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Spin-boson Hamiltonian and optical absorption of molecular dimers

Christiane Koch* and Bernd Esser†

Institut für Physik, Humboldt-Universita¨t zu Berlin, Invalidenstraße 110, D-10115 Berlin, Germany
~Received 11 June 1999; published 13 January 2000!

An analysis of the eigenstates of a symmetry-broken spin-boson Hamiltonian is performed by computing
Bloch and Husimi projections. The eigenstate analysis is combined with the calculation of absorption bands of
asymmetric dimer configurations constituted by monomers with nonidentical excitation energies and optical
transition matrix elements. Absorption bands with regular and irregular fine structures are obtained and related
to the transition from the coexistence to a mixing of adiabatic branches in the spectrum. It is shown that
correlations between spin states allow for an interpolation between absorption bands for different optical
asymmetries.

PACS number~s!: 33.20.2t, 63.20.Ls, 03.65.2w
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I. INTRODUCTION

The spectral properties of the spin-boson Hamilton
have frequently been adressed in the past and in the
years investigations on the spectral features of classical
integrability in the quantum case were performed~see, e.g.,
@1–4# and references therein!. The interest in the spectral an
dynamical properties of the spin-boson Hamiltonian is due
its numerous applications which include a large variety
phenomena in molecular and solid state physics with
realization being the optical and transfer properties
excitonic-vibronic coupled dimers. Thus the spectral and
lated optical properties of the corresponding dimer Ham
tonian have intensively been investigated over the years
examples we point to the work exposed in@5,6#. Most of
these investigations were based on a Hamiltonian co
sponding to a symmetric dimer configuration. Howev
from the point of view of a general asymmetric situation t
symmetric case is singular, e.g. the quantum states pos
parity properties in the symmetric case, which are not pres
in general. It should be noted that dimers often constit
subunits of more complicated molecular aggregates with
asymmetric structure, which breaks the symmetry of
dimer configuration~see, e.g.,@7#!. Therefore the aim of this
paper is to go beyond the symmetric case and to connec
properties of the eigenstates of a generalized and symm
broken spin-boson Hamiltonian with the line spectrum
absorption bands of asymmetric excitonic-vibronic coup
molecular dimers.

We combine a phase space analysis of the eigenst
which is based on the method of Husimi projections@8#, with
the calculation of the matrix elements of optical transitio
Husimi projections have repeatedly been used in orde
establish the features of nonintegrability of classical syste
in the corresponding quantum case@1,9,10#. Analyzing the
Husimi projections of the eigenstates of the spin-bos
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Hamiltonian in relation to optical transitions we indicate
bridge between the eigenstate analysis of nonintegrable
tems and observables in an optical experiment. In particu
we show how the intensity variations in the Husimi proje
tions are related to the spectral randomness in the fine s
ture of absorption bands. Such spectral randomness in
eigenstates of the spin-boson Hamiltonian is also known
incipience of quantum chaos@11–13#. In this case random
features of the spectrum are just appearing while the sys
is still far from displaying universal spectral fluctuations d
scribed by random matrix theory and known for excit
states of spectra of polyatomic molecules@14#.

A central point in our eigenstate analysis will be to fin
out to what extent the adiabatic reference systems of
spin-boson Hamiltonian are present in its exact eigenst
and how the appearance of spectral randomness can be
preted as a mixing of such reference systems. Following@13#
we show that Bloch projections are a useful quantitat
characteristic to describe this mixing. Computing the Blo
projections of the eigenstates, it is possible to distinguish
spectral region where the adiabatic branches of the spec
are still intact from the region with a substantial mixing
adiabatic reference systems. Furthermore, by perform
projections of the numerically obtained eigenstates onto
ground state we obtain the details of the fine structure of
absorption bands in the spectral regions as indicated by
Franck-Condon principle. We note that the asymmetric c
has some special features, which are not present in the s
metric situation: In the asymmetric case the final states o
optical transition can be located in the higher energetic
gions of the corresponding adiabatic potentials. Then, as
be shown below for two representative cases, the fine st
ture of the spectrum and of the absorption bands can gre
vary from regular to irregular arrangements of absorpt
lines.

