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Abstract
The total number of molecules produced in a pulsed photoassociation of
ultracold atoms is a crucial link between theory and experiment. A calculation
based on first principles can determine the experimental feasibility of a pulsed
photoassociation scheme. The calculation method considers an initial thermal
ensemble of atoms. This ensemble is first decomposed into a representation of
partial spherical waves. The photoassociation dynamics is calculated by solving
the multichannel time-dependent Schrödinger equation on a mapped grid. The
molecules are primarily assembled in a finite region of internuclear distances,
the ‘photoassociation window’. The ensemble average was calculated by
adding the contributions from initial scattering states confined to a finite volume.
These states are Boltzmann averaged where the partition function is summed
numerically. Convergence is obtained for a sufficiently large volume. The
results are compared to a thermal averaging procedure based on scaling laws
which leads to a single representative initial partial wave which is sufficient
to represent the density in the ‘photoassociation window’. For completeness
a third high-temperature thermal averaging procedure is described which is
based on random phase thermal Gaussian initial states. The absolute number
of molecules in the two first calculation methods agree to within experimental
error for photoassociation with picosecond pulses for a thermal ensemble of
rubidium or caesium atoms in ultracold conditions.
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1. Introduction

The challenge to achieve a large number of stable ultracold molecules in a trap is the
prerequisite for ultracold chemistry (Doyle et al 2004). A good starting point is an ensemble
of ultracold atoms, where photoassociation has been proven to be an efficient method to form
diatomic molecules from a pair of atoms (Weiner et al 1999, Masnou-Seeuws and Pillet 2001).
Those ultracold molecules are in a short-lived electronically excited state: in order to obtain
long-lived molecules in the singlet ground or lowest triplet state, a stabilization step has to
follow. The initial experiments used continuous-wave (cw) lasers, and the stabilization of the
photoassociated molecule was achieved by spontaneous emission (Fioretti et al 1998). As a
result the overall process is non-unitary and leads to an ensemble of molecules distributed over
many vibrational states. The stabilization step can also be implemented within a two-colour
experiment. However, with cw lasers the two-colour scheme is fully time reversible, i.e.
molecules are both associated and dissociated. By employing a sequence of short laser pulses,
the time-reversal symmetry can be overcome leading to a unitary process.

Moreover, together with short pulses, the concepts of coherent control can be introduced
to optimize the molecule formation process. Photoassociation with chirped picosecond pulses
was considered theoretically by Vala et al (2000) and Luc-Koenig et al (2004a, 2004b).
Due to the finite bandwidth of short laser pulses, the resonance condition is fulfilled for a
finite region of internuclear distances, the ‘photoassociation window’. Chirping the pulse
moves the instantaneous laser frequency ν(t) through the spectral bandwidth of the pulse.
Correspondingly, the distance RC(t) characteristic of the photoassociation resonance is
modified, and sweeps the photoassociation window. The parameters of the pulse can be
chosen to realize a molecular π -pulse and to fulfil adiabatic transfer conditions (Vala et al
2000, Luc-Koenig et al 2004a). These dynamics can be interpreted as complete transfer
of the population from the ground to the excited state within the photoassociation window
(Luc-Koenig et al 2004a). The photoassociation rate is then fully determined by the initial
population within this window. Furthermore, with chirped picosecond pulses it is possible to
create shaped vibrational wavepackets in the electronically excited state of a molecule such as
Cs2 (Luc-Koenig et al 2004a, 2004b). The shaping of these wavepackets may be optimized
for radiative stabilization with a second pulse into low vibrational levels of the ground state.
Such an optimization of two-colour experiments was recently discussed by Koch et al (2006a,
2006b).

However, at present there is no experimental evidence that photoassociation with femto-
or picosecond pulses are efficient in forming ground state molecules. In conditions where
photoassociation with cw lasers was successfully demonstrated, two experiments employing
short pulses resulted only in the dissociation of molecules already present in the trap. This
dissociation could be controlled using feedback control (Salzmann et al 2006) and chirped laser
pulses (Brown et al 2006). These findings indicate that in those experiments the dissociation
rate was larger than the association rate. In order to estimate the feasibility of ground
state molecule formation with pulsed lasers, and to suggest possible improvements for the
experimental schemes, it is crucial to calculate the absolute number of molecules.

Such a calculation necessitates quantum simulation based on first principles. A correct
description of the initial scattering state is required. Two different methods are employed: (i)
at higher temperatures, far from threshold, random phase thermal wavepackets may be used
(Gelman and Kosloff 2003) which become Gaussian when only kinetic energy is considered
(Vardi et al 1997, 2000). (ii) In the ultracold regime, stationary collision states which faithfully
represent quantum threshold behaviour need to be employed to represent the initial state
(Machholm et al 1994, Luc-Koenig et al 2004b). Quantum threshold effects appear when the
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de Broglie wavelength becomes large compared to the scale of the interatomic potential and
cannot be described in the framework of a semiclassical model (Julienne and Mies 1989,
Julienne et al 1993, Julienne 1996, Weiner et al 1999). For the case of s-wave scattering,
the threshold effects manifested in the photoassociation of ultracold alkali atoms have been
systematically investigated by introducing the simplest asymptotic model to describe the
ground molecular state (Crubellier and Luc-Koenig 2006). Marked departures from the
Wigner threshold law are manifested, but scaling laws can still be derived.

With both choices for the initial state, an averaging procedure needs to be employed to
calculate expectation values for the thermal ensemble of ultracold atoms. Using method (ii)
it seems at first sight that cumbersome calculations on a large sample of initial collision states
are necessary to perform the thermal average. However, the existence of scaling laws allow
for a significant reduction of the numerical effort. In the case discussed above, adiabatic
population transfer from the ground to the excited state is restricted to the region of the
‘photoassociation window’. For large enough detuning, this window is located in a region
of relatively short internuclear distances where the nodal structure of the initial wavefunction
is basically energy independent for the range of collision energies which play a role in the
thermal average. The dynamics therefore remains qualitatively the same in this energy range.
The energy dependence of the photoassociation probability is described by a scaling factor,
determined from a short-range physical quantity such as an appropriate Franck–Condon factor.
Simulating the dynamics for only one initial collision energy combined with the knowledge
of the thermal probability density is then enough to estimate the thermal expectation value.
This is known in statistical mechanics as the ‘maximum term method’ (Hill 1960). It was used
in previous work (Luc-Koenig et al 2004b) to estimate the photoassociation yield, assuming
that only s waves contribute. However, contribution of other partial waves may have to be
considered. Moreover, this estimate relies upon the validity of the photoassociation window
concept, while the pulse may transfer population to the excited state by different mechanisms.
The scaling procedure is then no longer adapted.

The aim of the present paper is to check the validity of the scaling procedure, under
conditions where it is expected to be applicable, by a general method for calculating thermal
expectation values in grid-based simulations. It is based on a decomposition into partial
spherical waves, i.e. the contribution of higher partial waves can be easily evaluated. The paper
is organized as follows: section 2 describes the different methods available to calculate thermal
averages and hence expectation values at finite temperature. The model of photoassociation
with chirped laser pulses is recalled in section 3 and specified for the examples of rubidium
and caesium. The convergence of the general averaging procedure is demonstrated in
section 4, while section 5 introduces a simplified method due to a scaling law near quantum
threshold. The total photoassociation probability is calculated in section 6 with both the general
procedure and using the scaling law. Section 7 tackles the generalization to situations where
the concept of the photoassociation window is no longer valid. Conclusions, in particular
with respect to the feasibility of short pulse photoassociation experiments are drawn in
section 8.

2. Methods to calculate the photoassociation probability in a sample of atoms in
thermal equilibrium

A thermal ensemble of ground state cold atoms with binary collisions governed by one potential
Vg is considered. Photoassociation with a laser pulse is transferring population into an excited
electronic state with potential Ve.
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2.1. Thermal averages on a finite-size grid

In grid-based methods, operators and wavefunctions are represented at a finite number of
coordinate-space points which cover a limited spatial range. The basic idea in the following
considerations is to connect the volume corresponding to the grid (the ‘box’) on which the
Hamiltonian is represented to the physical volume of interest, such as the trapping volume
of a magneto-optical trap (MOT). The underlying assumption is that the physical process of
interest occurs in a finite region of space which can be modelled by the box. It is the goal of
the present study to determine the total photoassociation probability per pulse P(T ) which is
calculated as the expectation value of the projector onto the electronically excited state(s), P̂e,
at a time tf when the photoassociation pulse is over. However, the following considerations
are general and hold for other observables as well.

