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Spin-boson Hamiltonian and optical absorption of molecular dimers

Christiane Koch and Bernd Essér
Institut fur Physik, Humboldt-Universitazu Berlin, InvalidenstraBe 110, D-10115 Berlin, Germany
(Received 11 June 1999; published 13 January 2000

An analysis of the eigenstates of a symmetry-broken spin-boson Hamiltonian is performed by computing
Bloch and Husimi projections. The eigenstate analysis is combined with the calculation of absorption bands of
asymmetric dimer configurations constituted by monomers with nonidentical excitation energies and optical
transition matrix elements. Absorption bands with regular and irregular fine structures are obtained and related
to the transition from the coexistence to a mixing of adiabatic branches in the spectrum. It is shown that
correlations between spin states allow for an interpolation between absorption bands for different optical
asymmetries.

PACS numbds): 33.20—t, 63.20.Ls, 03.65-w

[. INTRODUCTION Hamiltonian in relation to optical transitions we indicate a
bridge between the eigenstate analysis of nonintegrable sys-
The spectral properties of the spin-boson Hamiltoniantems and observables in an optical experiment. In particular,
have frequently been adressed in the past and in the laste show how the intensity variations in the Husimi projec-
years investigations on the spectral features of classical notions are related to the spectral randomness in the fine struc-
integrability in the quantum case were performede, e.g., ture of absorption bands. Such spectral randomness in the
[1-4] and references thergirThe interest in the spectral and eigenstates of the spin-boson Hamiltonian is also known as
dynamical properties of the spin-boson Hamiltonian is due tancipience of quantum chad41-13. In this case random
its numerous applications which include a large variety offeatures of the spectrum are just appearing while the system
phenomena in molecular and solid state physics with ongs still far from displaying universal spectral fluctuations de-
realization being the optical and transfer properties ofscriped by random matrix theory and known for excited
excitonic-.vibronic cogpled dimers. Thus thg speptral and restates of spectra of polyatomic moleculd].
lated optical properties of the corresponding dimer Hamil- A entral point in our eigenstate analysis will be to find

tonian have intensively been investigated over the years, 5 1, what extent the adiabatic reference systems of the

?hX:smep:ﬁie\‘lsvt(ie gtci):)r;[st?/v;hri Vggrsigxgr?szdlggilltgﬂn?; 0gorres_pin—boson Hamiltonian are present in its exact eigenstates
. 9 o ; . and how the appearance of spectral randomness can be inter-
sponding to a symmetric dimer configuration. However,

from the point of view of a general asymmetric situation thepre'EEd as a mixing of such reference systems. Folloay

symmetric case is singular, e.g. the quantum states posse ShOW_ that Bloch projeqtions are a usefql quantitative
parity properties in the symmetric case, which are not preserft'aracteristic to describe this mixing. Computing the Bloch
in general. It should be noted that dimers often constitutdrOJections of the eigenstates, it is possible to distinguish the
subunits of more complicated molecular aggregates with agPectral region where the adiabatic branches of the spectrum
asymmetric structure, which breaks the symmetry of theire still intact from the region with a substantial mixing of
dimer configuratior(see, e.g.[7]). Therefore the aim of this adiabatic reference systems. Furthermore, by performing
paper is to go beyond the symmetric case and to connect tH@ojections of the numerically obtained eigenstates onto the
properties of the eigenstates of a generalized and symmetrg-round state we obtain the details of the fine structure of the
broken spin-boson Hamiltonian with the line spectrum ofabsorption bands in the spectral regions as indicated by the
absorption bands of asymmetric excitonic-vibronic coupledFranck-Condon principle. We note that the asymmetric case
molecular dimers. has some special features, which are not present in the sym-
We combine a phase space analysis of the eigenstatesietric situation: In the asymmetric case the final states of an
which is based on the method of Husimi projectip8k with optical transition can be located in the higher energetic re-
the calculation of the matrix elements of optical transitions.gions of the corresponding adiabatic potentials. Then, as will
Husimi projections have repeatedly been used in order thbe shown below for two representative cases, the fine struc-
establish the features of nonintegrability of classical systemsure of the spectrum and of the absorption bands can greatly
in the corresponding quantum caske9,10. Analyzing the  vary from regular to irregular arrangements of absorption
Husimi projections of the eigenstates of the spin-bosoriines.
The paper is organized as follows: In Sec. Il the model
and the basic equations are presented. In Sec. Il the eigen-
*Present address: Fritz-Haber-Institut der Max-Planck-state analysis for two representative cases of the asymmetric
Gesellschaft, Abteilung Chemische Physik, Faradayweg 4-6, 14195pin-boson Hamiltonian is performed and in Sec. IV this
Berlin, Germany. analysis is connected with the properties of the absorption
TAuthor to whom correspondence should be addressed. FAX: 48ands in the corresponding spectral regions. Finally, in Sec.
30 2093 7638. Electronic address: bernd.esser@physik.hu-berlin.dé our conclusions are summarized.
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Il. MODEL The parametep expresses the coupling strength, and