The paper is organized as follows: In Sec. II the mod
and the basic equations are presented. In Sec. III the ei
state analysis for two representative cases of the asymm
spin-boson Hamiltonian is performed and in Sec. IV th
analysis is connected with the properties of the absorp
bands in the corresponding spectral regions. Finally, in S
V our conclusions are summarized.
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II. MODEL

We consider a dimer system described by the Hamilton

Ĥ5(
n

~en1gnqn!un&^nu1 (
n,m

nÞm

Vnmun&^mu

1(
n

1
2 ~pn

21vn
2qn

2!, ~1!

where un& (um&) are the excited states of the molecu
monomers constituting the dimer (n,m51,2) with the exci-
tonic energiesen , the coupling constants to intramolecul
vibrationsgn and the transfer matrix elementVnm . The vari-
ablesqn , pn and vn represent coordinate, momentum a
frequency of the vibrations, respectively. The coupling of
excited dimer states to an incident light wave with electri
field vectorEW n(t) is given by

Ĥ int5(
n

mW nEW n~ t !un&^0u, ~2!

wheremW n andEW n(t) are the optical transition matrix eleme
and electric field at the nth monomer, respectively, andu0& is
the excitonic vacuum. We consider an asymmetric confi
ration of the dimer system by assuming different monom
energiesen and optical transition matrix elementsmW n . In
order to keep the number of asymmetry parameters mini
we assume symmetric transfer rates,Vnm5Vmn52V,
V.0, and equal coupling constants and frequencies,
g15g25g and v15v25v. Then the coupling can be re
duced to a single vibrational mode by introducing the re
tive displacement of the vibrations.

The Hamiltonian~1! can be represented as an operator
the space of two-dimensional vectorsC5(c2

c1) using the stan-

dard Pauli spin matricesŝ i ( i 5x,y,z). Passing to dimen-
sionsless variables by measuring the energy in units ofV,
H5H/2V, one obtains from~1! the spin-boson Hamiltonian

Ĥ5e112 1
2 ŝx1 1

2 ~ P̂21r 2Q̂2!11SAp

2
rQ̂1e2D ŝz .

~3!

In ~3!, the dimensionless relative displacement and co
sponding momentum, to which the exciton is coupled,
given byQ̂5A2V(q̂12q̂2) and P̂5( p̂12 p̂2)/A2V. The di-
mensionless parameters of the spin-boson Hamiltonian~3!
are related to the dimer system~1! by

p5
g2

2Vv2
, ~4!

r 5
v

2V
, ~5!

e65
e16e2

4V
. ~6!
02250
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The parameterp expresses the coupling strength, andr is
the adiabatic parameter measuring the relative strength
quantum effects of the subsystems. The sume1 represents
the center of the excitation energy, whereas the differencee2

is the asymmetry parameter. Fore250, one obtains the
symmetric spin-boson Hamiltonian with conservation of
tal parity ~given by the operationQ̂→2Q̂, ŝz→2ŝz). For
e2Þ0, this symmetry is broken.

The adiabatic reference systems associated with~3! are
introduced by considering the eigenvalue problem of
adiabatic partĥad,

ĥad52
1

2
ŝx1SAp

2
rQ1e2D ŝz1

r 2

2
Q21. ~7!

The Q-dependent eigenvalues and eigenstates ofĥad are
easily obtained. In particular, one finds the two adiaba
potentialsUad

6(Q) for the upper~1! and lower~-! states

Uad
6~Q!5

r 2

2
Q26A1

4
1S e21Ap

2
rQ D 2

, ~8!

from which the Hamiltonians of the adiabatic reference s
tems are obtained

H6~Q!5 1
2 P21Uad

6~Q!. ~9!