For a gas of N atoms confined in a volume V at temperature T, the thermally averaged
expectation value of P̂e is defined as

P(T ) = 〈P̂e〉T = Tr[P̂eρ̂T (tf )]

= Tr[P̂eÛ
+
(tf , t0)ρ̂T (t0)Û(tf , t0)]. (1)

Û(tf , t0) denotes the time-evolution operator which includes the interaction with the
photoassociation laser and ρ̂T (t0) the initial density operator. Assuming that the system
is in thermal equilibrium before the pulse acts, ρ̂T (t0) is given by

ρ̂T (t0) = 1

Zeq
e−βĤ, (2)

where β = 1/(kBT ) (kB the Boltzmann constant), Zeq = Tr[e−βĤ] the partition function and
Ĥ the Hamiltonian.

The Hamiltonian is represented on a finite grid in coordinate space. This corresponds to
dividing the physical volume V into M small boxes of volume vbox with the assumption that
M � N . This assumption is justified because of the diluteness of the gas. The probability of
finding one atom in the small box is then given by

P1,box = N

M
= N

vbox

V
, (3)

and the probability of finding two atoms in the small box is

P2,box = N
vbox

V
· (N − 1)

vbox

V
≈ N2 v2

box

V 2
= P 2

1,box.

The total number of excited state molecules is obtained as

Nmol
exc,tot = 1

2
N atom

e = 1

2
MP 2

1,box〈P̂e〉T ,box

= 1

2
N2 vbox

V
〈P̂e〉T ,box. (4)

〈P̂e〉T ,box is calculated in the two-atom picture. Three-body and higher order effects may be
neglected, due to the diluteness of the gas. Centre of mass and internuclear degrees of freedom
of the two-atom system are assumed to be decoupled which holds for homogeneous systems
and for harmonic traps. The operators P̂e and Û(tf , t0) act only in the subspace of internuclear
motion. The partition function factorizes for uncoupled degrees of freedom such that the
centre-of-mass parts are eliminated in the thermal average. Therefore, 〈P̂e〉T ,box is calculated
in the internuclear degrees of freedom,

〈P̂e〉T ,box = 1

Zeq,box

∑
nlm

〈ϕnlm|Û+
(tf , t0)P̂eÛ(tf , t0) e−βĤg |ϕnlm〉, (5)
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where |ϕnlm〉 are suitable orthonormal basis functions for the different degrees of freedom.
Such functions depend upon the size of the box, and Zeq,box represents the partition function
for this box,

Zeq,box =
∑
nlm

〈ϕnlm| e−βĤg |ϕnlm〉. (6)

Equations (5) and (6) assume that in thermal equilibrium all atoms are initially in their
electronic ground state. So far no choice of basis functions has been specified. An obvious
choice allowing for the straightforward evaluation of the term e−βĤg is to take |ϕnlm〉 to be the
eigenfunctions of the Hamiltonian Ĥg,

Ĥg = T̂ + Vg(R̂) + h̄2l(l + 1)/2µR̂
2
, (7)

where µ is the reduced mass, and n, l,m label translational, rotational and magnetic quantum
numbers in the standard way. The degeneracy relative to m is not lifted by Ĥg and the sum over
m can be evaluated leading to the degeneracy factor (2l + 1)/(4π). The eigenfunctions are
now written |ϕnl〉. This is well adapted to the continuum levels of the ground molecular state
of the alkali dimers. In such states the rotation is decoupled from the other angular momenta,
provided one may neglect higher order relativistic effects such as second-order spin–orbit
and spin–spin effects. This assumption is generally valid, except for caesium where the
second-order terms may have a small effect.

The eigenfunctions |ϕnl〉 are obtained by representing Ĥg on a grid (for each l) and
diagonalizing it. They constitute an orthonormal basis of the Hamiltonian in the box
representation. The corresponding eigenvalues are denoted by Enl . The partition function of
the box is then obtained as

Zeq,box = 1

4π

∑
nl

(2l + 1) e−βEnl ,

and

〈P̂e〉T ,box = 1

4π

1

Zeq,box

∑
nl

(2l + 1) e−βEnl 〈ϕnl|Û+
(tf , t0)P̂eÛ(tf , t0)|ϕnl〉.

Writing the projector as P̂e = |e〉〈e|, the abbreviation

P nl
e (tf ) = |〈e|Û(tf , t0)|ϕnl〉|2 (8)

can be introduced. P nl
e (tf ) represents the population on the excited state after propagating the

ground state eigenstate |ϕnl〉 from initial time t0 to final time tf under the action of Û(tf , t0)

which includes the interaction with the laser field. The thermally averaged photoassociation
probability in the box is therefore given by

〈P̂e〉T ,box =
∑

nl(2l + 1) e−βEnl P nl
e (tf )∑

nl(2l + 1) e−βEnl
. (9)

The sums over n and l are cut off by the Boltzmann weight.
It is useful to write down the expression for the thermal probability density (2) of the box

as a function of R. That is the 3D thermal density is written in spherical coordinates where
the angular degrees of freedom have been integrated over. It can be constructed from the
eigenfunctions |ϕnl〉 and eigenvalues Enl ,

ρT,box(R) = 1

4πR2

∑
nl(2l + 1) e−βEnl |ϕnl(R)|2∑

nl(2l + 1) e−βEnl
. (10)

The factor 1/R2 is due to the fact that the ϕnl(R) are radial wavefunctions, i.e.
�(R, θ, φ) = ∑

nlm
1
R
ϕnl(R)Ylm(θ, φ). The convergence with respect to the number of partial
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waves l needs to be analysed in order to determine how many partial waves are effectively
required in the calculation. At large R, the probability density should become a constant
independent of temperature reflecting the constant probability of finding two atoms in a box
at a specific separation.

The derivation so far has neglected the quantum statistics. If the bosonic (fermionic)
nature of the atoms has to be taken into account, the sum over l needs to be modified such that
only even (odd) l values contribute.

2.2. Thermal averages via box-independent continuum states

In the previous section, all observables can be calculated directly on the grid provided the
grid is large enough to faithfully represent the physics of the problem. An alternative
procedure consists in calculating box-independent continuum states, hereafter referred as
‘true’ continuum states, and approximating the integral over the infinite number of continuum
states (Machholm et al 1994, Luc-Koenig et al 2004b). The two approaches are connected in
the sense that the approximation of ‘true’ continuum states represents a specific choice of basis.
For a large enough box, a finite number of standing waves of the ‘box’ then approximates
the continuum of scattering states. Changing the sum over box states to the integral over
continuum states involves the density of states, and hence the familiar normalization of the
‘true’ continuum states to unit energy is obtained (Friedrich 1998).

Assuming the temperature to be low enough such that only the s-wave contributes, the
density operator describing the thermal equilibrium (2) is written in this basis as

ρ̂s = 1

Zeq

∫ ∞

0
dE e−βE|Es〉〈Es|, (11)

where the continuum eigenstates, normalized per unit energy, are linked to the box states by

|Es〉 ≡
√

dn
dEn,l=0

|ϕn,l=0〉. If the box is large enough, the introduction of the density of states
dn

dEn,l=0
= dn

dE

∣∣
En

renders the definition of such continuum states independent of the size of the
box.

The partition function Zeq is assumed to describe a non-degenerate gas of non-interacting
(and non-correlated) atoms. It can then be calculated analytically using the properties of an
ideal gas,

Zeq = Q(T )V, Q(T ) = (2πµkBT )3/2

h3
. (12)

Note that (11) for a given l, and in particular for l = 0, is one dimensional. It is equivalent
to (10) only if the temperature is really low enough for solely the s-wave to contribute. In
particular, in (11) the numerator is calculated in 1D but the denominator Zeq is obtained in
3D. Finally, the expression for Q(T ) in (12) is not valid when T → 0.

2.3. Thermal averages via random-phase Gaussian wavepackets

A further alternative procedure starts from the limit of infinite temperature where the density
operator of one pair of atoms is constant as a function of internuclear distance. Therefore it
can be written as

ρ̂∞( �R, �R′) = 1

V
11 = 1

V
δ( �R − �R′). (13)
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In the grid representation, each grid point represents a δ-function at this point, and ρ̂∞( �R, �R′)
can be approximated using random phase wavefunctions (Gelman and Kosloff 2003),

�(R;
) = 1√
K

K−1∑
j=0

ei2πθj δ(R − Rj),

where K is the total number of sampling points Rj , and 
 is a vector of random numbers θj

distributed between zero and one. Making use of δjj ′ = 〈ei2π(θj −θj ′ )〉, the identity operator in
(13) can be decomposed as

11 = lim
L→∞

1

L

L−1∑
k=0

|�(R;
k)〉〈�(R′;
k)|,

where 
k is a particular realization of the random number set.
At finite temperature, the thermal density can be written as

ρ̂T = e−βĤ

Z
= e−βĤ/2

√
Z

11
e−βĤ/2

√
Z

.