the adiabatic parameter measuring the relative strength of
quantum effects of the subsystems. The saimrepresents
the center of the excitation energy, whereas the difference

We consider a dimer system described by the Hamiltoniar

H=2 (€nt ¥aln) IN)(n|+ X Vyu/n)(m| is the asymmetry parameter. Fer =0, one obtains the
. RS symmetric spin-boson Hamiltonian with conservation of to-
tal parity (given by the operatioQ— —Q, o,— — &,). For
+2 1(p2+ wiq?) (1)  €-#0, this symmetry is broken.

The adiabatic reference systems associated (@xhare

where [n) (|m)) are the excited states of the molecularmtroduced by considering the eigenvalue problem of the
monomers constituting the dimen,(nm=1,2) with the exci-
tonic energiese,, the coupling constants to intramolecular
vibrationsy,, and the transfer matrix eleme¥t,,,. The vari- A=

ablesq,, p, and w, represent coordinate, momentum and ad

adiabatic parfg,
\@I’Q +e_
frequency of the vibrations, respectively. The coupling of the

excited dimer states to an incident light wave with electrical  The Q-dependent eigenvalues and eigenstateb gfare
field vectorﬁn(t) is given by easily obtained. In particular, one finds the two adiabatic

potentialsU,(Q) for the upper(+) and lower(-) states
2
S . N . UadQ=—Q%= \/ -+
whereu,, andE,(t) are the optical transition matrix element 2 4

+ \ﬁ )2 ®
_ 2rQ ,
and electric field at the nth monomer, respectively, fhds
the excitonic vacuum. We consider an asymmetric configufrom which the Hamiltonians of the adiabatic reference sys-
ration of the dimer system by assuming different monometems are obtained
energiese, and optical transition matrix elemenfsn. In
order to keep the number of asymmetry parameters minimal H*(Q)=3P*+U Q). 9
we assume symmetric transfer rate¥,,=Vn,=—V,
V>0, and equal coupling constants and frequencies, i.e., A key point in our analysis of the eigenstates and absorp-
v1=17v,=7v and w;=w,= w. Then the coupling can be re- tion bands will be the extent to which the exact eigenstates of
duced to a single vibrational mode by introducing the relathe Hamiltonian(3) can be viewed as a mixing of adiabatic
tive displacement of the vibrations. reference systems connected with the adiabatic Hamiltonians
The Hamiltonian(1) can be represented as an operator in(9). As is shown below, the extent of this mixing can be

the space of two-dimensional vect@s- () using the stan- ~controlled by analyzing Husimi projections and by comput-

2 ing Bloch projections from the numerically obtained eigen-
states. Husimi projections constitute phase space representa-
tions of the eigenstates which can be compared with the
phase space orbits of the adiabatic reference syst@ns
Bloch projections constitute another independent indicator of
the mixing of the adiabatic branches in the spectrum. For the
adiabatic branches these projections are calculated from the
(3)  eigenstates of the Hamiltonidi)

2

~ ~ r
oyt o,+ EQZJL (7

2

Hmt:g LaEn(D[N)(0], 2

dard Pauli spin matriceéi (i=x,y,2). Passing to dimen-
sionsless variables by measuring the energy in units\gf 2
H=H/2V, one obtains fron{l) the spin-boson Hamiltonian

P . -
\[ErQ-i-e o,

In (3), the dimensionless relative displacement and corre-
sponding momentum, to which the exciton is coupled, are le:(Q)) (\/1+A(Q)|T) JI-A(Q) Y,
given byQ=2V(q;—q,) andP=(p,;—p,)/\2V. The di- od V2
mensionless parameters of the spin-boson HamiltofBn (108
are related to the dimer systefh) by