A key point in our analysis of the eigenstates and abso
tion bands will be the extent to which the exact eigenstate
the Hamiltonian~3! can be viewed as a mixing of adiabat
reference systems connected with the adiabatic Hamilton
~9!. As is shown below, the extent of this mixing can b
controlled by analyzing Husimi projections and by comp
ing Bloch projections from the numerically obtained eige
states. Husimi projections constitute phase space repres
tions of the eigenstates which can be compared with
phase space orbits of the adiabatic reference systems~9!.
Bloch projections constitute another independent indicato
the mixing of the adiabatic branches in the spectrum. For
adiabatic branches these projections are calculated from
eigenstates of the Hamiltonian~7!

uwad
1~Q!&5

1

A2
~A11A~Q!u↑&2A12A~Q!u↓&),

~10a!

uwad
2~Q!&5

1

A2
~A12A~Q!u↑&1A11A~Q!u↓&),

~10b!

where

A~Q!5
2e21A2prQ

A11~2e21A2prQ!2
. ~11!
8-2
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SPIN-BOSON HAMILTONIAN AND OPTICAL . . . PHYSICAL REVIEW A 61 022508
Computing the expectation valuesx5^ŝx& of the Pauli
matrix ŝx for the adiabatic eigenstates~10!, one obtains the
Bloch projections of the adiabatic branches

^wad
6~Q!uŝxuwad

6~Q!&57
1

A11~2e21A2prQ!2
, ~12!

According to Eq.~12! there is a distinction in the sign o
the Bloch projections for the adiabatic eigenstates. Com
ing the Bloch projections from the numerically obtain
eigenstates this distinction in the sign will be used as
indicator for the case in which the spectrum resolves i
adiabatic branches.

III. EIGENSTATE ANALYSIS

Our analysis is based on a diagonalization of the sp
boson Hamiltonian using a basis of product states of s
states with harmonic oscillator eigenstates. In this basis
eigenstates are obtained in the form

ul&5(
m

~c↑m
(l)u↑&1c↓m

(l)u↓&)um&5(
m

usm
(l)&um&, ~13!

whereu↑&5(0
1), (u↓&5(1

0)) denote the spin up~down! states,
um& the harmonic oscillator eigenstates andczm

(l) (z5↑,↓)
the expansion coefficients of thel eigenstate. For a fixedm
we will also use the spin representationusm

(l)& for the up and
down coefficientsczm

(l) (z5↑,↓) for a given oscillator state a
indicated in the second part of~13!. The matrix dimension in
the numerical diagonalization wasN54000, for the eigen-
state analysis the first 1100 eigenstates were used.

For the phase space representation of the eigenstates
simi projections are used. Husimi projectionshl(a(Q,P);s)
are defined by projecting an eigenstateul& onto a set of
coherent oscillator statesua(Q,P)&, which scan the oscilla-
tor phase plane of the vibrational subsystem, while the s
projectionus&5c↑u↑&1c↓u↓& is kept fixed,

hl~a~Q,P!;s!5u^ lua~Q,P!,s&u2, ~14!

and ua(Q,P),s&5ua(Q,P)&us&. Using the explicit form of
ul& in ~13! one finds

hl~a~Q,P!;s!5U(
m

~c↑m*
(l)c↑1c↓m*

(l)c↓!^mua~Q,P!&U2

,

~15!

where ^mua(Q,P)&5(am/Am!)e2uau2/2 and a(Q,P)
5Ar /2^Q̂&1( i /A2r )^P̂&.

For the Bloch projection of an eigenstate,

xl5^luŝxul&, ~16!

one finds from the expansion~13!

xl5(
m

~c↑m*
(l)c↓m

(l)1c↓m*
(l)c↑m

(l)!. ~17!
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Before turning to the eigenstate analysis for definite
rameter sets we note that the appearance of spectral irr
larities can be expected in the high energetic region of
overlap of both adiabatic potentials only, where a sufficie
number of states of both potentials mix. It is obvious th
such a region can be probed by the final states of an op
transition in the asymmetric case only: In the symmet
case, as is evident from the adiabatic potentials~8!, the op-
tical transitions would necessarily terminate in the grou
state region of the upper potential, where only a few state
the upper potential can mix with the lower potential. The
fore when investigating the structure of the spectrum a
eigenstates of the spin-boson Hamiltonian we paid spe
attention to a systematic change of the asymmetry param
e2 combined with the coupling parameterp in order to pro-
duce appropriate configurations of the adiabatic potenti
Such configurations were found for relatively high coupli
p and asymmetry valuese2 . Below we present the eigen
state analysis for two typical asymmetric configurations
the adiabatic parameter region (r ,1) with the parameter
sets

A: p54, r 50.1 and e255;

B: p520, r 50.1 and e2510.

