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Abstract
We theoretically investigate pump-dump photoassociation of ultracold
molecules with amplitude- and phase-modulated femtosecond laser pulses.
For this purpose, a perturbative model for light-matter interaction is developed
and combined with a genetic algorithm for adaptive feedback control of the
laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in
a magneto-optical trap. We find that optimized pulse shapes may maximize the
formation of ground state molecules in a specific vibrational state at a pump-
dump delay time for which unshaped pulses lead to a minimum of the formation
rate. Compared to the maximum formation rate obtained for unshaped pulses
at the optimum pump-dump delay, the optimized pulses lead to a significant
improvement of about 40% for the target level population. Since our model
yields the spectral amplitudes and phases of the optimized pulses, the results
are directly applicable in pulse shaping experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the challenges in contemporary atomic and molecular physics is the making of ultracold
molecular samples [1–3]. Direct cooling techniques for molecules have not yet reached
the ultracold regime (T < 1 mK). Instead, ultracold atoms are assembled to molecules
using magnetic Feshbach resonances [4] or photoassociation [5, 6]. In the latter case,
typically a continuous-wave (cw) laser excites a pair of colliding atoms into a long-range
molecular state. Subsequent spontaneous emission leads to molecules in their electronic
ground state. In view of prospective applications, stable ultracold molecules, i.e. molecules
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Figure 1. The pump-dump scheme for the production of ultracold molecules with short laser pulses.
A wavepacket is created in the excited state by a pump pulse (1) and subsequently propagates (2).
A dump pulse transfers population to the target bound ground state level after a suitable time
delay (3).

in their absolute rotational, vibrational and electronic ground states are required. However,
molecules formed with Feshbach resonances are created in the highest bound vibrational level
[4]. Photoassociation with a cw laser followed by spontaneous emission forms molecules in a
range of vibrational levels [7]. In this case, the radiative lifetime of the excited electronic state
ultimately represents the rate-determining step in ground state molecule formation. When
applied to a Bose–Einstein condensate (BEC), the incoherent nature of the spontaneous decay
furthermore destroys the coherence of the BEC and hence the condensate itself [8]. This
may be avoided by stimulated Raman transitions [9]. Recently, light-driven Rabi oscillations
between atoms and molecules have also been observed [10]. Using cw photoassociation in
combination with nanosecond-pulsed Raman transitions, the formation of RbCs molecules in
the v = 0 level of the ground electronic state has been achieved [11].

An alternative approach to ultracold molecule formation is the photoassociation with
time-dependent laser fields of femtosecond to picosecond pulse durations. The conceptually
simplest pulsed photoassociation scheme is based on a two-pulse pump-dump population
transfer from the atomic continuum to a bound molecular level [12], as shown in figure 1.
The pump pulse excites a molecular wavepacket of the vibrational states within its bandwidth,
which then propagates until it is dumped to the ground state by a second laser pulse. By
modifying the delay time between the two pulses, the transition to one or several desired target
vibrational levels in the ground state can be enhanced by quantum interference. Here, the
production rate is not limited by the radiative lifetime of the intermediate state, but by the much
shorter vibrational period, by the Franck–Condon factors and ultimately by the unitarity limit
of the scattering rate [8, 13]. The particular advantage of this approach is that the pump-dump
delay time and the pulse shapes yield additional control knobs to prepare specific product
states, which is extensively explored in the field of adaptive feedback control with shaped
femtosecond pulses [14, 15]. A number of theoretical studies have investigated the use of
chirped laser pulses for excitation [16–18] and stabilization [19, 20] of ultracold molecules.
Even larger control over the molecule formation process might be obtained by shaped laser
pulses. Laser pulses which optimize the formation of ultracold molecules from an atomic BEC
have been calculated using the optimal control theory [21]. In many cases, the complexity of
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the pulse shapes resulting from optimal control calculations requires a careful transformation
into experimentally achievable pulse shapes [22, 23].

In this paper, adaptive feedback control of photoassociation with femtosecond laser pulses
is investigated theoretically. For this purpose, the properties of typical femtosecond oscillator
pulses and a realistic pulse shaping device are combined with a closed-loop genetic algorithm
for pulse shape optimization. The resulting pulse shapes are obtained as amplitudes and
phases in the frequency domain, similar to the case in closed-loop adaptive feedback control
experiments. The parameters of the calculations are chosen to correspond to a situation,
which is typical for state-of-the-art experiments [24]. A two-channel model is employed,
which simplifies the complex coupled-channel dynamics, but retains the important features of
pump-dump photoassociation. The goal of this study is to qualitatively determine to which
extent the formation process of ground state molecules can be controlled by realistic shaped
laser pulses.