H=e -0+ 3(P2+r2Q?)1+

2 1-A +VI+A
o= Y . @ |0ad Q) \/—(\/ Q1)+ (QIL)),
2Vw (10b)
r:%, () where
( 2e_+\2prQ @1
_eliez A(Q)= 11
=T Tav ©) Vi+(2e_+2prQ)?
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Computing the expectation values=(o,) of the Pauli Before turning to the eigenstate analysis for definitg pa-
matrix &, for the adiabatic eigenstaté0), one obtains the rameter sets we note that the appearance of spectral irregu-

Bloch projections of the adiabatic branches larities can be expecteq in the high energetic region .of. the
overlap of both adiabatic potentials only, where a sufficient

1 number of states of both potentials mix. It is obvious that
<QD§d(Q)|a'x|‘Paid(Q)>: = . (12 such_a_l reg_ion can be probgd by the final states of an optipal
\/1+(2€7+ 2prQ)2 transition in the asymmetric case only: In the symmetric

case, as is evident from the adiabatic potenti8)sthe op-
According to Eq.(12) there is a distinction in the sign of tical transitions would necessarily terminate in the ground
the Bloch projections for the adiabatic eigenstates. Computstate region of the upper potential, where only a few states of
ing the Bloch projections from the numerically obtained the upper potential can mix with the lower potential. There-
eigenstates this distinction in the sign will be used as arfore when investigating the structure of the spectrum and
indicator for the case in which the spectrum resolves intcgigenstates of the spin-boson Hamiltonian we paid special

adiabatic branches. attention to a systematic change of the asymmetry parameter
e_ combined with the coupling parameteiin order to pro-
IIl. EIGENSTATE ANALYSIS duce appropriate configurations of the adiabatic potentials.

Such configurations were found for relatively high coupling
Our analysis is based on a diagonalization of the spinp and asymmetry values_ . Below we present the eigen-
boson Hamiltonian using a basis of product states of spigtate analysis for two typical asymmetric configurations in
states with harmonic oscillator eigenstates. In this basis ththe adiabatic parameter region<{1) with the parameter
eigenstates are obtained in the form sets

=2 (AN +efRlNIm=2 [sp)m), (13 A p=4,1=01 ande =5;

where|1)=(3), (|1)=(3)) denote the spin ufdown) states, B: p=20,r=0.1 ande_=10.

|m) the harmonic oscillator eigenstates ao@,% (z=1,])
the expansion coefficients of theeigenstate. For a fixech
we will also use the spin representatikaﬁ)) for the up and
down coefficient$9n)1 (z=1,]) for a given oscillator state as
indicated in the second part @£3). The matrix dimension in
the numerical diagonalization wa$=4000, for the eigen-
state analysis the first 1100 eigenstates were used.

For the phase space representation of the eigenstates Hu- E
simi projections are used. Husimi projectidmg «(Q,P);s)

The parameter set B corresponds to a stronger coupling
valuep and a larger asymmetry parameter, as compared
to setA. To indicate the location of the absorption bands,
which will be analyzed in Sec. 1V, the adiabatic potentials of
set B and the ground state of the system are shown in Fig. 1.

are defined by projecting an eigenstdte onto a set of o1
coherent oscillator statéa(Q,P)), which scan the oscilla-
tor phase plane of the vibrational subsystem, while the spin 201
projection|s)=c;|T)+c ||) is kept fixed,

hy(a(Q,P);s)=[( A a(Q,P),s)|?, (14 €00 50 0 50 Q160
and |a(Q,P),s)=|a(Q,P))|s). Using the explicit form of 2

[\) in (13) one finds

2
hy(@(Q,P);s)= ; (ctMNe;+ctMe ) (mla(Q,P))| |

(19

where (m|a(Q,P))=(a™ymD)e 1“*2 and «(Q,P)
=\r12(Q)+ (i/\2r)(P).

