative channels that allow for the 
robust generation of long-distance entanglement [187]. The 
question of which states are attainable in the presence of addi-
tional undesired dissipative channels, a generic feature of any 
condensed phase setting, has not yet been tackled to date. A 
possible influence of non-Markovian effects on the reachable 
states has also not yet been addressed.

Control synthesis may be achieved in several ways. First, 
incoherent control by the environment, for example, via cer-
tain population distributions in the environmental modes, may 
be used to control the system [188]. However, this contradicts 
the assumption that the environment by definition is uncon-
trollable. Alternatively, measurements effectively lead to dis-
sipative dynamics and may thus be used to generate desired 
dissipation [189–193]. They may be augmented by suitably 
tailored coherent excitation for more effective control [194]. 
Quantum reservoir engineering may also be formulated as 
an optimization problem where the target is a certain desired 

steady state. An optimization algorithm is obtained by gener-
alizing the theoretical framework for laser cooling [88] out-
lined above. However, the search space is even larger than for 
a standard quantum control problem; the efficient numerical 
implementation is an open challenge. Meeting this challenge 
would allow for exploring quantum reservoir engineering in 
the presence of undesired dissipation typical for condensed 
phase settings and in the non-Markovian regime.

4.4. Exploiting non-Markovianity for quantum control

It was shown already several years ago that non-Markovian 
evolution may ease control [38, 195], and cooperative effects 
of dissipation and driving were reported [86]. However, a 
more thorough understanding of the nature of non-Markov-
ianity was required to understand its interplay with quantum 
control. As described in section 2.1, non-Markovianity has in 
the meantime been characterized in terms of information flow 
from the environment to the system [75], increase of correla-
tions in a bipartite system [73], or re-expansion of the volume 
of accessible states [78], among others. The important point in 
the context of quantum control is that each of these measures 
holds a promise for better control: correlations between sys-
tem and environment may improve fidelities of single qubit 
gates [38], cooperative effects of control and dissipation may 
allow for entropy export and thus cooling [86, 149]; harness-
ing non-Markovianity may enhance the efficiency of quantum 
information processing and communication [79, 196].

A first example of exploiting non-Markovianity for quant um 
control was reported in [70], showing that, for an anharmonic 
ladder system, the environment may be utilized to extend pos-
sible operations from SO(N ) to SU(N ). Presence of at least one 
two-level defect in the environment that is sufficiently isolated 
and sufficiently strongly coupled to the system was identified 
as a prerequisite for the observed controllability enhancement. 
Such conditions are found in current experiments with super-
conducting circuits and other systems which are immersed 
in a small, ‘natural’ spin bath, for example color centers in 
diamond.

The limited number of optimal control studies of open 
quantum systems with non-Markovian dynamics [38, 70, 86, 
149, 195] testifies to the fact that control of these systems 
remains largely uncharted territory. The full potential of the 
specific features of non-Markovian dynamics for quantum 
control remains yet to be explored. Open questions include, 
for example, how the build-up of memory influences con-
trol; whether specific features of the spectral density can be 
exploited for control, and if so, how. The tools for perform-
ing these studies, both in terms of simulating non-Markovian 
dynamics [61] and carrying out optimal control calculations, 
see section 4.1, have been developed and are there to be used.

5. Conclusions

The present review has been focused on control of open quant um 
systems as they are encountered in the field of quant um tech-
nologies. It will be concluded by briefly mentioning examples 
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from other fields of current interest: quantum optimal control 
for open systems has been employed in the context of quant um 
thermodynamics, in order to determine the optimal efficiency 
of a noisy heat engine [197]; biological chromophore com-
plexes, in order to maximize exciton transfer [198, 199]; 
molecules immersed in dissipative media, in order to maxi-
mally align them with respect to a laboratory axis [200–202]; 
molecular junctions, in order to control the current, shot noise 
and Fano factors [203]; as well as chemical reaction dynamics 
[204–206], including charge transfer in molecules [207], and 
surface photochemistry [208–210]. The numerous applications 
attest to the maturity as well as versatility of the quantum con-
trol toolbox [1].

At this stage, three rules for controlling open quantum sys-
tems may tentatively be formulated:

 1. If the desired operation shall keep pure states pure, 
Markovian dynamics are unwanted. The effect of the 
environment in this case is detrimental. A suitable strategy 
is then to perform any desired operation as fast as pos-
sible. Quantum optimal control theory is a viable tool to 
determine both the shortest operation time and the control 
that drives the desired dynamics. The actual dissipative 
processes may be neglected during the optimization for 
computational simplicity. Explicit account of the dissipa-
tive processes comes at a significantly larger numerical 
cost but allows for identifying subspaces which are less 
affected by or even immune to decoherence.

 2. If the desired operation changes the purity of the sys-
tem’s state, the presence of the environment is necessary 
for realizing the control target. In this case, Markovian 
dynamics may be desired: the control target is reachable 
if it is a fixed state of the Liouvillian. External control 
fields may be used to ensure that this is the case. The 
corresponding control strategy is referred to as quantum 
reservoir engineering. If the Liouvillian has several fixed 
points, external fields may also be used to drive the 
dynamics to the desired one. The role of non-Markovian 
effects in this type of desired dissipation has not been 
explored to date.

 3. Non-Markovian dynamics in general may have both 
beneficial and detrimental effects on controlled quantum 
dynamics. Improved controllability is a first example of a 
benefit. It requires the presence of a few strongly coupled 
and sufficiently isolated environmental modes which can 
effectively act as ancillas2, and use of quantum optimal 
control for properly exploiting these modes. An improved 
quantum speed limit is a second example.

While the number of examples for successful control of 
open quantum systems is growing, our current understanding 
of controllability and the most promising control strategies for 
open quantum systems is still rather limited. In particular, a 
thorough understanding of the role of non-Markovian effects is 
lacking to date, and it is currently still unknown which features 
of non-Markovianity can be exploited for quantum control.

Investigation of a larger range of models, with both small 
and large baths, consisting of harmonic modes and spins, and 
a systematic analysis of non-Markovianity may elucidate this 
question. Such an improved understanding would not only be 
crucial for advancing quantum technologies but would also be 
beneficial for adjacent fields such as condensed matter physics 
or chemical reaction dynamics.
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