The first experiment on photoassociation with femtosecond laser pulses has been carried
out on hot mercury atoms [25]. In the ultracold regime, electronically excited Na2 molecules
have been formed using picosecond pulses near-resonant to the sodium D1 transition and
probed with a subsequent laser pulse [26]. Chirped nanosecond laser fields have been employed
to enhance inelastic collision rates in an ultracold gas [27]. Also, the effect of the chirp of
femtosecond pulses on the dissociation of ultracold Rb2 molecules has been investigated [28].
Recently, adaptive feedback control with shaped femtosecond pulses has been applied in our
group to optimize the dissociation of ultracold Rb2 molecules from a magneto-optical trap
[24]. We envision that the work presented in this paper will be helpful for the first experimental
demonstration of ultracold ground state molecule formation using pulsed photoassociation,
which has not been achieved to date.

The paper is organized as follows: the model of two colliding atoms interacting with the
laser fields is described in section 2.1. A perturbative treatment of the interaction with the field
is employed in section 2.2 to obtain a model for the pulse shaping device. Its optimization
with a genetic algorithm is outlined in section 2.3. The results are presented in section 3.
The validity of the perturbative model is tested in section 3.1 by a comparison to full, non-
perturbative quantum calculations. In section 3.2 and 3.3 the results for optimal laser pulses
for pulsed photoassociation, as obtained from adaptive feedback control, are presented and
analysed.

2. Model for the photoassociation process

2.1. Interaction of two colliding atoms with a laser field

A colliding atom pair subject to a laser pulse is considered. Two electronic states coupled by the
radiation field are taken into account with the assumption of the rotating wave approximation.
The centre-of-mass motion of the two atoms is assumed to be decoupled from the internuclear
dynamics. The time-dependent Schrödinger equation then reads

ih̄
∂

∂t

(
ψg(R, t)

ψe(R, t)

)
= Ĥ

(
ψg(R, t)

ψe(R, t)

)
, (1)

with

Ĥ =
(

T̂ + Vg(R) h̄�(t)

h̄�∗(t) T̂ + Ve(R) − �

)
. (2)

The wavefunction consists of one component for the ground state, ψg(R, t), and one
component for the excited state, ψe(R, t). The diagonal elements of the Hamiltonian are
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given by the kinetic energy operator T̂ and the potential energy curves for the respective
states Vg/e(R) which depend on the internuclear separation R. The zero of energy is chosen
to correspond to the ground state dissociation limit. Within the rotating wave approximation,
Ve is shifted by the detuning � with respect to Vg where � = h̄(ωge − ωL). ωge denotes
the atomic transition frequency and ωL denotes the carrier frequency of the laser. The
off-diagonal elements of the Hamiltonian are given by the complex time-dependent Rabi
frequency �(t), which is related to the electric field Ẽ(t) by �(t) = µẼ(t)/h̄. Here, µ

denotes the dipole matrix element of the two molecular electronic states under consideration.
In the following, the R-dependence of this matrix element is neglected and its asymptotic value
is employed, µ = 2.537×10−9 cm for the Rb D1 line. The laser pulse is assumed to be derived
from a Gaussian transform-limited pulse sent through a pulse shaping device as detailed in
section 2.3.

The two channels under consideration for the calculations are the singlet ground state
X1�g(5s + 5s) and the excited state 0+

u(5s + 5p1/2) of 85Rb2. The wavelength of the
asymptotic (atomic) transition corresponds to 794.9 nm. The potential energy curves are
derived from ab initio data [29] at short distances and long-range dispersion potentials
(−C3/R

3) − C6/R
6 − C8/R

8 for distances larger than the LeRoy–Bernstein radius. The
coefficients for the 5s + 5s asymptote are found in [30], while the coefficients for the 5s + 5p
asymptote are taken from [31]. Hund’s case (c) representation of the potential energy curves
is obtained by diagonalizing Hund’s case (a) potentials coupled by spin–orbit interaction [32].
The spin–orbit coupling matrix element is set to the atomic value. The R-dependence and
the resonant character of the spin–orbit coupling are neglected. The latter leads to strong
perturbations in the vibrational spectrum [33] providing an efficient stabilization mechanism
for pump-dump photoassociation [20]. However, its treatment would require a three-channel
model, and the focus of this study is on the qualitative understanding of possible control over
the wavepacket dynamics.