For the Bloch projection of an eigenstate,

= (N oy[A), (16)
FIG. 1. Asymmetric adiabatic potentials and ground state con-
figuration for the parameter sBt In the case of the parameter get
the asymmetry in the configuration of the adiabatic potentials is
X :2 (c* MM o* (A)CO\))_ (17) similar, but less pronounced as comparedtoArrows mark the
NS fm =im = =im = m location of the absorption bands at the Franck-Condon energies.

one finds from the expansiqi3)

022508-3



CHRISTIANE KOCH AND BERND ESSER PHYSICAL REVIEW /41 022508

03 ‘ - ‘ ' energy region. The presence of three characteristic regions in
the Bloch projections with one adiabatic branch, two adia-
02 °8 1 batic branches and the mixing region is reflected in the Hu-
~ g%g% simi projections of the eigenstates. In the regions where the
E:/ 01 f R %%:f%ffg%%&gm ) 1 adiabatic branches are intact one obtains regular Husimi pro-
& . wwe%%&ww}%s%‘%?;%%%&g jections concentrated around the phase space orbits of the
g 0o | S B o°°gg”§§ §;§;§§§§:§§§§§ ] integrable adiabatic reference Hamiltonid®s Typical ex-
s 88%%&3;%::}%%&%% amples .of §uch regular projections .correspondlng to gqual
'§ o1 jw:ii,‘:;%{’j%g;g};%%m&mwm spin projections:; =c, for the energetic overlap region with
=3 oo%eggggw%” two adiabatiq branches present are ;hown in Fig a_nd
ol o;%f ] Fig. 3(b). In F|g..3(a) the Husimi pr.OJect_lon corre§pond|ng to
o an eigenstate in the upper adiabatic potential is shown,
" whereas in Fig. @) a projection associated with an eigen-
03 0 o o 20 30 4 50 & states of the lower adiabatic potential is displayed. Se-
Energy E, quences of such projections clearly attributable to the coex-

istence of two independent adiabatic branches were observed
FIG. 2. Bloch projection(E,) of the eigenstates for the pa- yntil the mixing region is reached. Then Husimi projections
rameter sef\. The presence of three characteristic regions with ongncorporating the phase space features of both adiabatic po-
adiabatic branch, coexistence of two adiabatic branches and t'l%ntials are observed, as shown in Fi¢c)3
mixing region is clearly yisible. Thg Bloch projections for the pa- A ¢|oser inspection of these projections in the mixing re-
rameter seB show a similar behavior. gion shows that although the distribution is concentrated on
the regular phase space orbits of the adiabatic potentials, the
In Fig. 2 we start with the eigenstate analysis for theintensity between these parts varies in an irregular and ran-
parameter set A by displaying the Bloch projectiof{&, ) dom way, when Husimi projections for a sequence of eigen-
computed from the eigenstates according to @d). In the  states are considered. The structure of the eigenstates which
low energy region one finds one adiabatic branch in theshows up in the random shift of intensity in the Husimi pro-
x(E,) dependence associated with the lower adiabatic potenections is a source of spectral randomness in the absorption
tial [for which x,>0 in accordance with the sign ifi2)].  bands. In the case of the parameter set A, however, this
The overlap of the two potentials is marked by the appearregion of an irregular and random shift of the phase space
ance of a second adiabatic branch in %f&,) dependence. distribution is not reached by the absorption processes. In
The mixing of the eigenstates of the two adiabatic potentialshis case the absorption band is located in the region, where
is seen by the disappearance of both adiabatic branches atfte two adiabatic branches are still intact and no spectral
indicated by a broad band of Bloch projections in the highmixing between their eigenstates occurs.

(a) (b) (©)

FIG. 3. Husimi projections for the parameter gein the overlap region of the adiabatic potentials. The solid lines indicate the classical
phase space orbits of the adiabatic Hamiltonié®)s The projections correspond to the eigenstates (820121 (b) and 310(c), with the
eigenstate energies;,;=5.0028, E;,,=5.0956 andE;;;=14.5176, respectively. The selected phase space pari@are 50<Q=<50,
—5<P=<5, (b): —75<Q<75, —6=<P=<6 and(c): —90<Q=90, —8=<P=8, with theQ axis displayed horizontally anfd axis displayed
vertically. The projections iia) and (b) are located on the phase space orbits of the upper and lower adiabatic potentials, respectively, and
show the coexistence of both adiabatic branches in the selected energy interval. The pr@gistimecated on the phase space orbits of both
adiabatic potentials and characteristic for the mixing region of the adiabatic reference states in the spectrum.