This suggests a decomposition into random thermal wavefunctions defined by

�β(R;
) = e−βĤ/2

√
Z

�(R;
) (14)

such that

ρ̂T = lim
L→∞

1

L

L−1∑
k=0

|�β(R;
k)〉〈�β(R′;
k)|.

It remains to evaluate the action of the Hamiltonian on the random phase wavefunction in (14).
If the temperature is high enough such that the kinetic energy is much larger than the potential
energy of the scattering states, or if the process of interest occurs at very large internuclear
distances where the potential is flat, the Hamiltonian can be considered to depend only on the
kinetic energy, i.e.

Ĥ = p̂2

2µ
.

The thermal wavefunction therefore becomes a sum of Gaussians with random phase,

�β(R;
) = 1√
4π

1√
Z

21/4

(πσ 2)1/4

1√
K

K−1∑
j=0

exp

(
− (R − Rj)

2

4σ 2
+ i2πθj

)
, (15)

where the width σ = h̄
√

β/4µ is determined by the temperature. The number K of required
Gaussians is determined by the volume in which the process takes place and which needs to be
sampled by the grid, for example the ‘photoassociation window’. In that case, the individual
Gaussian wavefunctions inside the sum of (15) have to be used as initial states of the dynamics,
and

∑K−1
j=0 can be evaluated by the Monte Carlo wavefunction technique (Dalibard et al 1992)

in order to obtain the photoassociation probability.
For T → 0, the assumption that the kinetic energy dominates is not valid any longer and

the full Hamiltonian would have to be employed to evaluate (14). However, in this regime
the thermal wavefunction looses its meaning: since β diverges, the convergence of (14) with
respect to the number of grid points K becomes extremely slow. This just reflects the fact that
the thermal Gaussian wavepacket method is derived from the high-temperature limit and is
not applicable at very low temperatures.
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3. Model of photoassociation with chirped laser pulses and adiabatic transfer within a
‘photoassociation window’

3.1. Model of photoassociation with time-dependent laser pulses

Two ground state alkali atoms (nS + nS) which interact via the ground or lowest triplet state
and which collide in the presence of a laser field are considered. The laser excites the pair of
atoms into an electronically excited state correlated to the nS + nP dissociation limit which may
support bound vibrational levels. These levels give rise to the photoassociation resonances.
Whereas a cw laser which is red detuned by �L = h̄(ω0 − ωL) from the frequency ω0 of the
nS → nP atomic line usually excites at resonance only a single vibrational level with binding
energy equal to �L, a laser pulse may transfer population to several levels within its spectral
bandwidth h̄δω.

A minimal model of photoassociation requires the solution of the time-dependent
Schrödinger equation on two electronic states (Vala et al 2000, Luc-Koenig et al 2004a,
2004b),

ih̄
∂

∂t

(
ψ̄e(R, t)

ψ̄g(R, t)

)
= Ĥ

(
ψ̄e(R, t)

ψ̄g(R, t)

)
, (16)

where R denotes the internuclear distance. The Hamiltonian in the rotating-wave and dipole
approximations is written as

Ĥ =
(

T̂ + Ve(R̂) − h̄/2
(
ωL + dφ

dt

) − 1
2D̄(R)E0f (t)

− 1
2D̄(R)E0f (t) T̂ + Vg(R̂) + h̄/2

(
ωL + dφ

dt

)
)

, (17)

with E(t) = E0f (t) cos[ωLt + φ(t)] being the time-dependent laser field, and D̄(R) the
projection of the transition dipole moment onto the axis of the electric field. The rotating
frame makes use of the instantaneous frequency d

dt
(ωLt + φ(t)), transforming a wavefunction

� into �̄. The dynamics of the photoassociation process is studied by numerical solution
of the time-dependent Schrödinger equation (16) as described in Luc-Koenig et al (2004a,
2004b). The initial state of the dynamics is chosen to be a stationary scattering wavefunction
of the ground state Hamiltonian. Under appropriate conditions it could also be a Gaussian
wavepacket. The radial dependence of the wavepackets propagating on both surfaces is
represented using mapped grid methods (Kokoouline et al 1999, Willner et al 2004). The
grid step is proportional to the local de Broglie wavelength with the grid mapping parameter
βgrid. Sine waves vanishing at the boundaries of the box are used as basis functions. The
time-evolution operator exp[−iĤt/h̄] is expanded in Chebyshev polynomials (Kosloff 1994).
An extension of the model to more than two electronic states is straightforward (Koch et al
2006b).

Photoassociation of 133Cs and 87Rb will be considered. For caesium following previous
work by Luc-Koenig et al (2004a, 2004b), and Koch et al (2006a), transitions from the
a3�+

u (6S + 6S) lowest triplet state into the 0−
g (6S + 6P3/2) excited state are assumed. The

0−
g (P3/2) potential Ve allows for efficient photoassociation due to its 1/R3 behaviour at

large internuclear distances and for stabilization into stable molecules due to its double-
well structure. Details of the potentials are found in Luc-Koenig et al (2004a). The transition
dipole moment D̄(R) is taken to be independent of R. For rubidium, following Koch et al
(2006b), the transitions into the excited states with potentials scaling at long range as 1/R3

below the 5S + 5P1/2 asymptote, i.e. X1�+
g −→ 0+

u(P1/2) and a3�+
u −→ 1g(P1/2), are

considered. Both of these excited state potentials allow for an efficient photoassociation step,
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while stabilization into stable molecules is facilitated only by 0+
u(P1/2), but not by 1g(P1/2).

The physical mechanism of the stabilization step was identified as resonant coupling which
can only be described by an explicit treatment of the spin–orbit interaction in the excited
state. This leads to a three(four)-channel Hamiltonian for 0+

u(P1/2) (1g(P1/2)). Details of
the potentials, transition dipole moments and spin–orbit interaction are found in Koch et al
(2006b).

In the ground electronic state, the various l-waves are introduced, i.e. for l > 0 the
rotational barrier, h̄2l(l + 1)/(2µR2), is included in Ĥg. To avoid cumbersome calculations,
the rotational structure of the excited electronic state is not considered. Indeed, the transition
dipole moment includes an angular part which depends on the polarization of the laser light
and on the initial state of the atoms and which is different for the different rotational levels
of the excited state. The relevant angular part can be evaluated in any given experimental
situation, but general rules are missing.

Furthermore the Hamiltonian Ĥ is spin independent. To account for the electronic spin
degeneracy of the 2S atomic state, dA = 2, and of the initial electronic state, d2S+1� = 2S + 1,
while disregarding the nuclear spin, the total number of photoassociated molecules (4) has to
be multiplied by the factor d2S+1�

/
d2

A.
Concerning the ground electronic state of alkali dimers, the hyperfine structure has to be

included and one has to know whether the atoms are spin polarized or not. In the excited state,
fine and hyperfine structures have to be taken into account since rotation is not decoupled
from the other angular momenta. In the present paper, the most general part of the problem,
which concerns the radial part of the wavefunctions is of interest, and the angular part of
the transition dipole moment is completely ignored. It could be introduced later, specifying
certain experimental conditions.

Provided that the hyperfine interaction modifies the radial wavefunctions only slightly, it
is still possible to roughly account for the hyperfine structure and for the bosonic or fermionic
character of the atoms by introducing convenient weights in the numerator of (9), which
includes photoassociation matrix elements. If all atoms are prepared in a ‘polarized’ state
with given f and mf values, the situation of zero hyperfine coupling is recovered, i.e. for
bosonic (fermionic) atoms only even (odd) l values contribute to the sum of (10). If all the
atoms are prepared in a given hyperfine level, with given f value but with any mf value, the
sum has to be weighted by (f + 1)/(2f + 1) (f/(2f + 1)) for even (odd) l values in the case of
bosonic atoms. For fermionic atoms, the same weights are respectively associated with odd
(even) l values. Indeed, the excited molecular state can be only symmetric (anti-symmetric) for
bosonic (fermionic) atoms, so that only symmetric (anti-symmetric) ground states play a role
in photoassociation. However, the atoms of the initial state are assumed to be non-interacting,
i.e. correlations are killed by decoherence effects. As a consequence, both symmetric and
anti-symmetric states have to be considered in any case, both in the numerator and in the
denominator of (9) and (10), and the effect of the weights becomes very small.