Hamiltonian equation (2) is represented on a grid using the mapped Fourier grid method
[34, 35]. A grid of 1024 points extending up to 27 000 Bohr radii is chosen. This size
is necessary to obtain a reliable representation of continuum scattering states [18]. The
binding energies E

g/e
v and wavefunctions ϕ

g/e
v (R) of the vibrational levels are computed by

diagonalizing Hamiltonian equation (2) with �(t) = 0. The Franck–Condon factors are
then obtained as scalar products, |〈v|w〉|2 = ∫

dR
∣∣ϕe

v(R)∗ϕg
w(R)

∣∣2
. To test the validity

of the perturbative model which is explained in the following section, the time-dependent
Schrödinger equation (1) is solved with the Chebyshev propagator method [36].

The initial state of the colliding atom pair is chosen such as to describe an ultracold
atomic gas in a magneto-optical trap. Due to the low temperatures of about 100 µK, only
a narrow band of continuum states above the ground state potential asymptote is occupied.
The considerations in this study focus on a single initial continuum state with collisional
angular momentum l = 0, i.e. an s-wave scattering state. This assumption is justified since
the continuum wavefunctions corresponding to temperatures �500 µK possess an identical
nodal structure at short and intermediate internuclear distances. A thermal average over all
possible initial states is only required for absolute molecule formation rates, which is beyond
the scope of the present study.

2.2. Model of the photoassociation process with shaped laser pulses

In the following, a perturbative model of pump-dump photoassociation with arbitrarily phase-
and amplitude-modulated laser pulses is presented. Such shaped laser pulses are prepared
experimentally by passing the spectrally dispersed pulses through a liquid crystal modulator
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array. In each pixel of such a pulse shaper, the phase and the amplitude of the corresponding
frequency component of the pulse can be computer controlled.

The photoassociation pulse creates a time-dependent wavepacket in the excited state.
After the pulse is off, the excited state wavefunction ψe(R; t) is given by a superposition of
vibrational levels in the excited state. If the interaction can be treated perturbatively, i.e. the
Rabi angle, θ = ∫

�(t) dt , is small compared to π , the pulse excites the superposition of
vibrational levels given by [37]

ψe(R; t) ∝
∑

v

avE(ωv)〈v|E〉ϕv(R) e−iEe
v t/h̄, (3)

where 〈v|E〉 is the overlap integral of the initial continuum state |E〉 and the excited state
vibrational level v; its square corresponds to the free-bound Franck–Condon factors. The
frequency spectrum of the electric field of the laser pulse, E(ω), is evaluated at the transition
frequency ωv to the vibrational level v. The av coefficients are introduced to represent the
complex modulation coefficients of a pulse shaper. This description assumes that the frequency
components for each contributing v are individually resolved by the pulse shaper. As one can
experimentally only diminish spectral components, one obtains the constraint 0 � |av| � 1.
Equation (3) is only valid if the pulse does not contain significant amplitude at frequencies
close to resonance with the atomic transition. This is due to the strongly increasing transition
strength close to the atomic resonance, which leads to a breakdown of the perturbative treatment
for typical laser intensities. We estimate that the perturbative model is valid if the detuning of
the laser pulse spectrum with respect to the atomic transition is large enough so that minimal
excitation of the atomic transition occurs. After a delay time �t , a second or dump pulse
E ′(ω) is applied. This pulse transfers population from the excited state to the ground state; it
is assumed not to be shaped by a pulse shaper. The resulting superposition of bound ground
state levels reads

ψbound
g (R; t) ∝

∑
v,w

avE(ωv)E ′(ωvw)〈E|v〉〈v|w〉ϕw(R) e− i
h̄
E

g
w(t−�t) e− i

h̄
Ee

v�t . (4)

Note that this description is only valid for non-overlapping pulses because transient dynamics
that occur during the excitation process are not included. Therefore, only delay times �t that
are large compared to the duration of the pump and dump pulses are chosen. In equation (4),
v runs over all bound vibrational levels of the excited electronic state and w over all bound
levels of the ground state. 〈v|w〉 are overlap integrals between ground and excited state bound
levels. The time delay between the two pulses enters the expression through the phase factors
e−iEe

v�t/h̄ which corresponds to the propagation of the wavepacket in the excited state. The
population of an individual bound ground state level w is now given by

|bw|2 =
∑
v,v′

avav′∗E(ωv)E ′(ωvw)E∗(ωv′)E ′∗(ωv′w) 〈E|v〉〈v|w〉〈w|v′〉〈v′|E〉 e− i
h̄
(Ee

v−Ee
v′ )�t .