022508-4
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(@) (b) (©)

\ j ! 4
N\ & ®” b of
) Nesswanr”

FIG. 4. Husimi projections for the parameter set B. The solid lines indicate the classical phase space orbits of the adiabatic Hamiltonians
(9). The projections correspond to the eigenstates @)0 302 (b) and 303(c), with the eigenstate energids;y,=10.0237, E3p,
=10.1467, andE;p;=10.1520, respectively. In all projections the selected phase space partd 20 Q<120, — 10<P=10, with theQ
axis displayed horizontally anfd axis displayed vertically. The projections are located on the phase space orbits of both adiabatic potentials
and characteristic for the mixing of adiabatic reference states. One observes a random variation in the intensity of the distribution between
the different eigenstates. This random variation includes the center of the rectangle, i.e., the regioQar®n0, which is the final state
region for the upper absorption band shown in Fig. 6. The different intensities in this region correspond to different strengths of the
absorption lines of the upper band in Fig. 6.

In the case of the parameter set B one finds a situation, .
where the spectral window, which is cut by the transition Mine= 2 [n)un(O]. (19
matrix elements of the absorption process, reaches the region "
of an irregular mixing of adiabatic states. The Husimi pro-
jections for selected eigenstates and equal spin projectioq§O
which correspond to such a region and which are relevant

E?asl S)(Z;(ia(cc); aonngpct)ltggcl—:‘rt\szgsz;t?;nggfnsxt]:r\ilgt]iég g;ethseegn? ibrational ground state. For the ground state of the vibra-
tegsit in the Husimi distributions of the eigenstates betweertlional subsystem we assume the zero temperature case,
Y1 S ne €y . where it is in its lowest statém=0), with |[m=0) the
the orbits of the two adiabatic potentials. As we show in the ~ -, . . .
m=0 Hermitian polynomial of the undisplac& oscillator.

next section, as a consequence of this random variation infhen| )=|excd)|m=0). For the optical transition matrix
tensities of lines for optical transitions terminating in these 9 - ' i P i
elementM, ,=(\|Mj,|g) of the interaction operatof19),

states vary randomly. ! !
which corresponds to an absorption process from the ground
stateg into an excited stata, one then obtains using Eq.
IV. ABSORPTION (13) the expression

In the ground state there is no excitonic-vibronic interac-
n, i.e., the ground state of the systég) is given by the
irect product of the excitonic vacuuff)=|exd) and the

In the calculation of the optical absorption the dimer sys-
tem is assumed to be small compared to the optical wave-

length. Then the electric field vector is approximatr;:ly equal The matrix element20) is representable in the form of a
at the monomer sites of the dimer configuration, iE&(t)  particular projection of the spin vector associated with the

=E(t). Introducing the projectiong,, of the monomer tran-  m=0 vibrational state i13), |s§"). Introducing the angles
sition matrix elements onto the direction of the field polar-

M )\g: /.L]_C%)(\)) + ,Lch(f(‘)) . (20)

ization, i.e.,E(t)z,=E(t)x,, (N=1,2), the interaction of e o
the dimer with the incident light wave is represented in the COSa= ———, SiNa=——= (21
form i+ s i+ s

- . and a spin vectofs, ) defined by
Hine=E(DMint, (18) g

(COSa
s . . S.)=\ _. , 22
whereM;,; is the interaction operator | # sina 22
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(@)

1.5x 108 s
FIG. 5. Lower and upper absorption bands for
L0x 10 i the parameter seA. In (a) the strong intensity
lines of the upper band are visible only. A closer
inspection of the upper band shows that this band
is a superposition of two regular bands corre-
sponding to the final states in the upper and lower
potential and the coexistence of two independent
adiabatic branches in this part of the spectrum.
This superposition becomes evident from the in-
set (b), in which a change of scale is used to
display the weak lines, which are embedded be-
tween the strong linegot drawn to peak inten-
‘ ‘ sity and cut off at the upper edgdn the inset a
0 ||‘ ‘|I| ll‘ ‘|||L

&
=3
=N
k]

50x 107

(b) 5 52 54 5.6 58 6

Absorption strength Q,,
®

e
o
o

pair of neighboring weak and strong lines are in-
dicated by the labels w and s, respectively.