3.2. Photoassociation with chirped pulses and ‘photoassociation window’

A transform-limited pulse with Gaussian envelope f (t), maximum at tP and full width at
half maximum of the temporal intensity profile τL = (4 ln 2)/δω is considered. Chirping
the pulse with a linear chirp such that dφ(t)

dt
= χ(t − tp) stretches the duration to τC = FτL

with F � 1 and decreases the maximum intensity, conserving the energy carried by the
pulse. Moreover 98% of this energy is carried during the time window [tP − τC, tP + τC].
For a chirped pulse, the instantaneous resonance condition varies with time as indicated in
figure 1. This defines a resonance window with a width 2h̄|χ |τC = 2h̄δω

√
1 − F−2 in the
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Rmin Rmax

photoassociation window
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Figure 1. Scheme of the photoassociation process with two negatively chirped pulses,
corresponding to the same linear chirp rate χ applied to two transform-limited (TF) pulses with
duration τL, detuned by �L with respect to the atomic resonance line. The pulses differ by
their spectral bandwidth h̄δω ∝ 1/τL and therefore by their duration τC . Pulse (a) (blue curves)
represents a strongly chirped pulse with a large bandwidth and long duration after chirping, pulse
(b) (red curves) is a slightly chirped pulse with a narrow bandwidth and short duration after chirping
τC . During the ‘time window’ [−τC, +τC ] the dressed ground-state potential (pulse (a): blue · · · · · ·
line, pulse (b): red — · — line) moves by 2h̄χτC with respect to the excited-state potential (black
—— line). The instantaneous crossing point between the dressed potentials varies accordingly
from Rmax to Rmin defining the ‘photoassociation window’ [Rmin, Rmax] which is much smaller in
the case of pulse (b).

energy range. The Condon point RC(t) corresponding to the instantaneous crossing of the two
field-dressed potential curves moves in the spatial range [Rmin, Rmax] giving rise to the concept
of the ‘photoassociation window’. If the pulse parameters are appropriately chosen, adiabatic
population transfer within the ‘photoassociation window’ can be achieved (Luc-Koenig et al
2004a). In such a regime, the photoassociation yield is governed by Franck–Condon factors
even for intensities where the perturbative model is no longer valid.

4. Calculations in a 3D box: convergence of the method

Before proceeding to the calculation of the total photoassociation probability per pulse in
section 6, the consistency of the method derived in section 2.1 is demonstrated. The calculation
of thermal expectation values requires an averaging procedure over an ensemble of initial states,
and the average is performed by simulating the photoassociation dynamics for all the initial
states. The number of required simulations can be estimated by considering explicitly the
thermal density operator, (2) and (10), respectively. This will be shown in section 4.1, while
the convergence of thermal expectation values such as the total photoassociation probability
is discussed in sections 4.2 and 4.3: thermal averages, e.g. (4), are obtained by connecting
quantities which are calculated in the box such as (9) and (10), to the real physical volume.
They must be independent of the box size. It will be shown below, that the Rbox-dependence
in (9) is solely due to the denominator, i.e. the normalization by Zeq,box, and that this Rbox-
dependence cancels in the thermal average (4) due to the factor vbox. The weights due to the
hyperfine structure are neglected in these calculations.
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4.1. Initial state: 3D thermal density matrix

Since ρT represents an equilibrium, i.e. a static, property of the system, the hyperfine structure
and the bosonic or fermionic character of the atoms need to be taken into account. However,
as far as the ground state is concerned, and if the angular factor discussed in section 3.1 may be
neglected, this leads just to a small modification in the sum over the rotational quantum number
l in (10) provided that the hyperfine interaction only slightly modifies the radial wavefunctions.
The weighting factors introduced in section 3.1 consequently appear only in the numerator of
(9) and (10).

The sum over l in (9) and (10) is cut off by the Boltzmann weight. For practical
calculations, it needs to be determined how many rotational states should be included. An
estimate is obtained by considering the rotational Boltzmann weight,

wrot(R) = (2l + 1) exp(−βh̄2l(l + 1)/2µR2),

at the edge of the box, R = Rbox. In this work, lmax was fixed by demanding that
wrot(Rbox) < 0.02 for the highest temperature considered, T = 150 µK, and the same
lmax was used for all temperatures (implying an even better convergence with respect to l for
the lower temperatures). This leads to lmax = 24(30) for Rbox = 1000a0, lmax = 135 (167)

for Rbox = 5000a0, and lmax = 575 (717) for Rbox = 20 000a0 for 87Rb (133Cs). For high
rotational excitation, P nl

e (tf ) will be small since the rotational barrier suppresses probability
density of the initial state in the ‘photoassociation window’. However, large l need to be
included in the calculation of the partition function to obtain converged results. This reflects
the slow convergence of the expansion into spherical waves in a large box. It should also
be noted that depending on temperature the largest contribution to the numerator of (9) is
not necessarily obtained for s-waves but more likely for l = 1 or l = 2 due to the (2l + 1)-
fold degeneracy. For a given l, the maximum energy of translational states is limited by the
Boltzmann factor. Since the energy of the lowest scattering state of the box decreases as
1
/
R2

box and the density of states decreases as
√

E/Rbox, the number of translational states
nmax increases with increasing box size. Since a priori each combination nl corresponds to
a separate simulation of the photoassociation dynamics, it is important to determine a box
size which is large enough to faithfully represent the scattering states but small enough to
keep nmax · lmax minimal. If the photoassociation occurs in the ‘photoassociation window’, the
number of required simulations can be decreased in a controllable way as shown below.

In general, an estimate for the minimally required box size is obtained by considering the
thermal density of the box, ρT,box(R), (10), as a function of R. The box is expected to be large
enough when ρT,box(R) = const at large R. This is illustrated in figures 2(a) and (b) which
show ρT,box(R) for a pair of caesium atoms in a box of lengths 1000a0 and 2000a0. In figure 2
all partial waves l are introduced neglecting the weights due to hyperfine structure
(section 3.1). The basis functions were chosen (cf section 3.1) to be sine waves in the
box, because they are zero at the box boundaries (Willner et al 2004). This behaviour is
reflected in the thermal density: since all basis functions vanish at Rbox so does the thermal
density. If the box is large enough, there is, however, a range of R values for which the thermal
density is constant, and this will serve as criterion for convergence. The required box size
depends on temperature: larger boxes are necessary for lower temperatures (cf black and blue
lines in figure 2). This can be understood as follows: the temperature determines the range
for the collision energy of the scattering states, Ecoll ∼ kBT . Neglecting the modification
due to the interatomic potential, the minimal collision energy of the box is simply determined
by the box quantization. A thermal average for a low temperature requires the presence of a
sufficient number of scattering states with very small collision energies which are present only
for large boxes. For very large grids (Rbox � 20 000a0, data not shown), the constant value of
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Figure 2. The thermal density (10) of two 133Cs atoms (a)–(c) and of two 87Rb atoms (d) as a
function of R for T = 50 µK (black solid line), T = 100 µK (red dashed line), and T = 150 µK
(blue dotted line). ρT is compared for Rbox = 1000a0 and Rbox = 2000a0 in panels (a) and (b)
indicating the convergence with respect to Rbox. Panels (c) and (d) show the short-range behaviour
of ρT for caesium and rubidium with the grey box indicating the ‘photoassociation window’
for a pulse with spectral bandwidth h̄δω = 0.26 cm−1 and detuning from the atomic line � =
0.675 cm−1 for caesium and h̄δω = 1.5 cm−1 and � = 4.1 cm−1 for rubidium. Note the different
temperature dependence of the short-range part of ρT of rubidium as compared to caesium which
is due to a shape resonance.

ρT (R) at large R converges to the same value which depends on Rbox but not upon the species
nor on the temperature. Note that for large boxes, this constant value of ρT (R) depends
neither on the temperature nor on the studied species. In fact, this value converges to the
density 1/vbox of an ideal gas confined to a volume V where each elementary volume vbox

(cf (13)) contains only one pair of atoms.
Figures 2(c) and (d) compare the short-range part of ρT,box for two 133Cs atoms and for

two 87Rb atoms in a box of length 1000a0. The ‘photoassociation window’ corresponding to
the two pulses used in the dynamical calculations is indicated by a grey box. It corresponds
for caesium to a pulse with spectral bandwidth h̄δω = 0.26 cm−1 and detuning from the
atomic line � = 0.675 cm−1 (referred to as P122

− by Koch et al (2006a) and for rubidium
to a pulse with spectral bandwidth h̄δω = 1.5 cm−1 and detuning from the atomic line
� = 4.1 cm−1 (cf Koch et al (2006b)). In the weak-field regime and for adiabatic population
transfer, the photoassociation probability is determined, in addition to the pulse intensity, by
the thermal density within the ‘photoassociation window’. The thermal density is related to
ρT,box analogously to (4). Note the different temperature behaviours of the probability density
of rubidium compared to caesium: a shape resonance in rubidium leads to an enhancement
of the probability density for 150 µK and 100 µK compared to 50 µK. The largest single-l
contribution to ρT,box is therefore due to l = 2. This indicates the importance of including
rotational excitations when calculating the thermal expectation value.