(5)

This double sum over the excited state vibrational levels v and v′ can be concisely written as
a complex quadratic form in terms of the pulse modulation coefficients av ,

|bw|2 =
∑
v,v′

av′∗Mvv′
w (�t)av. (6)

The Franck–Condon matrix Mvv′
w (�t) contains the properties of the system (overlap integrals

and binding energies) and of the frequency spectrum of the two laser pulses and their pulse
delay.
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It can be inferred from equation (6) that the choice of modulating the pump pulse and not
the dump pulse is in fact arbitrary since the same structure of equation (6) is obtained if the
dump pulse or both pulses are shaped. Equation (6) serves two purposes. First, for a given
target level w, it can be used to obtain the optimal detuning of the pulses by evaluating |bw|2
for different delay times �t . Second, it allows for the implementation of an optimization
procedure as explained in the following section.

2.3. Genetic algorithm for the pulse optimization

In the following, the photoassociation pulse shall be optimized while the dump pulse is
assumed to be transform limited. An optimization algorithm is obtained by combining the
analysis of the target state equation (6) with a spectral decomposition of the pulse. The
photoassociation pulse which yields the desired excited state wavepacket can, in principle,
be spectrally composed from a set of weighted delta functions at the transition frequencies
corresponding to the vibrational states v [37]. This spectrum of a few sharp structures leads
to very long pulses in a time domain, which is unfavourable for our perturbative model of a
pump-dump scheme as explained above. The photoassociation pulse is instead constructed
from a coherent superposition of a larger number of frequency components,

h̄�(t) = µ

Np∑
n=1

cnE(ωn) ei(ωn−ωL)t , (7)

which leads to a shorter pulse in the time domain. The frequency spectrum of the pump and
dump laser pulses before modifications by the pulse shaper is assumed to be a Fourier-limited
Gaussian pulse E(ωn) ∝ exp[−(ωn − ωL)2/2
2] with a root-mean-square width 
. Each ωn

corresponds to a pixel in the pulse shaper mask; ωL is again the carrier frequency of the laser
pulse. The pixel number Np is set to 640 and the frequency spacing from pixel to pixel is
set to 1.5 cm−1, which are numbers used in experimentally available pulse shaping devices.
This leads to a pulse shaper resolution that is smaller than the vibrational level spacing for
almost all the excited vibrational levels. The pulse shaper coefficients cn are set equal to the
desired superposition coefficients av from equation (6), where v is the excited state level for
which h̄Ev is closest to ωn. The range of vibrational levels which contribute to the population
in the excited state is identified by the non-vanishing matrix elements of Mvv′

w . In the present
case, this range consists of 150 levels ranging from v = 170 (Tvib = 0.77 ps) to v = 320
(Tvib = 80.0 ps). The discreteness of the spectrum, equation (7), still leads to unwanted replica
effects in the time domain. The pulse is therefore multiplied with a box function of the form
exp[−(t/Tcutoff)

m] with m = 8 and Tcutoff = 3.33 ps; t is the time relative to the maximum of
the pulse envelope. This provides a smooth switching on and off of the pulse.

The optimization is carried out with respect to av in equation (6), corresponding to the
pixels of a pulse shaping device. The pump-dump delay time �t represents a fixed parameter
for the optimization process. It turns out that for the amplitude optimization, it is sufficient to
set av to either 0 or 1. For the phase, 256 possible values are considered, leading to an overall
9 bit optimization of av . The quality of the pulses is determined by the fitness factor Q which
is chosen as

Q = |bw|2√
〈t2〉

. (8)

Here, 〈t2〉 is a measure of the pulse duration:

〈t2〉 =
∫

t2�(t) dt∫
�(t) dt

. (9)
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Figure 2. Dependence of the excitation probability on the peak intensity of the pump pulse for a
fixed pulse width of 100 fs FWHM. The linear dependence on intensity below 2 MW cm−2 shows
the validity of a perturbative treatment.

It is included in the definition of the fitness factor in order to keep the pulses as short as
possible. This is not a physical constraint but a requirement of the perturbative model because
the duration of the pulses is immensely increased by the modulation. Already, a linear
frequency chirp stretches the pulse in time. The employed perturbative model, however,
requires non-overlapping pump and dump pulses, as explained above.

The optimization of the formation of molecules in a specific ground state level w is
carried out by means of an evolutionary algorithm. This corresponds directly to a close-loop
experiment. For the calculations a very basic evolutionary algorithm, SimpleGA from the
GALib package [38], is employed. Populations of 20 individuals are used, and the number
of generations is set to 1000. This is sufficient to obtain convergent results. The single-bit
mutation and single-bit crossover probabilities are chosen as 0.005 and 0.8, respectively.

