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We consider the optimal control problem of transferring population between states of a quantum system where
the coupling proceeds only via intermediate states that are subject to decay. We pose the question whether it is
generally possible to carry out this transfer. For a single intermediate decaying state, we recover the stimulated
Raman adiabatic passage process, which we identify as the global optimum in the limit of infinite control time.
We also present analytical solutions for the case of transfer that has to proceed via two consecutive intermediate
decaying states. We show that in this case, for finite power the optimal control does not approach perfect state
transfer even in the infinite time limit. We generalize our findings to characterize the topologies of paths that can
be achieved by coherent control under the assumption of finite power. If two or more consecutive states in an
N -level chain are subject to decay, complete population transfer with finite-power controls is not possible.
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I. INTRODUCTION

Stimulated Raman adiabatic passage (STIRAP) achieves
coherent population transfer in three-level atoms or molecules
despite the short lifetime of the intermediate level [1]. The
key is the creation of a dark state produced by overlapping
pump and Stokes pulses in a counterintuitive sequence. In
the adiabatic limit, the intermediate state then never gets
populated. STIRAP was demonstrated two decades ago [2]
but it continues to enjoy great popularity due to its simple, yet
robust character [3,4].

Inspired by this, we consider the general N -level system
with a subspace that is free of relaxation, as shown in Fig. 1.

We consider the case that there is no direct coupling
between states in the relaxation-free subspace, but the states
are coupled by intermediate states that undergo relaxation.
The question we ask here is what kind of coupling topology
can ensure state-to-state controllability on the relaxation-free
subspace? We show that this question can be reduced to asking
what kind of coupling topology can ensure unit efficiency of
population transfer for any two eigenstates in the relaxation-
free subspace.

Our work is closely related to previous studies of STIRAP
in multilevel chains [5–8], which showed that under certain
assumptions the dark state condition can be generalized from
the three-level to the N -level case. In these studies, the
decay from intermediate levels was not explicitly taken into
account. Here, we include the dissipation. Moreover, we use an
analytical formulation of optimal control theory, which allows
us to draw striking general conclusions about N -level systems.
In particular, we are able to show a relationship between
controllability and connectivity of decaying states in the chain:

*haidong.yuan@gmail.com
†Present address: Institut für Physik, Universität Kassel, Heinrich-

Plett-Str. 40, 34132 Kassel, Germany.

A relaxation-free subspace is controllable on the pure state
space if and only if any two eigenstates in the subspace can
be connected by a path that never visits two consecutive states
that both suffer relaxation. This coupling topology includes
degenerate levels provided that a generalized Morris-Shore
transformation exists to replace the coupled multilevel system
by a set of two- and three-level systems and single dark
states [9].

The problem of controllability in a relaxation-free subspace
is closely related to fault-tolerant quantum computing and
decoherence-free subspaces in quantum information science.
Given that the Hamiltonian obeys a certain symmetry, two or
more physical qubits can be employed to encode one logical
qubit that is free of decoherence [10]. The condition for a
dark state ensuring STIRAP turns out to be equivalent to
the condition for a decoherence-free subspace to exist [10].
While in principle it is possible to construct quantum gates that
preserve the structure of the decoherence-free subspace [11],
these gates are generally difficult to implement in practice for
the following reason: The gate operations need to be carried out
with controls that act on the physical qubits and this introduces
couplings to the decohering subspaces [12]. This raises the
question of whether losses can still be avoided if the controls
are chosen in an optimal way. Previous work has discussed
whether optimal control can find STIRAP-like solutions in
N -level chains [6,13–17]. However, none of these studies took
the dissipation explicitly into account.

Our paper is organized as follows. In Sec. II, we study the
three-level system. Using optimal control theory we show that
a STIRAP-like process represents the globally optimal process
for the population transfer in the relaxation-free subspace.
This STIRAP-like process is the infinite time limit of analytic
solutions we find for the problem with finite time. In Sec. III,
we study a four-level chain system where the two intermediate
states are subject to decay. We show that with limited pulse
power, it is not possible to achieve complete population
transfer. Section IV generalizes these results to N -level chains.
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FIG. 1. (Color online) A general N -level system where the states
in the subspace S are connected through intermediate states outside
of S.

This generalization is used in Sec. V to state the conditions on
state-to-state controllability on the relaxation-free subspace.
We conclude in Sec. VI.