4.2. Convergence of the partition function: comparison with the ideal gas

The denominator of (9), the partition function of the box, Zeq,box, is shown as a function of
the box size in figure 3 and compared to the partition function of free (Vg(R) ≡ 0) spherical
waves in a box and to the partition function of the ideal gas confined to the volume vbox (12).
The eigenvalues of the free spherical waves are obtained as roots of the Bessel functions of the
first kind using the numerical package RFSFNS4 (Vrahatis et al 1995). Differences between

4 http://cpc.cs.qub.ac.uk/summaries/ADCK v1 0.html

http://cpc.cs.qub.ac.uk/summaries/ADCK_v1_0.html
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(a)

(b)

Figure 3. Partition function Zeq,box calculated from the eigenvalues obtained in the box as∑
nl(2l + 1) e−βEnl (full line and filled symbols) and from the free spherical waves (i.e. the zeros

of the Bessel functions, dashed lines and open symbols) as a function of the box size Rbox for
T = 50 µK (black �), T = 100 µK (red ◦), and T = 150 µK (blue 
). The analytical partition
function for an ideal gas of non-interacting atoms (12) is also drawn for the three temperatures
(green — · — line and stars). The log–log-scale emphasizes the scaling Zeq ∼ R3

box. Shown are
the values for two 87Rb atoms interacting via the X1�+

g ground state potential (a) and for two
133Cs atoms interacting via the a3�+

u potential (b).

Zeq,box for the true potential and for Vg(R) ≡ 0, where Zeq,box is calculated with the same lmax

(cf section 4.1), are observed only for very small box sizes (R � 2000a0). This demonstrates
that the short-range part of Vg(R) does not significantly modify the partition function. These
values which are obtained by using a spherical wave expansion and discretization of the
continuum, differ noticeably from Zeq of the ideal gas for small box sizes (R � 5000a0).
This is explained by the minimum collisional energy of the box which is then too large and
the density of states which is too small to correctly describe the thermal distribution at the
studied temperatures5. The log–log scaling in figure 3 emphasizes the algebraic scaling of
the box partition functions as Zeq,box ∼ R3

box. In the calculation of the thermal average (4),
this Rbox-dependence cancels with that of the box volume vbox. Equivalently, for a sufficiently
large box size, the factor vbox

V
1

Zeq,box
in (4) is identical to the factor 1

Zeq
in (12).

The convergence with respect to the number of partial waves lmax is analysed in
figure 4. The partition function and the contributions to the sum are shown in figures 4(a)
and (b). The convergence of the expansion in spherical waves is slow: all l up to lmax are
required to obtain the convergence of Zeq,box calculated in the real potential Vg(R). The
same behaviour is obtained for the partition function calculated from free spherical waves in
the same box (not shown). However, this slow convergence does not pose a problem since the
evaluation of Zeq,box requires only the knowledge of the eigenvalues Enl which are obtained by
one matrix diagonalization (typically of dimension 1000 × 1000) for each l. For sufficiently
large boxes (R � 2000a0), Zeq,box can be approximated by the partition function of the free
spherical waves in a box which is obtained from the roots of the Bessel functions of the
first kind requiring even less numerical effort than the matrix diagonalizations. For very

5 Expressed in Kelvin, the minimum collisional energy of the box varies as 19.67/R2
box (12.86/R2

box) for 87Rb
(133Cs).
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Figure 4. The partition function
∑

n,l′=0,l (2l′ + 1) e−βEnl′ (a), and single l′-contributions to
the partition function (b), the thermal average of the excited state population

∑
n,l′=0,l (2l′ +

1) e−βEnl′ P nl′
e (tf ) (c), and single l′-contributions to the thermal average (d), as a function of the

partial wave index l for Cs(0−
g (P3/2)) and a box of length 5000a0 (lmax = 167). The highest

contribution to the numerator of 〈P̂e〉T ,box (c), (d) is due to l′ = 1, not l′ = 0 for all considered
temperatures. The pulse is described in the text.

large boxes, Zeq,box becomes identical to the analytically known partition function of the
ideal gas.

4.3. Convergence of the numerator in the thermally averaged photoassociation probability:
potential barrier effects

Figures 4(c) and (d) present the convergence with respect to the number of partial waves of
the numerator of 〈P̂e〉T ,box (9), i.e. of the unnormalized expectation value Zeq,box · 〈P̂e〉T ,box.
It is striking to see that the numerator converges very quickly with l (figure 4(a)). This rapid
convergence is explained by the height of the centrifugal barrier which at low temperature
suppresses collisions, and therefore photoassociation, of high-l waves. The barrier is equal to
79 µK (35.7 µK) for l = 1, 417 µK (186 µK) for l = 2, 1168 µK (525 µK) for l = 3 and
2513 µK (1330 µK) for l = 4 for 87Rb (133Cs). Hence the contributions to the sum in the
numerator (9) shown in figure 4 quickly become very small. One can take advantage of this
fact to compute (9) in a well-controlled approximation which requires much less numerical
effort than the full procedure of section 2.1: the numerator,

∑
nl(2l + 1) e−βEnl P nl

e (tf ), is
calculated until the desired accuracy is achieved at lcut ≈ 10 while the denominator, i.e. the
partition function, is calculated with lmax (or with the analytical expression for very large
boxes). This reduces the numerical effort considerably since the evaluation of the numerator
requires the simulation of the full dynamics while for the partition function only the ground
state eigenvalues Enl need to be determined.

At the considered temperatures which represent typical MOT conditions, the highest
contribution to the thermal average is obtained for l = 1, and not for the s-wave. Even for
l = 2, the contribution is still comparable to that of the s-wave. This corresponds to what
is known from photoassociation with cw lasers: the introduction of l-waves up to l = 4 is
necessary to interpret the 1u photoassociation spectrum of Cs atoms in the hyperfine level
f = 3 recorded in a dark-spot MOT at the temperature T = 200 µK (Comparat et al 2000).
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Figure 5. The unnormalized thermal density, Zeq,box · ρT,box(R), integrated over the
‘photoassociation window’ as a function of the box size Rbox for T = 50 µK (black solid
line), T = 100 µK (red dashed line) and T = 150 µK (blue dotted line). The number of grid
points is NR = 1024, Rbox is varied by changing the grid mapping parameter βgrid. Shown are the
values for two 87Rb atoms interacting via the X1�+

g ground state potential.

The correct treatment of higher l waves becomes even more important when shape resonances
occur as in the example of 87Rb. The contribution from the resonant l is then one to two orders
of magnitude larger than for all other l, including the s-wave (in our calculations lres = 2 for
87Rb2 X1�+

g as well as for 87Rb a3�+
u ). This is explained by an increased probability density

at intermediate range due to the shape resonance (cf figures 2(b), (e) for 87Rb2 X1�+
g ). A

shape resonance in the scattering of two 87Rb atoms colliding in the lowest triplet surface has
been experimentally observed around 270 µK (Thomas et al 2004, Buggle et al 2004) and
ascribed to the d-wave (Boesten H et al 1997).

4.4. Equivalence of averages on a finite-size grid and via box-independent continuum states

For short pulses and for detunings large enough such that the ‘photoassociation window’
is well defined, the final excited state population is proportional to the probability density
in the ‘photoassociation window’. This is due to the fact that the ground state probability
distribution is not equilibrated on the timescale of the pulse. The unnormalized thermal
density integrated over the ‘photoassociation window’,

∫ Rmax

Rmin
dR Zeq,box · ρT,box(R), shown in

figure 5, is roughly independent of the box size Rbox. The small fluctuations can be explained
by the approximation introduced by the mapped grid method (Kokoouline et al 1999). The box
size is varied by changing the parameter βgrid of the grid mapping while keeping the overall
number of grid points constant, i.e. by stretching the variable grid step. The Fourier grid
with constant grid step leads to an exponentially convergent representation of the Hamiltonian
provided the number of grid points is large enough. This exponential convergence is lost with
a semiclassical grid mapping (Kokoouline et al 1999, Willner et al 2004). However, much
larger grid sizes which are essential to describe ultracold collisions become feasible.

Similarly the unnormalized photoassociation probability in the box (9) is independent of
the box size for sufficiently large Rbox which leads to a large value of the density of states dn

dE
.