3. Results

3.1. Validity of the pulse shaper model

The pulse shaper model of equation (6) is derived for the case of a small perturbation of
the atom pair by the laser field. Higher order processes, in particular Rabi cycling during
the pump or dump pulse, are neglected. By carrying out calculations for a single unshaped
pump pulse with varying peak intensity of the pulse, the regime of validity of the perturbative
approximation is analysed.

In figure 2 the probability of exciting an atom pair to the excited state is shown as
a function of the pulse’s peak intensity. These results are obtained by solving the time-
dependent Schrödinger equation where the field is treated non-perturbatively. Figure 2
clearly shows a linear dependence of the excitation probability for small intensities
<4 × 106 W cm−2. For these low intensities, the effect of the laser field can be treated
in a first-order perturbation theory. For larger pulse energies, excitation starts to saturate,
which indicates the transition to a non-perturbative regime. This is attributed to Rabi cycling
and strong off-resonant excitations.

In order to check the validity of equation (6) in the perturbative regime, a model study
is performed. The excitation of a vibrational wavepacket in the excited state, ψe(R; t), is
calculated with equation (3) for a single Fourier-limited Gaussian pump pulse. The detuning
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Figure 3. A comparison between the predicted excited state level populations after the pump pulse
from the model (solid line) and the results of the quantum dynamical calculation (squares).

of the pulse is set to � = 251 cm−1 and the temporal intensity width to 100 fs FWHM. These
values match the experimental conditions of [24]. In figure 3, the projections of the excited
state wavepacket onto the excited vibrational eigenfunctions ϕe

v(R) are shown as a function of
the detuning, Ee

v (solid line). This is compared in figure 3 to the non-perturbative calculation
for the same pulse parameters (squares). A good agreement of the projections is observed in
the range of resonant levels.

As described above, the perturbative pump-dump model is only valid for non-overlapping
pulses because transient dynamics occurring during the pulsed excitation are not included.
Therefore, in a second step it is checked if equation (6) holds for two-pulse pump-dump
processes. Assuming two pulses with width and detuning, as given above, the pump-dump
process is calculated with equation (5) for varying delay time. This yields the ground state
wavepacket which is then projected onto a single target vibrational level. The level w = 119,
bound by E

g

119 = 6.86 cm−1, is selected because it features a large Franck–Condon factor
from the excited state vibrational levels that are populated at the given detuning of the laser
pulse (see section 3.2 and figure 5). The population in this target level is shown in figure 4
(solid line) as a function of the pump-dump delay time. It is compared to the results obtained
by solving the time-dependent Schrödinger equation (squares). The agreement between the
perturbative model and the full quantum dynamics with a non-perturbative treatment of the
field is convincing.

Note that in the present case, the optimal pump-dump delay is given by the full excited
state wavepacket round-trip time Tvib and integer multiples thereof. According to the Franck–
Condon principle, this indicates that the dump transition occurs at the outer turning point
of the excited state wavepacket, as indicated in figure 1. This is not necessarily the case
since it depends strongly on the molecular potential curves and the laser detuning. The dump
transition will occur at half-integer multiples of Tvib, corresponding to the inner turning point
if the potential facilitates a deceleration mechanism at short distances. This is the case for a
soft repulsive wall such as in the outer well of the 0−

g (p3/2) state [19], or for resonant coupling
[20].

3.2. Optimal detuning

In order to find a window of detunings suitable to populate target levels in the ground state,
equation (6) is evaluated for unshaped Fourier-limited Gaussian pulses of 100 fs FWHM



Theoretical model for ultracold molecule formation via adaptive feedback control S1009

0 5 10 15 20
0.0

0.3

0.6

0.9

1.2

14.0ps 15.75ps

T
ar

ge
t p

op
ul

at
io

n 
[a

rb
. u

ni
ts

]

pump-dump delay [ps]

Figure 4. Target state population |bw|2 for w = 119 from equation (6) (solid line) compared to
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Figure 5. Optimal detuning (black �, left axis) for pump-dump photoassociation with two identical
unshaped femtosecond laser pulses, estimated from equation (6) for a range of target vibrational
levels w in the ground state. The maximum attainable population of these levels (red •) is shown
on the right axis.