II. THREE-LEVEL SYSTEM

We consider a three-level � system with states |1〉, |2〉, |3〉
where |2〉 suffers relaxation loss with rate k. It is well known
that population transfer from |1〉 to |3〉 is possible by STIRAP
without populating state |2〉 (i.e., complete transfer is achieved
in the adiabatic limit [1]). In this section, we formulate the
population transfer as an optimal control problem, taking
the dissipation explicitly into account. Previous work has
addressed this problem using a numerical density matrix
optimization [18]. Here, we formulate the problem analytically
using the Hamilton-Jacobi-Bellman method, which has the
additional advantage of allowing us to determine the global
optimum. We will show that STIRAP arises naturally as the
solution to the optimal control problem in the adiabatic limit.
By yielding an upper bound for the transfer efficiency in
finite time, this formulation also gives some insight into the
three-level system in the nonadiabatic regime.

The dynamics of the three-level system are described by
the following effective Schrödinger equation,

d

dt

⎛
⎜⎝

x ′
1

x ′
2

x ′
3

⎞
⎟⎠ = −i

⎛
⎜⎝

0 �p 0

�p −ik �s

0 �s 0

⎞
⎟⎠

⎛
⎜⎝

x ′
1

x ′
2

x ′
3

⎞
⎟⎠ (1)

where we assume that the detuning is zero. �p and �s are half
the Rabi frequencies of the pump and Stokes pulses1, and k is
the decay rate of state |2〉. We want to optimize the transfer of
population from |1〉 to |3〉 within a given time T (i.e., to steer
the system from the initial state |φ(0)〉 = (1,0,0) to the final
state |φ(T )〉 such that |x ′

3(T )| is maximized).
We first make a change of variables, setting x1 = x ′

1, x2 =
ix ′

2, x3 = −x ′
3. The dynamics becomes

d

dt

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ 0 −�p 0

�p −k −�s

0 �s 0

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠ . (2)

Under these dynamics, if we start from the initial state (1,0,0),
all the state variables will remain real (i.e., this change of

1The factor 1/2 arising from the rotating wave approximation has
been absorbed into �p and �s for simplicity.

variables is motivated by the structure of the Schrödinger
equation and the fact that we are looking for state-to-state
control). Initial states such as (eiϕ,0,0) can be written as
eiϕ(1,0,0), and since quantum operations act linearly on the
states, these cases can be reduced to the (1,0,0) case. The goal
is to transfer population from (1,0,0) to the final state such
that x3(T ) is maximized under the controls �p and �s .2

In a realistic setup, both pump and Stokes pulses are limited
in amplitude, but we will relax this condition: We assume that
�s is bounded in amplitude by A while �p is unbounded.
This assumption enables us to solve the problem analytically
and yields an upper bound on the transfer efficiency. Since the
amplitude of the pulses is usually quite large compared to the
relaxation rate, these upper bounds are quite tight. We will also
show that in the adiabatic limit, the condition of unbounded �p

can be relaxed and STIRAP-like pulses arise naturally from
the solution of the optimal control problem.

A. Optimal solution

To find the optimal pulses, we make another change of
variables, setting r1 =

√
x2

1 + x2
2 , r2 = x3, and tan θ = x1

x2
,

where θ ∈ [0, π
2 ]. The dynamics for (r1,r2) are derived from

Eq. (2),

d

dt

(
r1

r2

)
=

(−k cos2 θ −�s cos θ

�s cos θ 0

) (
r1

r2

)
. (3)

Note that �p is now contained in θ and r1 is related to the
bright-state amplitude in STIRAP. This change of variables is
not intuitive but crucial for obtaining an analytical solution.
For equations of motion linear in the control, the optimal
control problem typically becomes singular and no conditions
to determine an analytical solution are obtained. After this
change of variables, the equations of motion are nonlinear
in one of the controls, cos θ . This will allow us to obtain a
nonvanishing condition determining the optimal solution when
applying Pontryagin’s maximum principle.

Considering the physics of the problem we find that �s

should take on the maximal amplitude A throughout the
process: We start from the initial state (r1,r2) = (1,0) and
want to maximize r2(T ). The population transfer between r1

and r2 depends on the rotation speed, which is determined
by �s cos θ . At the same time, the population transfer is
compromised by r1 undergoing decay. The effect of decay
on r1 can be decreased by lowering the value of cos θ . In order
to keep the rotation speed between r1 and r2 constant, �s needs
to be increased. For a given rotation speed, the minimum value
of cos θ and thus the minimum effect of the decay is obtained
for �s taking its maximum value, �s = A.