The parameter set B corresponds to a stronger coup
valuep and a larger asymmetry parametere2 , as compared
to set A. To indicate the location of the absorption band
which will be analyzed in Sec. IV, the adiabatic potentials
set B and the ground state of the system are shown in Fig

FIG. 1. Asymmetric adiabatic potentials and ground state c
figuration for the parameter setB. In the case of the parameter setA
the asymmetry in the configuration of the adiabatic potentials
similar, but less pronounced as compared toB. Arrows mark the
location of the absorption bands at the Franck-Condon energie
8-3
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CHRISTIANE KOCH AND BERND ESSER PHYSICAL REVIEW A61 022508
In Fig. 2 we start with the eigenstate analysis for t
parameter set A by displaying the Bloch projectionsx(El)
computed from the eigenstates according to Eq.~17!. In the
low energy region one finds one adiabatic branch in
x(El) dependence associated with the lower adiabatic po
tial @for which xl.0 in accordance with the sign in~12!#.
The overlap of the two potentials is marked by the appe
ance of a second adiabatic branch in thex(El) dependence
The mixing of the eigenstates of the two adiabatic potent
is seen by the disappearance of both adiabatic branches
indicated by a broad band of Bloch projections in the h

FIG. 2. Bloch projectionsx(El) of the eigenstates for the pa
rameter setA. The presence of three characteristic regions with o
adiabatic branch, coexistence of two adiabatic branches and
mixing region is clearly visible. The Bloch projections for the p
rameter setB show a similar behavior.
02250
e
n-

r-

ls
nd

energy region. The presence of three characteristic region
the Bloch projections with one adiabatic branch, two ad
batic branches and the mixing region is reflected in the H
simi projections of the eigenstates. In the regions where
adiabatic branches are intact one obtains regular Husimi
jections concentrated around the phase space orbits o
integrable adiabatic reference Hamiltonians~9!. Typical ex-
amples of such regular projections corresponding to eq
spin projectionsc↑5c↓ for the energetic overlap region wit
two adiabatic branches present are shown in Fig. 3~a! and
Fig. 3~b!. In Fig. 3~a! the Husimi projection corresponding t
an eigenstate in the upper adiabatic potential is sho
whereas in Fig. 3~b! a projection associated with an eige
states of the lower adiabatic potential is displayed. S
quences of such projections clearly attributable to the co
istence of two independent adiabatic branches were obse
until the mixing region is reached. Then Husimi projectio
incorporating the phase space features of both adiabatic
tentials are observed, as shown in Fig. 3~c!.

A closer inspection of these projections in the mixing r
gion shows that although the distribution is concentrated
the regular phase space orbits of the adiabatic potentials
intensity between these parts varies in an irregular and
dom way, when Husimi projections for a sequence of eig
states are considered. The structure of the eigenstates w
shows up in the random shift of intensity in the Husimi pr
jections is a source of spectral randomness in the absorp
bands. In the case of the parameter set A, however,
region of an irregular and random shift of the phase sp
distribution is not reached by the absorption processes
this case the absorption band is located in the region, wh
the two adiabatic branches are still intact and no spec
mixing between their eigenstates occurs.