intensity width. For a range of delay times encompassing several round-trip times, the
Franck–Condon matrix Mvv′

w (�t) is calculated for each ground state target level w. The
optimal detuning is inferred from the maximum of the main diagonal of Mvv′

w (�t) and the
corresponding maximum target state population is calculated. Figure 5 shows the result
for both the optimal detuning and corresponding target state population as a function of the
vibrational level w of the ground electronic state. A strong dependence of the maximum
attainable population on the vibrational level is observed spanning eight orders of magnitude.
The largest target populations are found for small laser detunings and correspond to high target
vibrational levels. This reflects the large free-bound Franck–Condon factors for highly excited
vibrational levels. It also shows that the bound–bound Franck–Condon factors for the dump
step favour high target levels for small detunings.
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Figure 6. Relative target state (w = 119) population versus pump-dump delay for optimized pump
pulses. The target level population on the vertical axis of the graphs is given in the same units as in
figure 4 and can thus directly be compared. The optimizations are carried out with a delay parameter
of 14.00 ps (upper trace) and 15.75 ps (lower trace), corresponding to a minimum and a maximum
in the ‘natural’ dynamics after an unshaped pump pulse (cf figure 4). The pulse parameters are
the same as in figure 3. The prediction of the model equation (6) (solid line) is compared to the
solution of the time-dependent Schrödinger equation (squares). Note the deviations occurring at
small delay times which are due to transient excitations.

3.3. Adaptive feedback control

With the perturbative model, optimization calculations are carried out for pump-dump
photoassociation. As in the previous section, the pump and dump pulses are assumed to
be Fourier-limited Gaussian pulses with 100 fs FWHM intensity width and � = 251 cm−1

detuning. The goal for the optimization is to find the pump pulse that maximizes the population
in the w = 119 ground state vibrational level, which is a suitable level for the chosen detuning
due to its large Franck–Condon overlap (see section 3.1). The spectral components of the
pump pulse are optimized with respect to their phase and amplitude. The pump-dump delay
time, which represents a parameter in these calculations, is set either to 15.75 ps or to 14.0 ps.
As shown in figure 4, for �t = 15.75 ps a maximum is observed in the target level population
of the ‘natural’ dynamics, i.e. the dynamics obtained with an unshaped pump pulse. On the
other hand, �t = 14.0 ps represents a delay for which the natural dynamics leads to almost
no-target level population.

The resulting target state population with optimized phases and amplitudes is shown as
a function of the pump-dump delay time in figure 6 (solid lines). Note that the target level
population on the vertical axis of both graphs in figure 6 and of the graph in figure 4 is given
in same units and can thus directly be compared. In figure 6, it is clearly seen that for both
optimization calculations the maximum population is indeed obtained at the delay time for
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(a) (b)

(d)(c)

Figure 7. Upper panels: amplitude (red ——) and phase (black · · · · · ·) mask patterns of the
pulse shaper to generate the optimized pulses for �t = 14.00ps (a) and �t = 15.75 ps (b). The
amplitudes are multiplied by the spectral envelope of the pulse. Note the chirp-like structures in
the phases of the two pulses. Lower panels: temporal amplitude of the optimized pulses for the
14.00 ps case (c) and the 15.75 ps case (d).

which the pump pulse is optimized. For �t = 14.00 ps, the dynamics is modulated such that
an efficient dump transition may occur at delay times when almost no-target level population
is obtained with an unshaped pump pulse (see the left arrow in figure 4). In this case, the
target level population for the optimized pulse amounts to 1.6 arb. units, whereas less than
0.1 arb. units are observed for the same pump-dump delay with an unshaped pulse,
corresponding to an increase by more than a factor of 10. This illustrates that the pulse shaper
can be used to a great extent to control the wavepacket dynamics. The optimal pulse shapes
also lead to a higher maximum of the target level population as compared to the maximum
population achieved for the optimal pump-dump delay time with unshaped pulses; for the
optimization at �t = 14.0 ps, the target population is enhanced by about 40%. For 15.75 ps a
smaller enhancement of about 10% is observed. The two different levels of optimization are
attributed to the different integrated energies of the obtained optimal pulse, as detailed below.

The results of the optimization are compared with the results of the time-dependent
Schrödinger equation using the optimal pulses, obtained above, as pump pulses. The time
delay between the pump and dump pulses is varied to investigate whether the optimal result is
indeed obtained for the intended delay and how in general the pulse shapes affect the excited
state wavepacket dynamics. As shown in figure 6, these results agree well with the model
except for very short delay times where the pulses still overlap.