We are now left with determining �p, or, equivalently, the
angle θ . Defining u = cos θ , we rewrite the dynamics

d

dt

(
r1

r2

)
=

(−ku2 −Au

Au 0

) (
r1

r2

)
. (4)

To determine the optimal control u∗(t), we use the principle
of dynamic programming [19] and solve for the maximum

2Note that this control assumes that our pulses are resonant with
fixed carrier frequencies and phases.
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achievable value of r2(T ) for all initial points (r1,r2). Starting
from (r1,r2), we denote the maximum achievable value of r2 by
V (r1,r2,t), also called the optimal return function for the point
(r1,r2) at time t. Note that for finite-time problems, T < ∞,
the optimal return function has an explicit dependence on time,
which has to satisfy the well-known Hamilton-Jacobi-Bellman
equation,

∂V

∂t
+ max

u
H (u) = 0, (5)

where

H (u) =
(

∂V

∂r1

∂V

∂r2

)(−ku2 −Au

Au 0

)(
r1

r2

)
(6)

is the Hamiltonian of the optimal control problem.
By solving the Hamilton-Jacobi-Bellman equation, we

obtain the optimal solution to the control problem. The detailed
derivation is presented in Appendix . Here we just state the
results we need for the subsequent analysis. For control time
T longer than a critical time TM the optimal control has two
distinct phases:

u∗(t) =
{ 1√

A2(τ 2−t2)+2k(τ−t)+1
for t ∈ [0,τ ]

1 for t ∈ [τ,T ]
. (7)

Expressions for TM and τ are given in Appendix . The second
stage of this solution, u∗(t) = 1, is a result of the artificial
choice of constraints in our formulation (bounded �S and
unbounded �P ). But this need not concern us: As we show
in Sec. II B the second phase of the solution vanishes in the
limit T → ∞ (adiabatic limit), in which case we recover the
STIRAP solution.

B. Recovery of STIRAP

We now show that in the limit T → ∞, our optimal pulse
corresponds to STIRAP. The optimal Rabi frequencies are
derived from r1, r2, and u∗. From Eq. (2), it follows that

d

dt
x2 = �px1 − kx2 − �sx3. (8)

Substituting x2 = r1u, x1 = r1

√
1 − u2, and x3 = r2, we ob-

tain

�p = −ku2r1 − �sur2 + r1u̇ + kr1u + �sr2

r1

√
1 − u2

. (9)

When the control time goes to infinity, T → ∞, the switching
time, τ , also approaches ∞. This follows from T − τ being
smaller than the critical time TM as explained in Appendix.
If τ becomes very large, then according to Eq. (7), u∗(t) is
very small. Therefore x2 = r1u

∗ ∼ 0 (i.e., the level |2〉 is not
populated). Substituting u ∼ 0 and u̇ ∼ 0 into Eq. (9), we see
that

�p = r2

r1
�s = x3√

x2
1 + x2

2

�s = x3

x1
�s. (10)

So at each time point, x2 = 0, x3
x1

= �p

�s
(i.e., the system is in

the state x1|1〉 + x3|3〉) where x3
x1

= �p

�s
, which corresponds to

the dark state in STIRAP.

FIG. 2. (Color online) Optimal half Rabi frequencies �S(t) and
�P (t) for finite control times T and relaxation rates k (with the
amplitude bound on �S set to one, A = 1).

Note that in this limit, an upper bound can also be assumed
for �p in addition to the one for �s . Since it is the ratio �p:�s

that matters, one can simply lower �s if �p exceeds its upper
bound to maintain the ratio �p:�s . For example, one could
assume the same bound A on �p. In the optimal solution
shown in Fig. 2, one would then rescale time whenever �p

hits A. This obviously avoids the shoot-off of �p to infinity
visible in Fig. 2 at late times. Such a rescaling of amplitude
corresponds to changing the unit of time: When �p � A, a
new time variable dτ = �p

A
dt is defined. In this new unit of

time, the dynamics become

d

dτ

⎛
⎝ x1

x2

x3

⎞
⎠ = d

dt

⎛
⎝x1

x2

x3

⎞
⎠ dt

dτ

=

⎛
⎜⎝

0 −A 0

A − A
�p

k − A
�p

�s

0 A
�p

�s 0

⎞
⎟⎠

⎛
⎝x1

x2

x3

⎞
⎠ . (11)

The relaxation rate k does not affect the dynamics in the infinite
time limit, so k and A

�p
k are effectively the same, and the ratio

of the Rabi frequencies still satisfies the optimal condition in
Eq. (10). Since the reparametrized time remains infinite in the
limit T → ∞, optimality of our solution is not affected by
changing the unit of time.