-6 -5 -4 4 5

Energy E;,
one represent0) in the form represented as stick spectra. Absorption bands are located in
N accordance with the Franck-Condon principle. This is seen
Myg= Vs + (.l s). (23) by comparing their positions with the final states following

) . ) from the adiabatic potentials ifB) by settingQ=0. One
Measuring the square ¢23), i.e., the absorption strength finds an energetically lower band for optical transitions ter-
of an optical transition fromjg) to [\), in units of (u} minating in the lower adiabatic potential and a higher band
+p3) one finds for the dimensionsless absorption strengthor transitions occuring into the region of the overlap of the
Qg two potentials. The shape of the lower band on the left side
5 of Fig. 5@ is completely regular. The lines of the higher
M{q band on the right side of Fig.(& are also regularly ar-
Qug= =((s,lsE")?. (24 : : :
9 Mf*‘#g m ranged. A closer inspection of the higher band, however,
reveals that between the lines shown in Fi@) Sines with a
Comparing Eqg.(24) with the expression for the Husimi much weaker intensity are embedded, which form another
projection(15) it follows thatQ,4 is equal to a Husimi pro- regular band. This is evident from the inset, Figo)5where
jection of the\-eigenstate of3) taken at the phase space parts of the lines of the weak and strong bands are shown
point Q=P=0 with the spin projection being fixed af,:  together. In order to make the weak band visible in the inset
For Q=P=0 one obtainsa(Q,P)=0, which selects the a much smaller intensity scale is used. The two bands, into
m=0 term in the sum of15), inserting the valus, for the ~ which the absorption spectrum of the high energy part re-
spin vectors, one finds thah, (0;s) reduces to the r.h.s. of solves, are easily identified as to belong to the states of the
Eq. (24), i.e., two coexisting adiabatic branches analyzed in the preceding
section for the parameter set A: The weak band with rela-
Qig=hy(03s,). (25  tively small intensities is due to optical transitions terminat-
ing in the high energy states of the lower potenftak sign
Equation(25) is in line with the Franck-Condon principle of the Bloch variables of the final statesxg>0 in accor-
for optical transitions: The transition is vertical from the dance with the sign of the lower adiabatic brand®)],
ground state region &= P =0 in the phase space represen-whereas the strong band with much greater intensities is due
tation and probes the intensity of the final state by its Husimto optical transitions into the low energy states of the upper
distribution in the same region. The optical transition matrixpotential[for these states, <0, again in accordance with
elements of the monomers define the spin projedipnFor  the sign of the adiabatic bran¢h2)].
the special case of a symmetric dimer wjth= ., the tran- In Fig. 6 the absorption bands are shown for the param-
sition occurs into the symmetric combination of monomereter seB. The bands are located in the spectral regions of the
states. Differences in the optical transition matrix elementsfFranck-Condon energies indicated by the arrows in Fig. 1.
i.e., w17 o, introduce a second asymmetry parameter beThe lower absorption band, shown on the left side of the Fig.
sides that of the site energy asymmetry. These differ- 6, is regular like the lower band in the Fig(a. The higher
ences in the optical transition matrix elements express thband, displayed on the right side of Fig. 6, however, is com-
optical asymmetry of the dimer and enter the optical dimepletely irregular and cannot be resolved into independent
matrix element20) through the spin projection&1). subbands as in the case of the parameter set A. This is a
In Fig. 5@ the absorption band, 4 calculated from the consequence of the mixing of the adiabatic reference systems
numerically obtained eigenstates for the parameter set A a@nd the irregular structure of the eigenstates analyzed by the

022508-6



SPIN-BOSON HAMILTONIAN AND OPTICAL . ..