The mask patterns of the pulse shaper for amplitude (——) and phase (· · · · · ·) are shown
for the two preset delay times in the top panels (a) and (b) of figure 7. The spectrum contains
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Figure 8. Excited state wavepackets in a position space at t = 15.75 ps after the pump pulse
maximum. The upper panel (a) shows the wavepacket obtained after an unshaped pulse, while
the lower (c) panel displays the wavepacket resulting from excitation with a pulse optimized for
�t = 15.75 ps. To estimate the dump efficiency, these wavepackets have to be compared to the
stationary ground state wavefunction of the target level shown in the middle panel (b). Note the
reduced probability density at small internuclear distances of the wavepacket after the optimized
pulse as compared to the unshaped case.

frequencies for which the excited state levels v = 204 to v = 249 are resonantly excited
from the initial state. For �t = 14.0 ps, figure 7(a), almost the full spectrum is retained,
whereas for �t = 15.75 ps, figure 7(b), some frequency components are removed from the
pulse spectrum. This leads to a smaller integrated energy of the optimized pulses for
the �t = 15.75 ps optimum. Therefore, a smaller target level population is observed on
the maximum (about 1.3 arb. units) for the 15.75 ps calculation as compared to the 14.0 ps
calculation (1.6 arb. units). Chirp-like structures in the spectral phase emerge in both cases.
In other runs of the optimization algorithm, such structures have been obtained as well.

The temporal profiles of the optimized pulses are shown in the bottom panels (c) and (d)
of figure 7. The pulses are stretched in time compared to the time duration of the unshaped
pulses of 100 fs FWHM. For �t = 14.0 ps, figure 7(c), three sub-pulses are observed which
are separated by about 2 ps. This has to be compared to the vibrational times of the excited
state levels which range from 2.7 ps for v = 204 to 10.0 ps for v = 249 and 4 ps for the
central level v = 219 resonant with the carrier frequency. In the Wigner representation of
the optimal field (data not shown), an interference pattern between the three sub-pulses is
observed indicating the intricate phase relation between the sub-pulses. The ‘holes’ in the
spectrum observed for �t = 15.75 ps, as shown in figure 7(b), correspond mostly to transition
frequencies to levels with long vibrational periods (for example, v = 227 to v = 233 with
Tvib = 5.1 ps to 6.3 ps).

Certain wavepacket components are filtered out to facilitate a shaping of the excited state
wavepacket which is favourable for the dump step. This is illustrated for �t = 15.75 ps in
figure 8. The excited state wavepacket at t = 15.75 ps after the unshaped, figure 8(a), and
optimized, figure 8(c), pump pulses is compared to the vibrational wavefunction of the ground
state target level, figure 8(b). Optimal dump conditions are obtained when the wavepacket is
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focused on the region where the target state wavefunction possesses its outermost maximum.
The optimization leads to a removal of parts of the wavepacket in the inner region which would
cause destructive interference in the dump process.

4. Conclusions and outlook

We have investigated to which extent the formation of ultracold molecules by pulsed
photoassociation can be controlled using adaptive feedback control and shaped femtosecond
laser pulses. For this purpose, we have set up a perturbative pulse shaper model and combined
it with a genetic algorithm. This concept allows for a numerically efficient optimization with
realistic conditions for the femtosecond laser pulse and the pulse shaper. Using the model
for a pump-dump scheme, the population in a specific target level in the ground electronic
state is optimized. A considerable enhancement factor of about 40% is achieved compared to
highest population achieved with unshaped pulses, while keeping the pulse duration as short
as possible. The maximum pump-dump enhancement in the perturbative, low-energy regime
is determined by the Franck–Condon factors of the two electronic transitions. Significantly,
larger enhancements may only be expected for high-intensity pulses beyond the perturbative
regime, where Rabi cycling and dynamic Stark shifts occur.

The adaptive feedback optimization has shown that for different time delays between the
pump and dump pulses, a maximum in the ground state molecule formation rate of similar
height is achieved. This implies that the pump-dump delay represents an uncritical parameter
as long as it is shorter than the spontaneous decay time in the sense that the optimization
algorithm may find an optimal solution with a comparable target level population for arbitrary
delay times. The analysis of the excited state wavepacket dynamics reveals that the shaped
pulse induces a spatial focusing of the wavepacket on the Franck–Condon region of the dump
pulse at the specified pump-dump delay. The pulse shaper can therefore greatly alter the
dynamics of the wavepacket to optimize ground state molecule formation.

The model described in this work is advantageous compared to standard theoretical
approaches such as the optimal control theory [39] in that it closely resembles the situation
in experiments. Optimal control calculations generally converge faster than genetic algorithm
optimizations, and extremely efficient pulses can be obtained [40]. However, these pulses
are usually too complex to be directly implemented in an experiment [22, 23]. In this work,
the optimized pulses are obtained in the frequency domain and are given in terms of the
transmission coefficients and phase shifts of a pulse shaper. The optimization results can
therefore directly be employed in experiments.