One might wonder in this case where the characteristic time
delay between �s and �p is hidden in our solution. The point
is that STIRAP is determined by the overlap of the pulses. The
rising part of the Stokes pulse when the pump is zero and the
falling part of the pump pulse when the Stokes is zero does
not affect the system dynamics. Our solution only contains
the crucial overlapping part, similar to the shark-fin pulses
discussed in Ref. [20]. The Stokes pulse starts out fairly flat
at the upper bound and falls down as the pump pulse is rising
up to the bound. So the delay between the pulses in standard
STIRAP corresponds to the time the pump pulse takes to rise
to the upper bound. In our solution, a rising edge of the Stokes
pulse and a falling edge of the pump pulse could be added if
one wishes to obtain a more realistic pulse shape.

To summarize the similarities and differences with the
conventional STIRAP solution, we drop the constraint on the

033417-3



YUAN, KOCH, SALAMON, AND TANNOR PHYSICAL REVIEW A 85, 033417 (2012)

bound of the pulse amplitude �p and obtain an analytical
solution for the optimal control [cf. Eqs. (7) and (9)] in
finite time. While in general the optimal pulse shape can
be found only numerically, for infinite time we obtain a
completely analytical solution [cf. Eq. (10)]. By solving the
Hamilton-Jacobi-Bellman equation, we have proven that this
solution is the global optimum. The rise of the Stokes pulse
and the fall of the pump pulse are missing. These portions
of the pulses are irrelevant in the infinite time limit. Thus,
our analytical solution confirms that the essential feature of
STIRAP is the time ordering of the pump and Stokes pulse
where they overlap.

III. FOUR-LEVEL SYSTEM

In this section, we extend our method to a four-level chain
system as shown in Fig. 3. Again we explicitly include the
decay from the intermediate levels. We can thus demonstrate
that the four-level chain differs fundamentally from the three-
level system where STIRAP-like processes can transfer the
population fully in the adiabatic limit. It turns out that in four-
level systems with two decaying intermediate states it is not
possible to achieve complete transfer with limited power even
if we wait infinite time.

The dynamics of this system are described by the following
effective Schrödinger equation:

d

dt

⎛
⎜⎜⎝

x ′
1

x ′
2

x ′
3

x ′
4

⎞
⎟⎟⎠ = −i

⎛
⎜⎜⎝

0 �p 0 0
�p −ik �I 0
0 �I −ik �s

0 0 �s 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x ′
1

x ′
2

x ′
3

x ′
4

⎞
⎟⎟⎠ , (12)

where �p and �s are the Rabi frequencies of pump and Stokes
pulses, �I is the Rabi frequency of a pulse coupling |2〉 and
|3〉, and k denotes the decay rate. As in the previous section,
we assume zero detunings. Since we are only interested to
find out whether there are schemes that avoid populating
the intermediate states, the exact value of the relaxation rate
is not important here. For simplicity, we assume that the
intermediate states suffer the same amount of relaxation. It is
straightforward to generalize to the cases with different decay
rates.

We want to find the optimal way to transfer population
from |1〉 to |4〉 within a given time T (i.e., the optimal way of
steering the system from the initial state |φ(0)〉 = (1,0,0,0) to
the final state |φ(T )〉 such that |x ′

4(T )| is maximized).

FIG. 3. (Color online) A four-level system: Population shall be
transferred from |1〉 to |4〉 via the intermediate states |2〉 and |3〉,
which suffer relaxation.

Analogously to Sec. II, we make a first change of vari-
ables, letting x1 = x ′

1, x2 = ix ′
2, x3 = −x ′

3, x4 = −ix ′
4. The

dynamics become

d

dt

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −�p 0 0
�p −k −�I 0
0 �I −k −�s

0 0 �s 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ . (13)

The state variables are now all real numbers if we start
from the initial state (1,0,0,0). We want to transfer from
(1,0,0,0) to the final state such that x4(T ) is maximized under
the controls �p, �I , and �s at given time T . We again relax the
control constraint, assuming that �I is bounded in amplitude
by A, but �p and �s are not bounded. We show that even with
these relaxed control constraints, it is not possible to achieve
unit transfer efficiency.