For each l, the discrete summation over the discretized continuum states n can then be replaced
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by an integral over energy (2l + 1)
∫ ∞

0
dn
dE

e−βEP El
e (tf ) dE. Following (8), P El

e (tf ) represents
the population remaining on the excited state after the time propagation of the initial state ϕnl ,
i.e. the ground state eigenstate with energy E = Enl and angular momentum l normalized to
unity in the box. By introducing the energy-normalized wavefunction |E〉 = 1

/√
dE
dn

ϕnl (see
section 2.2) the thermal average via box-independent ‘true’ continuum states is recovered. In
this second approach one introduces the box-independent photoassociation probably density
P̄ El

e (tf ) with dimension 1/E obtained by time propagating the energy-normalized initial state
|E〉 and related to P nl

e (tf ) by P̄ El
e (tf ) = P El

e (tf ) dn/dE,

(2l + 1)
∑

n

e−βEnl P nl
e (tf ) ≈ (2l + 1)

∫ ∞

0

dn

dE
e−βEP El

e (tf ) dE

= (2l + 1)

∫ ∞

0
e−βEP̄ El

e (tf ) dE. (18)

This explains the independence of the unnormalized photoassociation probability on the box
size and demonstrates the equivalence of the two treatments using either box states or ‘true’
continuum provided Rmax is sufficiently large.

5. Approximation based on a scaling law

5.1. s-wavefunctions and quantum scaling law near a threshold

A further reduction of the numerical effort to estimate the total photoassociation probability
per pulse can be achieved by considering the special properties of scattering states describing
ultracold atoms. The required approximation is outlined below while the results obtained
within this approximation are compared to those of the general procedure in section 6.2.

Some wavefunctions |ϕn, l = 0〉 for s-wave stationary continuum states are represented
in figure 6, for a pair of caesium atoms in the triplet state a3�+

u (6S + 6S). They are obtained
by representing Ĥg in a box of size Rbox = 19 250a0 and subsequent diagonalization. For such
a large box, the first continuum level with energy ∝1

/
R2

box is found at 36.6 nK, so that the
discretization of the continuum is correct for energies in the µK range. The wavefunctions
|En,l=0〉, corresponding to the same energy but normalized per unit energy, are given by

|En,l=0〉 = ([
dE
dn

∣∣
Ens

])−1/2|ϕn, l = 0〉, where for a box larger than the range of the potential
Vg, the density of s states in the box is equal to

dn

dE

∣∣∣
Ens

∼ Rbox

πh̄

√
µ

2Ens

. (19)

For the collisional wavefunctions, two different behaviours are observed depending on R,
relative to a critical distance RN which is the position of the last node of the last bound state for
l = 0. This node is common to all collisional wavefunctions in the relevant range of energies,
respectively temperatures (cf figure 6(b)). As detailed by Crubellier and Luc-Koenig (2006),
RN can be calculated from reduced quantities,

RN = XNσ,

with σ = [(2µC6)/h̄
2]1/4. XN is obtained from 1

/(
2X2

N

) = arccot[(η − ared)/η] + 11/8π

and η = (2π)/[�(1/4)]2 = 0.477 989, where ared = a/σ is determined by the scattering
length a. For R > RN (RN = 82.3a0 for Cs2 a3�+

u (6S + 6S)), each continuum wavefunction
with energy Ens has its specific nodal structure determined by the local de Broglie wavelength
λdB = h/

√
2µ(Ens − Vg(R)). At large distances, the wavefunctions |ϕn, l = 0〉 have the

same amplitude (cf figure 6(a)) which for a large box is approximately equal to
√

2/Rbox (the
factor 1/2 accounting for the mean value of the oscillatory part).
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Figure 6. Wavefunctions for the stationary s-wave continuum states in the Cs2 a3�+
u (6S + 6S)

potential. (a) Long-range behaviour: same amplitude for all continuum wavefunctions. (b) Short-
range behaviour: same nodal structure for all wavefunctions with RN being the position of the last
common node. The corresponding scattering energies Ens = kBT , calculated on a grid of length
19 250a0, are 36.6 nK (red — · —), 0.33 µK (green – – –), 54 µK (blue ——), 0.11 mK (magenta
— — —, 0.32 mK (cyan · · · · · ·). The wavefunction for the last bound state v′′ = 53 (divided by
a factor of 5) is also displayed (thin black ——). The value of the scattering length was taken to
be a = 538a0.

In contrast, for R � RN , all continuum wavefunctions have the same nodal structure
since the potential energy 〈Vg(R)〉 is larger than the kinetic energy 〈T̂〉. These wavefunctions
differ only by a short-range normalization factor, giving rise to scaling laws. The scaling factor
C(Ens)

−1 can be derived by considering the behaviour near threshold in the simplest asymptotic
model of a −C6/R

6 potential with the short-range repulsive wall chosen to reproduce the
scattering length (Crubellier and Luc-Koenig 2006). Near threshold, when the collision energy
becomes smaller than the critical value EQ = 77/224/36 h̄2

2µσ 2 = 19.917 53 h̄2

2µσ 2 , the quasi-
classical Wigner–Kramers–Brillouin (WKB) approximation breaks down at intermediate
distances around RQ ∼ 3/(21/273/4)σ = 0.492 297 σ , with RQ ∼ RN , but remains valid both
in the asymptotic region (where the potential is negligible), and at relatively short distances
(where the local classical momentum p(R) = 2π/λdB(R) is determined by the potential
energy, and therefore stays independent of E). In this region, the energy-normalized radial
wavefunction for an unbound state is written as

y(R) = 1

C(E)

√
2µ

πh̄p(R)
cos

(∣∣∣∣
∫ R

Ro

p(R′) dR′
∣∣∣∣ − π

2

)
, (20)

where Ro is the turning point for the classical motion. The probability density at short range
is completely determined by the energy-dependent factor C−2(E) which was introduced in
the generalized form of multichannel quantum defect theory by Mies (1984) and Julienne and
Mies (1989). This factor characterizes the departure from the WKB approximation at energies
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Figure 7. ‘Quantum suppression’: variation as a function of
√

E ≈ T 1/2 of the density factor
C−2(E) (21), which determines the short-range probability for s-wavefunctions (shown for 85Rb2
(red), 87Rb2 (green) and 133Cs2 (blue)). In all cases, the WKB value C(E) = 1 is roughly reached
at large energy E/kB > 50 µK and the Wigner threshold law (C−2(E) ∝ √

E) is observed at a
small energy. For sufficiently large |a|, a strong enhancement is observed in the probability density
at short range. The values of the scattering length employed for collisions in singlet (——) and
triplet (— — —) states are equal to, respectively, 3650a0 and −332a0 for 85Rb2 (Roberts et al
2001), 90.6a0 and 98.96a0 for 87Rb2 (Marte et al 2002) and 280.37a0 and 2440a0 for 133Cs2 (Chin
et al 2004). The blue — · — line corresponds to 133Cs2 with scattering length 538a0, the value
used in the present time-dependent calculations.

close to threshold due to the large value of the de Broglie wavelength: C(E) = 1 if the WKB
approximation is valid at all distances, and according to the Wigner threshold law for s-waves

C−2(E) ∝
√

E for E → 0. (21)

The rapid decrease of C(E) with decreasing energy corresponds to the so-called ‘quantum
suppression’ of cold collisions discussed by Côté et al (1996). Since the Wigner law is valid
only very close to threshold and for a sufficiently large value of |a|, an enhancement of the
probability density at short-range C(E)−1 > 1 is observed at low energy above threshold.

Near threshold, the variation of the ‘density factor’ is completely determined by the
value of the reduced scattering length ared. If |ared| > 0.5, a resonance appears very close to
threshold, as is seen from figure 8 in the systematic analysis by Crubellier and Luc-Koenig
(2006). This resonance becomes sharper for larger values of |ared|, especially for ared < 0,
and it generally occurs at energies in the micro-Kelvin range. The variation C(E)−2, which
represents the probability density at short range as a function of

√
E, is shown in figure 7

for singlet ground and lowest triplet state of 85Rb2,
87Rb2 and 133Cs2. A strong resonant

structure appears for the states X1�+
g in 85Rb2 and a3�+

u in 133Cs2, less pronounced structures
for a3�+

u in 85Rb2 and X1�+
g in 133Cs2. For collisions in the ground singlet and triplet

states of 87Rb2, quantum suppression occurs below 50 µK. A sharp resonance in C(E)−2 is
observed at an energy of 0.25 µK for the Cs2 triplet state (cf figure 7), when the experimental
value of the scattering length a = 2440a0 obtained from precision Feshbach spectroscopy by
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Figure 8. Scaling law for the photoassociation probability per pulse (black ——), the Franck–
Condon factor between the initial state and the resonantly populated vibrational state, (blue — · —),
and the ground state probability density at the external Condon point RL (green – – –) [drawn in
arbitrary units]; the ground state wave function is normalized per unit energy. The dimensionless
short-range density factor C(E)−2 (divided by the factor 2104) is also reported (red · · · · · ·).
Photoassociation to Cs2 0−

g (6S + 6P3/2) and a chirped laser pulse of duration τC = 36 ps and chirp

rate h̄χ = −0.025 cm−1 ps−1 was assumed. The temperature T = 54 µK of the atomic gas at
thermal equilibrium is indicated by the arrow.