Future improvements of the presented calculations may follow several lines. To obtain
absolute rates for molecule formation, a thermal average needs to be performed. This will
be important to find pulse shapes for which association dominates over photodissociation of
ultracold molecules [24, 28]. For the collision energies in a magneto-optical trap, such an
average requires inclusion of partial waves with l > 0. Second, all relevant electronic states
need to be incorporated in the model. In particular, resonant spin–orbit coupling is known
to lead to perturbations in the excited state vibrational spectrum [33, 41] which might be
important for ground state molecule formation [20]. Furthermore, it will be interesting to
investigate the influence of the laser field polarization on ground state molecule formation, in
particular, to find shaped pulses which excite specific molecular symmetries. Finally, higher
order terms may be included in the perturbative derivation of the pulse shaper model to allow
for investigation of the nonlinear excitation regime. Here, higher enhancement factors beyond
the Franck–Condon regime may be expected. Based on the findings in this work, dedicated
experiments on pulsed photoassociation of ultracold rubidium molecules are in progress.
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[30] Marte A, Volz T, Schuster J, Dürr S, Rempe G, van Kempen E G M and Verhaar B J 2002 Feshbach resonances
in rubidium 87: precision measurement and analysis Phys. Rev. Lett. 89 283202

[31] Gutterres R F, Amiot C, Fioretti A, Gabbanini C, Mazzoni M and Dulieu O 2002 Determination of the 87Rb 5p
state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb20−

g (P3/2)
long-range state Phys. Rev. A 66 024502

[32] Spiegelmann F, Pavolini D and Daudey J-P 1989 Theoretical study of the excited states of the heavier alkali
dimers: II. the Rb2 molecule J. Phys. B: At. Mol. Opt. Phys. 22 2465

[33] Amiot C, Dulieu O and Vergès J 1999 Resolution of the apparent disorder of the Rb2 A1�1
u (0+

u) and b3�u (0+
u)

spectra: a case of fully coupled electronic States Phys. Rev. Lett. 83 2316
[34] Kokoouline V, Dulieu O, Kosloff R and Masnou-Seeuws F 1999 Mapped fourier methods for long-range

molecules J. Chem. Phys. 110 9865
[35] Willner K, Dulieu O and Masnou-Seeuws F 2004 Mapped grid methods for long-range molecules and cold

collisions J. Chem. Phys. 120 548
[36] Kosloff R 1988 Time-dependent quantum-mechanical methods for molecular dynamics J. Phys. Chem. 92 2087
[37] de Araujo L and Walmsley I 2003 Analytic solution for quantum control of atomic and molecular wavepackets

J. Opt. B 5 R27
[38] Wall M 2005 GAlib 2.4.6, Massachusetts Institute of Technology. http://lancet.mit.edu/ga
[39] Zhu W, Botina J and Rabitz H 1997 Rapidly convergent iteration methods for optimal control of population

J. Chem. Phys. 108 1953
[40] Koch C P, Palao J, Kosloff R and Masnou-Seeuws F 2004 Stabilization of ultracold molecules using optimal

control theory Phys. Rev. A 70 013402
[41] Jelassi H, Viaris de Lesegno B and Pruvost L 2006 Phys. Rev. A 73 032501

http://dx.doi.org/10.1103/PhysRevLett.95.063001
http://dx.doi.org/10.1103/PhysRevLett.96.173002
http://dx.doi.org/10.1006/jmsp.2001.8337
http://dx.doi.org/10.1103/PhysRevLett.89.283202
http://dx.doi.org/10.1103/PhysRevA.66.024502
http://dx.doi.org/10.1088/0953-4075/22/16/005
http://dx.doi.org/10.1103/PhysRevLett.83.2316
http://dx.doi.org/10.1063/1.478860
http://dx.doi.org/10.1063/1.1630031
http://dx.doi.org/10.1021/j100319a003
http://lancet.mit.edu/ga
http://dx.doi.org/10.1063/1.475576
http://dx.doi.org/10.1103/PhysRevA.70.013402
http://dx.doi.org/10.1103/PhysRevA.73.032501

	1. Introduction
	2. Model for the photoassociation process
	2.1. Interaction of two colliding atoms with a laser field
	2.2. Model of the photoassociation process with shaped laser pulses
	2.3. Genetic algorithm for the pulse optimization

	3. Results
	3.1. Validity of the pulse shaper model
	3.2. Optimal detuning
	3.3. Adaptive feedback control

	4. Conclusions and outlook
	Acknowledgments
	References