To solve the problem, we make a second change of
variables, letting r1 =

√
x2

1 + x2
2 , r2 =

√
x2

3 + x2
4 , tan θ1 = x1

x2
,

tan θ2 = x4
x3

. The dynamics of (r1,r2) become

d

dt

(
r1

r2

)
=

( −k cos2 θ1 −�I cos θ1 cos θ2

�I cos θ1 cos θ2 −k cos2 θ2

) (
r1

r2

)
.

(14)

This looks familiar since we have almost the same equation as
for three-level system [cf. Eq. (3)]. We first observe that �I

should always take on the maximal amplitude A: if �I < A,
we can always increase it to A while lowering cos θ1 and cos θ2

such that the rotation speed �I cos θ1 cos θ2 remains the same,
but the effect of decay on r1, r2 is decreased. The problem
therefore reduces to

d

dt

(
r1

r2

)
=

(
−ku2

1 −Au1u2

Au1u2 −ku2
2

)(
r1

r2

)
, (15)

where u1 = cos θ1 and u2 = cos θ2. The same dynamics arise
in nuclear magnetic resonance and analytical solutions to
this control problem were obtained using the optimal control
technique in Ref. [21]. We describe the characteristics of the
optimal pulse sequences and refer to Ref. [21] for more details.

Case I. If T � cot−1(2ξ )
A

, where ξ = k
A

, then u∗
1(t) = u∗

2(t) =
1 throughout. That is, we obtain a hard pump pulse at t = 0,
flipping the angle θ1 by π/2 (i.e., transferring all population
from x1 to x2) and a hard Stokes pulse at t = T , flipping θ2 by
π/2, transferring population from x3 to x4. At intermediate
times, the optimal Rabi frequencies for pump and Stokes
pulses are zero. The efficiency of the population transfer, ηT ,
is obtained by integrating Eq. (15) with the optimal controls
u∗

1(t) = u∗
2(t) = 1,

ηT = exp[−kT ] sin(AT ). (16)

This is smaller than unity for all T > 0.
Case II. For larger control times, T >

cot−1(2ξ )
A

, it is not
optimal to put all population immediately into the decaying
level x2. The optimal trajectory then has three distinct phases.
For 0 � t � τ , where τ is a function of T , u∗

2(t) = 1 and u∗
1(t)

is increased gradually from a value u∗
1(0) < 1 to u∗

1(τ ) = 1.
This corresponds to �p(t) rising from its initial value �p(0)
to infinity while �s(t) remains zero throughout the first phase
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FIG. 4. (Color online) Optimal half Rabi frequencies �P (t),
�I (t), and �S(t) (Case 2) for finite control times T with relaxation
rate k = 1 and the amplitude bound on �I set to one, A = 1. For
very short T (Case 1), the optimal Rabi frequencies �S(t) and �P (t)
correspond to instantaneous pulses of infinite power at t = 0 and
t = T ; for T → ∞, the hold period with zero �S(t), �P (t) in the
middle of the time interval disappears.

(cf. Fig. 4). In the second phase, for time τ � t � T − τ ,
the optimal controls are u∗

1(t) = u∗
2(t) = 1. This corresponds

to both �p(t) and �s(t) being zero. Finally, for t � T − τ ,
u∗

1(t) = 1 and u∗
2(t) is decreased from u∗

2(T − τ ) = 1 to
u∗

2(T ) = u1(0). �s(t) is thus decreased from infinity to its final
value �s(T ), which is equal to �p(0), while �p(t) remains
zero. The parameter τ determining the switching times is
calculated from the following equation,

T = 2τ + γ2 − γ1

A
, (17)

where

γ1 = cot−1

(
1 − κ(τ )

2ξκ(τ )

)
, γ2 = tan−1

(
1 − κ(τ )

2ξ

)
,

and

κ(τ ) = 1 + 2ξ 2

−2ξ
√

1 + ξ 2 coth(A
√

1 + ξ 2 τ + 2 sinh−1 ξ ).

In the limit of infinite time, τ = T
2 ; in this case the hold phase

in the middle, where only �I (t) is nonzero, disappears (cf.
the blue and green curves in Fig. 4). The optimal solution
thus corresponds to the intuitive pulse sequence of pump first,
then Stokes, not a STIRAP-like solution characterized by a
counterintuitive pulse sequence.