e
he
sical

ely, and
th
FIG. 3. Husimi projections for the parameter setA in the overlap region of the adiabatic potentials. The solid lines indicate the clas
phase space orbits of the adiabatic Hamiltonians~9!. The projections correspond to the eigenstates 120~a!, 121 ~b! and 310~c!, with the
eigenstate energiesE12055.0028, E12155.0956 andE310514.5176, respectively. The selected phase space parts are~a!: 250<Q<50,
25<P<5, ~b!: 275<Q<75, 26<P<6 and~c!: 290<Q<90, 28<P<8, with theQ axis displayed horizontally andP axis displayed
vertically. The projections in~a! and~b! are located on the phase space orbits of the upper and lower adiabatic potentials, respectiv
show the coexistence of both adiabatic branches in the selected energy interval. The projection~c! is located on the phase space orbits of bo
adiabatic potentials and characteristic for the mixing region of the adiabatic reference states in the spectrum.
8-4
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SPIN-BOSON HAMILTONIAN AND OPTICAL . . . PHYSICAL REVIEW A 61 022508
FIG. 4. Husimi projections for the parameter set B. The solid lines indicate the classical phase space orbits of the adiabatic Ham
~9!. The projections correspond to the eigenstates 300~a!, 302 ~b! and 303 ~c!, with the eigenstate energiesE300510.0237, E302

510.1467, andE303510.1520, respectively. In all projections the selected phase space parts are2120<Q<120, 210<P<10, with theQ
axis displayed horizontally andP axis displayed vertically. The projections are located on the phase space orbits of both adiabatic po
and characteristic for the mixing of adiabatic reference states. One observes a random variation in the intensity of the distribution
the different eigenstates. This random variation includes the center of the rectangle, i.e., the region aroundQ5P50, which is the final state
region for the upper absorption band shown in Fig. 6. The different intensities in this region correspond to different strength
absorption lines of the upper band in Fig. 6.
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In the case of the parameter set B one finds a situat
where the spectral window, which is cut by the transiti
matrix elements of the absorption process, reaches the re
of an irregular mixing of adiabatic states. The Husimi pr
jections for selected eigenstates and equal spin project
which correspond to such a region and which are relevan
final states of an optical transition are shown in the set
Figs. 4~a!–4~c!. One observes a random variation of the
tensity in the Husimi distributions of the eigenstates betw
the orbits of the two adiabatic potentials. As we show in
next section, as a consequence of this random variation
tensities of lines for optical transitions terminating in the
states vary randomly.

IV. ABSORPTION

In the calculation of the optical absorption the dimer s
tem is assumed to be small compared to the optical wa
length. Then the electric field vector is approximately eq
at the monomer sites of the dimer configuration, i.e.,EW n(t)
5EW (t). Introducing the projectionsmn of the monomer tran-
sition matrix elements onto the direction of the field pola
ization, i.e.,EW (t)mW n5E(t)mn , (n51,2), the interaction of
the dimer with the incident light wave is represented in
form

Ĥ int5E~ t !M̂ int , ~18!

whereM̂ int is the interaction operator
02250
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M̂ int5(
n

un&mn^0u. ~19!

In the ground state there is no excitonic-vibronic intera
tion, i.e., the ground state of the systemug& is given by the
direct product of the excitonic vacuumu0&5uexc0& and the
vibrational ground state. For the ground state of the vib
tional subsystem we assume the zero temperature c
where it is in its lowest stateum50&, with um50& the
m50 Hermitian polynomial of the undisplacedQ oscillator.
Then ug&5uexc0&um50&. For the optical transition matrix
elementMlg5^luM̂ intug& of the interaction operator~19!,
which corresponds to an absorption process from the gro
stateg into an excited statel, one then obtains using Eq
~13! the expression

Mlg5m1c↑0
(l)1m2c↓0

(l) . ~20!

The matrix element~20! is representable in the form of
particular projection of the spin vector associated with
m50 vibrational state in~13!, us0

(l)&. Introducing the angles

cosa5
m1

Am1
21m2

2
, sina5

m2

Am1
21m2

2
~21!

and a spin vectorusm& defined by

usm&5S cosa

sina D , ~22!
8-5
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FIG. 5. Lower and upper absorption bands f
the parameter setA. In ~a! the strong intensity
lines of the upper band are visible only. A clos
inspection of the upper band shows that this ba
is a superposition of two regular bands corr
sponding to the final states in the upper and low
potential and the coexistence of two independe
adiabatic branches in this part of the spectru
This superposition becomes evident from the
set ~b!, in which a change of scale is used
display the weak lines, which are embedded b
tween the strong lines~not drawn to peak inten-
sity and cut off at the upper edge!. In the inset a
pair of neighboring weak and strong lines are i
dicated by the labels w and s, respectively.
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one represents~20! in the form

Mlg5Am1
21m2

2^smus0
(l)&. ~23!