Chin et al (2004) is used to fit the potential (Crubellier and Luc-Koenig 2006). In contrast,
when considering the a3�+

u potential computed by Spiess (1989) which is used below in the
time-dependent calculations, a smaller value a = 538a0 for the scattering length is obtained.
The energy variation of the short-range probability C−2(E) then manifests a less pronounced
resonant structure at a higher energy (8 µK, see figure 7). This difference illustrates the high
sensitivity of the resonance phenomenon, and hence of the photoassociation probability, to the
value of the ground state scattering length.

5.2. Use of the scaling law near threshold: total s-wave photoassociation probability

The energy dependence of C−2(E) carries over to the energy dependence of the Franck–
Condon factor |〈1/

√
dEn,l=0/dn ϕg|ϕe〉|2 (representing the overlap of the energy-normalized

scattering wavefunctions 1/
√

dEn,l=0/dn ϕg(R) with the short-range excited state vibrational
wavefunction). It also determines the energy dependence of the s-wave photoassociation
probability per pulse P Es

e in the regime where photoassociation is governed by Franck–
Condon factors, i.e. for weak fields or adiabatic population transfer, and with the laser
detuning large enough such that RL � RN . This is illustrated in figure 8 where P Es

e and
|〈1/

√
dEn,l=0/dn ϕg|ϕe〉|2 are shown for the photoassociation of caesium to the 0−

g (6S+6P3/2)

state as a function of the relative kinetic energy E of the two atoms. The detuning of the pulse
is fixed at �L = 2.656 cm−1 respective to the D2 line where the central frequency is resonant
with the v = 98 level in the external well of the 0−

g (6S + 6P3/2) potential. Also depicted is
the probability density of the ground state wavefunction |ϕg(R = RL)|2/(dEn,l=0/dn) at the
Condon point RL which obeys a similar energy dependence, provided RL is smaller or not
much larger than RN .

The knowledge of the energy dependence of C−2(E) can be used to markedly reduce the
computational effort by avoiding time-dependent calculations for a large number of collision
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Figure 9. The number of excited state Cs2(0−
g (P3/2)) molecules per pulse (4) as a function of

the box size Rbox for T = 150 µK (a), T = 100 µK (b), and T = 50 µK (c) assuming the
number of atoms to be N = 107 at a density N/V = 1010 cm−3 and neglecting excitation
to other states. The atoms are supposed to be non-polarized with f = 3. Nmol

exc,tot is obtained
from vbox · 〈P̂e〉T ,box/Zeq,box (black circles), vbox · 〈P̂e〉T ,box/Z

free
eq,box (red triangles), and from

vbox · 〈P̂e〉T ,box/Zeq,box where 〈P̂e〉T ,box is calculated as an integral over energy-normalized states
(blue squares). The sum in the numerator is evaluated up to l = 11 while lmax is used in the
calculation of the partition function. The pulse is described in the text.

energies E. As illustrated in figure 8, it is sufficient to compute the probability for a single
energy E0 and to employ the scaling law,

P̄ Es
e = P̄ E0

e

[
C(E)

C(E0)

]−2

, (22)

to deduce the results for all energies in the threshold range. The total photoassociation
probability per pulse is then given by integrating over E,

P(T ) = 1

Zeq

∫
e−βEP̄ Es

e dE, (23)

where Zeq and Zeq,box
V

vbox
are assumed to be identical. Total photoassociation probabilities

obtained this way are presented in section 6.2.

6. Results: total photoassociation probability per pulse

6.1. Calculations in a 3D box

The total number of excited state molecules per pulse, calculated from (4) and (9), is shown in
figure 9 for Cs2(0−

g (P3/2)) and in figure 10 for 87Rb2(0+
u(P1/2)). In both cases, the number of

atoms is assumed to be N = 107 at a density N/V = 1010 cm−3 which corresponds to the Rb-
MOT conditions of Salzmann et al (2006). The box volume is calculated as vbox = 4πR3

box

/
3.

The atoms are supposed to be non-polarized, and f is taken to be 3 (1) for 133Cs (87Rb). The
pulse parameters are chosen as τL = 57.5 ps, τC = 110 ps (i.e. h̄χ = −0.002 cm−1 ps−1),
� = 0.675 cm−1 and pulse energy 19 nJ for caesium (pulse P122

− of Koch et al (2006a), and
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Figure 10. The number of excited state Rb2(0+
u(P1/2)) molecules per pulse (4) as a function of the

box size Rbox for T = 150 µK (a), T = 100 µK (b), and T = 50 µK (c) assuming the number
of atoms to be N = 107 at a density N/V = 1010 cm−3 and neglecting excitation to the 1g and
0−

g excited states. The atoms are supposed to be non-polarized with f = 1. The meaning of the
symbols is identical to that in figure 9. Both numerator and partition function are evaluated up to
lmax. The pulse is described in the text.

τL = τC = 10 ps (i.e. χ = 0), � = 4.1 cm−1, E = 4.2 nJ (cf Koch et al (2006b)) for rubidium.
The pulse energy is estimated as E = ε0c

√
ππr2

BE2
0

√
ln 2τL/2 with ε0 the electric constant, c

the speed of light, E0 the maximum amplitude of the pulse before chirping and rB the radius
of the laser beam (rB = 300 µm is assumed).

Three different ways to calculate Nmol
exc,tot are compared: 〈P̂e〉T ,box is evaluated by summing

over n and l in the numerator while employing the box partition function (black ◦) and
the partition function of the free spherical waves (red 
) as well as by replacing the sum
over n by

∫ ∞
0 dE (18) while summing over all l and employing the box partition function

(blue �). It is clearly seen in figure 9 and figure 10 that the number of excited state
molecules can be converged by increasing the size of the box. For caesium (rubidium),
reliable results are obtained for Rbox � 4000a0 (Rbox � 3000a0). If Rbox is too small, the
density of states required for calculating the integral

∫ ∞
0 dE which is approximated by the

energy level difference �n/�Enl is not represented correctly. Therefore the three methods to
evaluate Nmol

exc,tot differ markedly for Rbox � 2000a0. The number of Cs2(0−
g (P3/2)) molecules

per pulse is estimated as 0.10 (0.16), 0.08 (0.13) and 0.07 (0.12) for 50 µK, 100 µK and
150 µK assuming non-polarized (polarized) atoms and f = 3. For Rb2

(
0+

u(P1/2)
)

0.04 (0.10),
0.06 (0.17), and 0.05 (0.15) are obtained for non-polarized (polarized) atoms, f = 1 and the
respective temperatures. These values do not yet include the statistical factors d2S+1�

/
d2

A. A
simple estimate of the molecule formation rate can be obtained by multiplying these numbers
with the repetition rate of the laser. However, this assumes that each photoassociation pulse
acts on an initial state in thermal equilibrium, i.e. the time between pulses is supposed to be
long enough for the sample to equilibrate. Note that for Rb2

(
0+

u(P1/2)
)

the photoassociation
probability is higher for 100 µK and 150 µK than for 50 µK. This is due to the shape resonance
for l = 2 (cf figure 2). A detailed investigation of this phenomenon is beyond the scope of
this study and shall be given elsewhere.
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6.2. Calculations using a scaling law: comparison to the 3D box calculations

If the calculations of section 6.1 are restricted to the s-wave, the validity of the discretization of
the continuum (18) and of taking the analytical partition function Zeq (12) and the box partition
function Zeq,box

V
vbox

to be identical can be checked. Photoassociation of Cs2 is considered for

the same pulse conditions as in section 6.1, in particular with a detuning � = 0.675 cm−1.
The total probability per pulse is determined by solving the coupled equations (16) for a single
energy E0 = kBT0, T0= 54 µK, and by integrating (23) for 50 µK, 100 µK and 150 µK. Since
the a3�+

u potential computed by Spiess which corresponds to a scattering length a = 538a0

is employed, the energy variation of (22) corresponds to a broad resonance (cf section 5.1).
The total probability per pulse is found to be 0.059, 0.033, and 0.023 for 50 µK, 100 µK
and 150 µK. According to the calculations of the previous section, the s-wave contributes
respectively 63% (78%), 41% (53%) and 31% (38%) to the total photoassociation probability
for non-polarized (polarized) atoms. This can be used to extrapolate the s-wave contributions
of the present section to 0.094 (0.075), 0.08 (0.062) and 0.074 (0.061) molecules per pulse
for non-polarized (polarized) atoms and the respective temperatures of 50 µK, 100 µK and
150 µK. Comparing to the probabilities obtained with the full numerical averaging procedure
of section 6.1, excellent agreement between the two methods is obtained emphasising the
validity of the scaling law procedure.