The efficiency of the population transfer, ηT , in case 2 is
expressed for finite time T in terms of the angles as

ηT = exp[ξ (γ1 − γ2)](1 − ξ sin 2θ2)

sin(γ1 + γ2)
. (18)

In the limit that T goes to infinity, γ1 = γ2 = tan−1(
√

1 + ξ 2 −
ξ ), and ηT approaches η, the maximum transfer efficiency
given by

η =
√

1 + ξ 2 − ξ. (19)

We see that the transfer efficiency can reach unity only for
ξ = 0 (i.e., k

A
= 0). This is the case of infinite power (i.e.,

the decay is much smaller than the maximum Rabi frequency
coupling the intermediate states). When only limited power is
available, the transfer efficiency is always less than unity.

Even for the case of a multiphoton resonance, no analytical
optimal solutions are known for nonzero detunings. As

shown in Refs. [7,8], adiabatically eliminating one of the
two decaying intermediate levels allows one to recover a
three-level system and thus the STIRAP solution. However,
perfect adiabatic elimination in the presence of decay requires
infinite power of the field coupling the intermediate levels. We
believe that our conclusion for a finite power transfer efficiency
of less than unity holds also for nonzero detunings.

To support this claim, consider the four-level system with
nonzero detunings �2, �3,

d

dt

⎛
⎜⎝

x1

x2

x3

x4

⎞
⎟⎠ = −i

⎛
⎜⎜⎝

0 �p 0 0
�p �2 − ik �i 0
0 �i �3 − ik �s

0 0 �s 0

⎞
⎟⎟⎠

⎛
⎜⎝

x1

x2

x3

x4

⎞
⎟⎠ .

(20)

Assume complete population transfer is possible in this sys-
tem. Clearly, for this to hold the population of the intermediate
states must remain zero during the process. If this is the case,
the values of the detunings would not affect the transfer and
we can therefore replace the detunings by zero. However, in
this case the system reduces to Eq. (20), which we showed to
be uncontrollable with finite power, leading to a contradiction
with our assumption of controllability. Thus we claim that even
with nonzero detunings, complete population transfer is not
possible with finite pulse power if there are multiple decaying
intermediate states. Since detuning relative to the intermediate
states is known not to affect STIRAP efficiency [1], this result
is fully consistent with our prior expectations.

IV. GENERALIZATION TO N-LEVEL SYSTEMS

In the previous section we showed that with two consecutive
intermediate decaying states, the transfer efficiency with finite
power is always less than one. If more than two intermediate
decaying states are present, the transfer efficiency gets even
worse. For example, suppose we have a chain of five states
with three intermediate decaying states,

d

dt

⎛
⎜⎜⎜⎜⎜⎝

x ′
1

x ′
2

x ′
3

x ′
4

x ′
5

⎞
⎟⎟⎟⎟⎟⎠ = −i

⎛
⎜⎜⎜⎜⎜⎝

0 �p 0 0 0
�p −ik �1 0 0
0 �1 −ik �2 0
0 0 �2 −ik �s

0 0 0 �s 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x ′
1

x ′
2

x ′
3

x ′
4

x ′
5

⎞
⎟⎟⎟⎟⎟⎠ .

With a change of variables, letting x1 = x ′
1, x2 = ix ′

2, x3 =
−x ′

3, x4 = −ix ′
4, and x5 = x ′

5, the dynamics become

d

dt

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 −�p 0 0 0
�p −k −�1 0 0
0 �1 −k −�2 0
0 0 �2 −k −�s

0 0 0 �s 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠ .

Introducing new variables yi , the fifth state and fourth state
can be combined,

y1 = x1, y2 = x2, y3 = x3, y4 =
√

x2
4 + x2

5 .
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This reduces the system to an effective four-state system,

d

dt

⎛
⎜⎝

y1

y2

y3

y4

⎞
⎟⎠ =

⎛
⎜⎜⎝

0 −�p 0 0
�p −k −�1 0
0 �1 −k −�2 cos θ

0 0 �2 cos θ −k cos2 θ

⎞
⎟⎟⎠

⎛
⎜⎝

y1

y2

y3

y4

⎞
⎟⎠ ,

(21)

where tan θ = x5
x4

. The transfer efficiency for the dynamics of
y1, . . . ,y4, represents an upper bound to the transfer efficiency
for the dynamics of x1, . . . ,x5, since y4 � x5: If a control
scheme transfers an amount of population, η, from x1 to x5

then this scheme also transfers at least an amount of population
η from y1 to y4. Next we show that the efficiency of transfer
from y1 to y4 according to the dynamics of Eq. (21) is upper
bounded by the transfer efficiency for the dynamics of Eq. (13)
of the four-level chain. To make the comparison transparent,
we consider the following dynamics,

d

dt

⎛
⎜⎜⎝

y ′
1

y ′
2

y ′
3

y ′
4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −�p 0 0
�p −k −�1 0
0 �1 −k −�2 cos θ

0 0 �2 cos θ 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y ′
1

y ′
2

y ′
3

y ′
4

⎞
⎟⎟⎠ .