Measuring the square of~23!, i.e., the absorption strengt
of an optical transition fromug& to ul&, in units of (m1

2

1m2
2) one finds for the dimensionsless absorption stren

Qlg

Qlg5
Mlg

2

m1
21m2

2
5~^smus0

(l)&!2. ~24!

Comparing Eq.~24! with the expression for the Husim
projection~15! it follows that Qlg is equal to a Husimi pro-
jection of thel-eigenstate of~3! taken at the phase spac
point Q5P50 with the spin projection being fixed atsm :
For Q5P50 one obtainsa(Q,P)50, which selects the
m50 term in the sum of~15!, inserting the valuesm for the
spin vectors, one finds thathl(0;s) reduces to the r.h.s. o
Eq. ~24!, i.e.,

Qlg5hl~0;sm!. ~25!

Equation~25! is in line with the Franck-Condon principl
for optical transitions: The transition is vertical from th
ground state region atQ5P50 in the phase space represe
tation and probes the intensity of the final state by its Hus
distribution in the same region. The optical transition mat
elements of the monomers define the spin projectionsm . For
the special case of a symmetric dimer withm15m2 the tran-
sition occurs into the symmetric combination of monom
states. Differences in the optical transition matrix eleme
i.e., m1Þm2, introduce a second asymmetry parameter
sides that of the site energy asymmetrye2 . These differ-
ences in the optical transition matrix elements express
optical asymmetry of the dimer and enter the optical dim
matrix element~20! through the spin projections~21!.

In Fig. 5~a! the absorption bandsQlg calculated from the
numerically obtained eigenstates for the parameter set A
02250
th

-
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r
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represented as stick spectra. Absorption bands are locat
accordance with the Franck-Condon principle. This is se
by comparing their positions with the final states followin
from the adiabatic potentials in~8! by settingQ50. One
finds an energetically lower band for optical transitions t
minating in the lower adiabatic potential and a higher ba
for transitions occuring into the region of the overlap of t
two potentials. The shape of the lower band on the left s
of Fig. 5~a! is completely regular. The lines of the highe
band on the right side of Fig. 5~a! are also regularly ar-
ranged. A closer inspection of the higher band, howev
reveals that between the lines shown in Fig. 5~a! lines with a
much weaker intensity are embedded, which form anot
regular band. This is evident from the inset, Fig. 5~b!, where
parts of the lines of the weak and strong bands are sh
together. In order to make the weak band visible in the in
a much smaller intensity scale is used. The two bands,
which the absorption spectrum of the high energy part
solves, are easily identified as to belong to the states of
two coexisting adiabatic branches analyzed in the preced
section for the parameter set A: The weak band with re
tively small intensities is due to optical transitions termin
ing in the high energy states of the lower potential@the sign
of the Bloch variables of the final states isxl.0 in accor-
dance with the sign of the lower adiabatic branch~12!#,
whereas the strong band with much greater intensities is
to optical transitions into the low energy states of the up
potential @for these statesxl,0, again in accordance with
the sign of the adiabatic branch~12!#.

In Fig. 6 the absorption bands are shown for the para
eter setB. The bands are located in the spectral regions of
Franck-Condon energies indicated by the arrows in Fig
The lower absorption band, shown on the left side of the F
6, is regular like the lower band in the Fig. 5~a!. The higher
band, displayed on the right side of Fig. 6, however, is co
pletely irregular and cannot be resolved into independ
subbands as in the case of the parameter set A. This
consequence of the mixing of the adiabatic reference syst
and the irregular structure of the eigenstates analyzed by
8-6
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FIG. 6. Lower and upper absorption bands f
the parameter setB and the case of optical sym
metry,m15m2. A broken energy scale is used t
display both bands. The lower band is regul
with final states in the lower adiabatic potentia
whereas the upper band is irregular due to t
mixing of the adiabatic reference states, compa
with the intensity variation in the Husimi projec
tions displayed in Fig. 4.