0.03 4003
2
o
=
o 0.02 1 0.02
5
b=}
v
o
8
=
=
Q
W
< oo f 1001
0.00 ...-|‘H ||||-. ,.,n..|.]-|l-h|||‘| || H ‘ H “ h ’“l‘d“l".l.u.l.m 0.00
12 11 1w - s 8 9 10 11 12
Energy E,
@ 3.5x10° |
1 0.06
» 1 005
g 25x10° |
5 oo
=]
172}
g
S 0.03
= 1.5x107° |
)
172}
)
< 1 0.02
™ ” H\ ‘ ‘HH H |
0.0 ,...-|I|I|”’ “llll“l ......n.-L]-Il]l” | H’ ‘ |‘ ||“I|“-ll.l.-.. 0.00
12 -u -1 -9 -8 3 9 10 1 12
Energy E,
0.06 — . . . —eeaeeees
b . . . . .
b 1 4.0x10°
0.05 |
O‘éo { 3.0x10°
Jf-u 0.04 |
s
=]
Z omt
§ { 2.0x10°
- -
Nud
3
=} 0.02
<
1 1ox10°
| H H “H|
0.00 .,..|I|I||H “““'lln ....a..l.‘-ll'”hl “ ‘” ‘ JHI“J“-“.. 0.0
12 -1 -0 -9 -8 8 9 10 11 12
Energy E,

022508-7

PHYSICAL REVIEW A 61 022508

FIG. 6. Lower and upper absorption bands for
the parameter sd and the case of optical sym-
metry, u,= u,. A broken energy scale is used to
display both bands. The lower band is regular
with final states in the lower adiabatic potential,
whereas the upper band is irregular due to the
mixing of the adiabatic reference states, compare
with the intensity variation in the Husimi projec-
tions displayed in Fig. 4.

FIG. 7. Absorption bands for
the parameter s& in the limiting
cases of optical asymmetry, when
one of the molecules of the dimer
is optically active only: w4
#0,u,=0 [shown in(a)] and u,
#0,u,=0 [shown in (b)]. Note
the differences between the over-
all intensities of the lower and up-
per bands as indicated by the
scales on the left and right hand
sides, respectively: Irfa) the in-
tensity of the lower band is by
three orders of magnitude smaller
than the upper band, ifb) the in-
tensities of the bands are reversed.
Independent of this change in in-
tensity the upper bands in both)
and (b) are irregular and have a
similar fine structure.
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Husimi projections in the preceding section. In particular,tion for the low energy bang@f e_ <0, the quantitieg., and
these projectionésee Fig. 4 show a random variation of the w, have to be interchanged in the above consideratias
intensity in theQ=P=0 region, which according to Eq. in the case of equal transition matrix elements the lower
(25) is relevant for the final states of the optical transitions.bands shown on the left sides of Figga)7and 1b) display a
This random variation is probed by optical transition matrixregular fine structure, whereas the fine structure of the upper
elements and results in an irregular pattern of lines in the findands, displayed on the right sides of Fig&)#and 1b) is
structure of the high energy absorption band. irregular. We note that the appearance of the weak bands is
The absorption bands in Figs. 5 and 6 were calculated fodue to the coupling of the excited states of both monomers:
equal optical transition matrix elements at the monomerd he monomer, which is optically not active, is still present in
1= mo, Which correspond to spin projections of the eigen-the absorption spectrum due to the coupling of the excited
states with equal components. The changes occuring in thgates in the dimer system. In the case displayed on the right
lower and upper absorption bands in the limiting cases of aside of Fig. 7b), e.g. an optically nonactive monomer with a
optical asymmetry withu,#0,u,=0 andu,;=0,u,#0 for ~ high excitation energy attached to an optically active mono-
the case of the parameter Seaire compared in the Figs(gJ ~ mer with a lower excitation energy produces a weak but
and 7b), respectively. These limiting cases correspond to arirregular band in the dimer system. A closer inspection of the
optical asymmetry, when one of the monomers constitutingine structure of the irregular bands for the limiting cases of
the dimer is optically active only. Then according to E20)  an optical asymmetry, in Figs(d and 7b), together with
the optical transition matrix element is determined by eithetthe irregular band for the symmetric case, shown in Fig. 6,
the spin upc%) or the spin dowrc%) coefficients of thex reveals that the sequence of lines with a strong and small
eigenstate. As is seen from Fig. 7, which is representative forbsorption strength is almost identical in all bands, there is
the case of a positive sign of the excitation energy asymmeonly a small overall change in the line intensities in all three
try e_ (e_=10>0 in the case shown in Fig.7the lower representations. The reason behind this behavior becomes
and upper bands show a redistribution of their intensitiegVvident after an inspection of the ratio of the spin projections
with the optical asymmetry: For the given sign of the exci-
tation energy asymmetrg_ >0 (e_<0) the intensity of the r®=c{yrelyy, (26)
upper band is increasadecreasedcompared to the sym-
metric caseu,=u,, displayed in Fig. 6. The lower band which is presented in Fig. 8 as a function of the eigenstate
behaves in the opposite way, the peak intensities of botkenergyE, for the spectral regions corresponding to the lower
bands differing by a factor of about 18. In particular, —and upper absorption bands, respectively. As is evident from
maximum absorption is reached for the high energy bandFig. 8 r™ is a smooth function of the enerdg, in the
when the monomer with the higher excitation energy is op-spectral regions of both bands. In particular, for the case of
tically active only, i.e..e_>0 with u;#0 andu,=0. Re- the irregular upper absorption bands, for which in a sequence
versing the optical activity of the monomers but still consid-of eigenstates the spin projection coefficienfy and c{y
ering the same asymmetry in the excitation energies, i.evary in an irregular way, their ratio™ considered between
e_>0 with ;=0 andu,# 0, one finds maximum absorp- neighboring eigenstates is practically identical. This correla-