In case of a potential corresponding to a larger value of the scattering length, a = 2440a0

(Chin et al 2004), the scaling law yields a sharp resonance structure at 8 µK (cf figure 7). The
energy averaging then provides slightly different results for the photoassociation probability:
at T = 50 µK, 100 µK and 150 µK, the integral

∫ ∞
0 [C(E)]−2 e−βE dE is larger by a factor of,

respectively, 1.41, 1.24 and 1.17 for = 2440a0 compared to a = 538a0. At lower temperatures,
on the order of 8 µK or below, a marked difference is observed, for example at T = 1 µK
this factor is equal to 6.8. It should furthermore be noted that the temperature dependence of
P(T ) differs markedly from the Wigner law, where for s-wave the threshold law P̄ Es

e ∝ √
E

is associated with the variation P(T ) ∝ T 3/2. In the present calculation P(T ) ∝ T α with
α ∼ 2/3 for a = 2440a0 and α ∼ 4/5 for a = 538a0.

The present values for the total photoassociation probability per pulse have to be
compared with the estimates given previously by Luc-Koenig et al (2004a, 2004b) for the
same photoassociation reaction in a caesium MOT. In photoassociation at a larger detuning
�L = 2.656 cm−1 with pulses τL = 15 ps, τC = 34.8 ps and τL = 12 ps, τC = 46.6 ps,
respectively, 0.69 and 1.40 molecules per pulse were found. This order of magnitude of one
molecule per pulse is attributed to the different MOT conditions with N = 108 atoms in the
same volume of ∼10−3 cm3, i.e. a density of 1011 cm−3 as in the Orsay experiments described
by Fioretti et al (1998). In such conditions, the pulse parameters considered here (with smaller
detuning compared to Luc-Koenig et al (2004a) would yield as much as 5.9 molecules per
pulse formed from pairs of atoms colliding with s-wave scattering. When all the partial waves
are considered, about 10 molecules per pulse are predicted.

7. Beyond the concept of a ‘photoassociation window’

The present paper has focussed on an excitation mechanism where population transfer from the
ground to the excited state takes place within a ‘photoassociation window’. As discussed by
Luc-Koenig et al (2004a, 2004b), other efficient mechanisms may exist such as non-adiabatic
population transfer. Thus population in the excited state at large distances may be created
which merely reflects the ground state wavefunction. Figure 11 compares two different
excitation mechanisms: non-adiabatic population transfer leads to a wavepacket spreading
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Figure 11. Two mechanisms of photoassociation: excited state wavepacket |�0−
g
(R, t)| in the

Cs2(0−
g (P3/2)) state at the time t = tP +τc (a) and t = tP +2τc (b) after the pulse maximum t = tP .

Two pulses with different spectral bandwidths are compared: h̄δω = 0.981 cm−1 for τL = 15 ps,
τC = 36 ps (red curve) and h̄δω = 2.453 cm−1 for τL = 6 ps, τC = 96 ps (black curve). For
small spectral bandwidth only adiabatic population transfer within the photoassociation window
is observed (red curve), while for broad spectral bandwidth a non-adiabatic mechanism transfers
population both at short and at long distances (black curve). At long distances the wavepacket is
similar to the initial continuum wavefunction in the a3�+

u state.

from large to small distances (black curve), while a very localized wavepacket within the
photoassociation window is created by adiabatic population transfer (red curve). At the end
of the pulse the wavepacket in the excited state can be written as

�̄e(R, tf ) = �̄win
e (R, tf ) + α�̄g(R, t0), (24)

i.e. as the sum of a wavepacket transferred in the ‘photoassociation window’ �̄win
e (R, tf ) and

a long-range wavefunction proportional to the initial continuum wavefunction. As discussed
by Luc-Koenig et al (2004b), the complex proportionality factor α is both R-independent and
energy independent in the threshold region.

For the short-range contribution, which is obtained by subtracting α�̄g(R, t0) from the
photoassociated wavepacket, the thermal average can be computed as described in the present
paper, giving a lower limit to the number of photoassociated molecules. When the interference
term between the two contributions can be neglected, the thermal average for the second term
is trivial, since it reflects the thermal average of the initial distribution of atom pairs. However,
the molecules formed in such a way may easily decay into pairs of hot atoms. The evaluation
of the number of these photoassociated molecules is therefore of interest only, if efficient
stabilization mechanisms can be found. This should be further developed in a forthcoming
paper.

In situations where the long-range contribution dominates in (24), calculations with
thermal Gaussian wavepackets as initial state should be justified. This again will be further
developed in a forthcoming paper.

8. Conclusions

A general method to calculate the absolute number of molecules produced in a pulsed
photoassociation scheme using a finite grid was derived. The absolute number of molecules
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per pulse is calculated from the thermally averaged photoassociation probability which is
determined by the pulse parameters and the initial pair density assumed to be in thermal
equilibrium. The thermal average is obtained by decomposing the density operator into a
sum of projections. This decomposition is not unique. Each projection is determined by a
pure wavefunction for which the photoassociation probability can be calculated exactly. To
keep the calculation feasible, the smallest possible number of projections should be used. The
different physical limits lead to different projection schemes.

Approximations based on two limiting cases were discussed: (i) for T → 0
photoassociation is dominated by s-wave collisions and the threshold laws determine the
shape of the energy dependence of the initial s-wave density. Calculations for one energy
of the colliding pair are sufficient, since results for the other energies can easily be deduced
through a scaling law. (ii) When the potential energy of the initial states can be neglected
relative to the kinetic energy which is true either for high temperatures or in the limit of zero
detuning, i.e. photoassociation at extremely long range, then a decomposition of the density
into thermal Gaussian wavepackets should be employed.

Even beyond these two limiting cases, a small grid and a small number of partial waves
(typically on the order of 10) were shown to be sufficient to calculate the absolute number of
molecules per pulse. For the case of s-wave scattering, the results of a single calculation
with averaging via the scaling law and of the full numerical averaging procedure were
compared, and good agreement was found. For the studied temperatures, between 50 µK
and 150 µK, the photoassociation reaction is determined not only by s-wave collisions,
and higher l-waves have to be considered. For typical MOT temperatures, a density of
1010 cm−3 and a detuning of about 4 cm−1, the number of molecules per pulse in an order
of magnitude estimate is obtained as 0.1 for 87Rb2

(
0+

u(P1/2)
)
. In the same conditions similar

results should be obtained for caesium. However, when considering a typical caesium MOT
with a density of 1011 cm−3, the calculations predict formation of about 10 133Cs2(0−

g (P3/2))

molecules per pulse. Indeed, the pulse parameters and especially the detuning are better
optimized than in previous calculations by Luc-Koenig et al (2004a, 2004b) where one
molecule per pulse was predicted. In summary, the calculations imply a sufficient number of
molecules to be detected for both rubidium and caesium assuming an experiment carried out
at a repetition rate of 100 kHz which allows for equilibration between two photoassociation
pulses.

These numbers should be considered as an order of magnitude estimate. Future work shall
address the population of rotational levels in the excited state. Furthermore, for any specific
experiment with given preparation of the atoms in hyperfine sublevels and polarization of the
laser, the angular part of the transition dipole moment should be introduced properly.

The scaling law derived for s-wave scattering can with little effort be generalized to higher
partial waves, leading to the determination of the partial density of probability at short range.
This will allow us to compare the numerical averaging procedure to the method using threshold
laws in the general case. It is expected that the number of photoassociated molecules can then
be obtained with much less numerical effort by performing dynamical calculations for a single
energy for each value of l and by employing generalized scaling laws.

Finally, the present work is restricted to the formation of molecules via adiabatic
transfer within a ‘photoassociation window’. The efficiency of another mechanism, involving
population transfer at large distances, should be explored in future work, in connection with
the possibilities for stabilizing such molecules. Considering an initial thermal distribution
of atoms, a different averaging procedure then should be implemented to describe this new
mechanism.
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