FIG. 7. Absorption bands for
the parameter setB in the limiting
cases of optical asymmetry, whe
one of the molecules of the dime
is optically active only: m1

Þ0,m250 @shown in~a!# and m2

Þ0,m150 @shown in ~b!#. Note
the differences between the ove
all intensities of the lower and up
per bands as indicated by th
scales on the left and right han
sides, respectively: In~a! the in-
tensity of the lower band is by
three orders of magnitude smalle
than the upper band, in~b! the in-
tensities of the bands are reverse
Independent of this change in in
tensity the upper bands in both~a!
and ~b! are irregular and have a
similar fine structure.
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Husimi projections in the preceding section. In particul
these projections~see Fig. 4! show a random variation of th
intensity in theQ5P50 region, which according to Eq
~25! is relevant for the final states of the optical transition
This random variation is probed by optical transition mat
elements and results in an irregular pattern of lines in the
structure of the high energy absorption band.

The absorption bands in Figs. 5 and 6 were calculated
equal optical transition matrix elements at the monom
m15m2, which correspond to spin projections of the eige
states with equal components. The changes occuring in
lower and upper absorption bands in the limiting cases o
optical asymmetry withm1Þ0,m250 andm150,m2Þ0 for
the case of the parameter setB are compared in the Figs. 7~a!
and 7~b!, respectively. These limiting cases correspond to
optical asymmetry, when one of the monomers constitut
the dimer is optically active only. Then according to Eq.~20!
the optical transition matrix element is determined by eit
the spin upc↑0

(l) or the spin downc↓0
(l) coefficients of thel

eigenstate. As is seen from Fig. 7, which is representative
the case of a positive sign of the excitation energy asym
try e2 (e2510.0 in the case shown in Fig. 7!, the lower
and upper bands show a redistribution of their intensi
with the optical asymmetry: For the given sign of the ex
tation energy asymmetrye2.0 (e2,0) the intensity of the
upper band is increased~decreased! compared to the sym
metric case,m15m2, displayed in Fig. 6. The lower ban
behaves in the opposite way, the peak intensities of b
bands differing by a factor of about 1023. In particular,
maximum absorption is reached for the high energy ba
when the monomer with the higher excitation energy is
tically active only, i.e.,e2.0 with m1Þ0 andm250. Re-
versing the optical activity of the monomers but still cons
ering the same asymmetry in the excitation energies,
e2.0 with m150 andm2Þ0, one finds maximum absorp
02250
,

.

e

or
s
-
he
n

n
g

r

or
e-

s
-

th

d,
-

-
.,

tion for the low energy band~if e2,0, the quantitiesm1 and
m2 have to be interchanged in the above consideration!. As
in the case of equal transition matrix elements the low
bands shown on the left sides of Figs. 7~a! and 7~b! display a
regular fine structure, whereas the fine structure of the up
bands, displayed on the right sides of Figs. 7~a! and 7~b! is
irregular. We note that the appearance of the weak band
due to the coupling of the excited states of both monom
The monomer, which is optically not active, is still present
the absorption spectrum due to the coupling of the exc
states in the dimer system. In the case displayed on the r
side of Fig. 7~b!, e.g. an optically nonactive monomer with
high excitation energy attached to an optically active mo
mer with a lower excitation energy produces a weak
irregular band in the dimer system. A closer inspection of
fine structure of the irregular bands for the limiting cases
an optical asymmetry, in Figs. 7~a! and 7~b!, together with
the irregular band for the symmetric case, shown in Fig
reveals that the sequence of lines with a strong and sm
absorption strength is almost identical in all bands, there
only a small overall change in the line intensities in all thr
representations. The reason behind this behavior beco
evident after an inspection of the ratio of the spin projectio

r (l)5c↓0
(l)/c↑0

(l) , ~26!