-0.020

50 k, '
4 -0.022
46 1 FIG. 8. Ratio of the spin down
< 0024 to spin up coefficients™ in the
z spectral regions of the lower and
~§ upper absorption bands of Fig. 7.
,i Qr 1 0026 The scales on the left and right
e side correspond to the ratios in the
= region of the lower and upper
é 4 =0.028 band, respectively. Note the
o B smooth dependence of*) on the
o eigenstate energy in the spectral
";E? # 1 -0.030 region of the upper absorption
bands, despite the irregular struc-
34 r ture of the upper bands in Fig. 6
1 -0.032 and Figs. 7(a) and 7b).
30 L ‘ , s o g w ' ‘ * L 0,034
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tion between the spin up and spin domd’& and c(ﬁ))) co- tion bands in excitonic-vibronic coupled dimer systems with
efficients results in an almost smooth interpolation of the fineasymmetric adiabatic potential configurations. In the mixing
structure of the absorption bands between the limiting case®gion of the adiabatic branches phase space distributions of
displayed in the Fig. 7. The smoothness of the functi®n  the eigenstates are concentrated on the phase space orbits of
can be used to express the absorption strength for arbitralyoth adiabatic potentials and their intensity varies in a ran-
optical asymmetry by one of the limiting cases. For exampledom and irregular way. This random variation in the inten-
representing the down coefficiem%) by the up coefficients sitiy distribution of the eigenstates is probed by the optical

ct¥) in (20) using Eq.(26), one obtains transition matrix elements and it is a source of spectral ran-

(g por ™)2 domness in the fine structure of the abs_orption bands. The
ng:TQ;g, (27)  asymmetry of the optical transition matrix elements of the

M1t pa dimer configuration is representable by suitably chosen spin

projections of the spin part of the eigenstates. In the limiting

F=rci2 i . . ;
where Q\,=[ci¢ |” is the absorption strength for the case cases of the optical asymmetry, in which one of the mono-

p1#0 andu,=0. The smoothness of the ratio of the differ- . constituting the dimer is optically active only, the in-

ent spin projections togeth.er with Eq.(27)_a||ows an fensities of the absorption lines are determined by either the
interpolation between absorption bands for different optical_ . . -

) : . ; L - spin up or spin down coefficients. For the states relevant for
asymmetries. In particular, using this ratio in the prefactor mthe optical absorption correlated spin down and Spin Up Co-
front of Q;g the relative intensities of absorption bands cor- P P P pin up

; : . . efficients are obtained. As a result the shape of the fine struc-
responding to different optical asymmetries can be deter: . ) :
mined. ture of the irregular absorption bands remains almost the
same for different optical asymmetries. Finally we point out
that in the case of a symmetry-broken spin-boson Hamil-
tonian optical absorption processes can probe the high en-

The transition from the coexistence to a mixing of theergy regions of the overlap of adiabatic potentials where it is
adiabatic branches in the eigenstates of a symmetry-brokgpossible to observe a transition from regular to irregular ab-
spin-boson Hamiltonian can be controlled by Bloch and Hu-sorption spectra for asymmetric molecular dimer configura-
simi projections and it shows up in the structure of absorptions.

V. CONCLUSIONS
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