(22)

Clearly the efficiency of transfer from y1 to y4 is upper bounded
by the efficiency of transfer from y ′

1 to y ′
4 since the only

difference between these two dynamics is that y4 is subject
to decay while y ′

4 is not. The efficiency of transfer from y ′
1 to

y ′
4 in turn is upper bounded by the transfer efficiency for the

four-level chain, Eq. (13), since the controls in Eq. (22) are
more restricted than the controls in Eq. (13). This can be seen as
follows: If a control scheme for the dynamics, Eq. (22), reaches
an efficiency η, then simply setting �s = �2 cos θ in Eq. (13),
the same transfer efficiency η is obtained for the four-level
chain. The inverse step of setting �2 = �s

cos θ
is, however, not

always possible, since this may lead to infinite �2.
From this line of argument, we see that the transfer

efficiency of the five-state chain with three intermediate
decaying states is upper bounded by the transfer efficiency
of the four-state chain with two intermediate decaying states.
Analogously, we can show that the transfer efficiency of the
N -state chain (N � 4) with N − 2 intermediate decaying
states is upper bounded by the transfer efficiency of the N -state
chain with N − 3 intermediate decaying states. That is for
chains where all intermediate states are subject to decay, the
transfer efficiency is monotonically decreasing with increasing
length of the chain. In particular, we have the interesting result
that for any chain with two or more consecutive intermediate
decaying states, the efficiency will be less than unity.

Our analytical results allow us to draw a general inference
about previous work on population transfer in N -level sys-
tems. Extensions of STIRAP from the three-level system to
multilevel chains have been investigated since the early days
of STIRAP (see Ref. [1] and references therein). Although
these mechanisms are designed to keep the population in
the intermediate levels as small as possible, close inspection
reveals that none of these succeed in completely avoiding
intermediate population for finite power pulses, even for
T → ∞. In particular, we note that none of these schemes can

keep the population for two consecutive intermediate states at
zero. We illustrate this with three of the generalized STIRAP
schemes. In Ref. [5], a generalization of STIRAP for N -level
chains was proposed for N odd. In this scheme, the population
in all the intermediate even levels can be kept at zero but
placing population in the intermediate odd levels cannot be
avoided. Clearly it is impossible to keep two neighboring
states empty. In Ref. [6], a STIRAP-like solution for N -level
chains was found numerically, and termed straddling STIRAP.
It consists in choosing the Rabi frequencies coupling the
intermediate states to be at least one order of magnitude larger
than �s and �p and overlapping in time with both �s and �p.
Inspection of the solution reveals that all intermediate levels
acquire some population, and therefore it is impossible to keep
two consecutive levels empty without using infinite power.
The straddling STIRAP was analyzed further both analytically
and numerically [7,8]. It was clarified that for N even, a
nonzero detuning of the lasers coupling the intermediate
states is required to obtain a STIRAP-like solution while for
zero detunings, an intuitive (Rabi) pulse sequence is found.
Moreover, it was shown that in the dressed state picture, a
very strong coupling between the intermediate states moves
the intermediate states out of resonance such that they are
decoupled and effectively a two-level system (N even with
zero detuning) or a three-level system (N odd or N even with
nonzero detuning) are recovered. It can be seen that whether
N is odd or even, avoiding population in two consecutive
levels requires infinite power. Taking dissipation explicitly into
account, it is clear that if two consecutive intermediate levels
are subject to decay, unit transfer efficiency is impossible at
finite power. Our analytical results including dissipation are
consistent with this analysis.

V. CONTROLLABILITY IN THE RELAXATION-FREE
SUBSPACE

In this section, we will generalize the results of the previous
sections to state-to-state controllability on relaxation-free
subspaces S. Based on the results of the previous sections,
we will characterize the relaxation-free subspaces that are
finite-power controllable on the pure state space. Our argument
is based on the assumption of selective control (i.e., the
assumption that �s , �p and any other coupling, can be
tuned independently). This corresponds to the bare, field-
free Hamiltonian having no degenerate levels or frequencies.
With selective control, controllability on the relaxation-free
subspace becomes equivalent to connectivity [22].