which is presented in Fig. 8 as a function of the eigenst
energyEl for the spectral regions corresponding to the low
and upper absorption bands, respectively. As is evident f
Fig. 8 r (l) is a smooth function of the energyEl in the
spectral regions of both bands. In particular, for the case
the irregular upper absorption bands, for which in a seque
of eigenstates the spin projection coefficientsc↑0

(l) and c↓0
(l)

vary in an irregular way, their ratior (l) considered between
neighboring eigenstates is practically identical. This corre
d
.
t
e
r

al

-

FIG. 8. Ratio of the spin down
to spin up coefficientsr (l) in the
spectral regions of the lower an
upper absorption bands of Fig. 7
The scales on the left and righ
side correspond to the ratios in th
region of the lower and uppe
band, respectively. Note the
smooth dependence ofr (l) on the
eigenstate energy in the spectr
region of the upper absorption
bands, despite the irregular struc
ture of the upper bands in Fig. 6
and Figs. 7~a! and 7~b!.
8-8



n
s

tra
le

se
r-

ca
r i
or
te

he
k
u
rp

ith
ng
s of
its of

an-
n-
cal
an-
The
he
pin

ing
no-
n-
the
for
co-
ruc-
the
ut
il-
en-

t is
ab-
ra-

SPIN-BOSON HAMILTONIAN AND OPTICAL . . . PHYSICAL REVIEW A 61 022508
tion between the spin up and spin down (c↑0
(l) andc↓0

(l)) co-
efficients results in an almost smooth interpolation of the fi
structure of the absorption bands between the limiting ca
displayed in the Fig. 7. The smoothness of the functionr (l)

can be used to express the absorption strength for arbi
optical asymmetry by one of the limiting cases. For examp
representing the down coefficientsc↓0

(l) by the up coefficients
c↑0

(l) in ~20! using Eq.~26!, one obtains

Qlg5
~m11m2r (l)!2

m1
21m2

2
Qlg

1 , ~27!

where Qlg
1 5@c↑0

(l)#2 is the absorption strength for the ca
m1Þ0 andm250. The smoothness of the ratio of the diffe
ent spin projectionsr (l) together with Eq.~27! allows an
interpolation between absorption bands for different opti
asymmetries. In particular, using this ratio in the prefacto
front of Qlg

1 the relative intensities of absorption bands c
responding to different optical asymmetries can be de
mined.

V. CONCLUSIONS

The transition from the coexistence to a mixing of t
adiabatic branches in the eigenstates of a symmetry-bro
spin-boson Hamiltonian can be controlled by Bloch and H
simi projections and it shows up in the structure of abso
. A

e

J

02250
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tion bands in excitonic-vibronic coupled dimer systems w
asymmetric adiabatic potential configurations. In the mixi
region of the adiabatic branches phase space distribution
the eigenstates are concentrated on the phase space orb
both adiabatic potentials and their intensity varies in a r
dom and irregular way. This random variation in the inte
sitiy distribution of the eigenstates is probed by the opti
transition matrix elements and it is a source of spectral r
domness in the fine structure of the absorption bands.
asymmetry of the optical transition matrix elements of t
dimer configuration is representable by suitably chosen s
projections of the spin part of the eigenstates. In the limit
cases of the optical asymmetry, in which one of the mo
mers constituting the dimer is optically active only, the i
tensities of the absorption lines are determined by either
spin up or spin down coefficients. For the states relevant
the optical absorption correlated spin down and spin up
efficients are obtained. As a result the shape of the fine st
ture of the irregular absorption bands remains almost
same for different optical asymmetries. Finally we point o
that in the case of a symmetry-broken spin-boson Ham
tonian optical absorption processes can probe the high
ergy regions of the overlap of adiabatic potentials where i
possible to observe a transition from regular to irregular
sorption spectra for asymmetric molecular dimer configu
tions.
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