Our central result is that a relaxation-free subspace is
controllable on the pure state space if and only if any two
eigenstates in the subspace can be connected by a path that
never visits two consecutive states that both suffer relaxation.
This is illustrated in Fig. 5 with part 5(a) displaying an example
where any pair of eigenstates in the relaxation-free subspace
S = {|1〉,|2〉,|3〉,|4〉} can be connected by a path that never vis-
its two consecutive states suffering relaxation (i.e., this system
is state-to-state controllable in the space S = {|1〉,|2〉,|3〉,|4〉}).
The system shown in Fig. 5(b) is not controllable in the
relaxation-free subspace S = {|1〉,|2〉,|3〉,|4〉} since one has
to pass through three consecutive states that suffer relaxation
in order to connect the states |1〉 and |4〉.
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FIG. 5. (Color online) Examples for (a) a system that is control-
lable in the subspace {|1〉,|2〉,|3〉,|4〉} since any pair of eigenstates can
be connected by a path that never visits two consecutive states that
suffer relaxation; (b) a system that is not controllable in the subspace
{|1〉,|2〉,|3〉,|4〉} since one has to pass through three consecutive states
that suffer relaxation to connect the states |1〉 and |4〉.

Clearly the condition is necessary. As from the previous
section, we know that if any path has two intermediate states
outside of the relaxation-free space, complete population
transfer is not possible. Hence the system is not controllable.
The condition is also sufficient. If there are never two states in
a row that suffer relaxation, the control found in Sec. II allows
us to traverse one intermediate relaxing state without losses.
Concatenating such processes gives the result.

We can connect the controllability condition with the
coupling topology of the system: The condition is fulfilled
if and only if the eigenstates in the relaxation-free sub-
space are (I) directly connected via paths in the subspace;
(II) connected by one intermediate state which suffers relax-
ation; (III) connected by concatenations of paths of type (I)
and type (II) as sketched in Fig. 6. Note that this coupling
topology includes degenerate levels in the relaxation-free and
the relaxing subspaces provided that a generalized Morris-
Shore transformation can be employed to replace the coupled
multilevel system by a set of two- and three-level systems and
dark states (single levels) [9].

We first show that with this coupling topology we can
achieve coherent population transfer between any two eigen-
states. Controllability is then achieved by applying sequences
of these operations. First, if two eigenstates are connected
via (I) we can obviously achieve coherent population transfer
between them. It remains to be shown that coherent transfor-
mation is possible for two eigenstates that are connected by
one intermediate state suffering relaxation. This is achieved by
combining our results of Sec. II with the fractional STIRAP
developed by Vitanov et al. [23] to generate arbitrary coherent
superpositions of |1〉 and |3〉 from the initial state |1〉. For two
eigenstates |1〉 and |3〉 that are connected by an intermediate
state |2〉 suffering relaxation, a coherent transformation from
state |1〉 to cos β|1〉 − eiφ sin β|3〉 is implemented by (i) adding

FIG. 6. (Color online) The eigenstates |1〉 and |4〉 are connected
by concatenating paths of type (I) and type (II).

a phase φ to the Stokes pulse such that the equations of motion
read

d

dt

⎛
⎝ x ′

1

x ′
2

x ′
3

⎞
⎠ = −i

⎛
⎝ 0 �p 0

�p −ik �se
−iφ

0 �se
iφ 0

⎞
⎠

⎛
⎝ x ′

1

x ′
2

x ′
3

⎞
⎠ , (23)

and (ii) varying �p

�s
adiabatically from 0 to tan β. A general

coherent transformation can be implemented by first applying
the time-reversed version of this procedure in order to transfer
the initial state to |1〉 and then to transfer |1〉 to the desired final
state with the control scheme of Sec. II. We have thus shown
controllability for eigenstates connected by (II). Obviously
the results for (I) and (II) can be combined, which yields
controllability for (III) completing the proof of sufficiency.

So far we have considered only zero detunings. However,
the result of controllability on the relaxation-free subspace
also holds for nonzero detunings that can be represented by
complex values for the decays. To see this, consider first a
three-level system. It is well known that the values of the
detuning and the relaxation rate of the intermediate state do
not affect the STIRAP efficiency [1]. This argument carries
over to general N -level systems with nonzero detunings of
the decaying states. If the system is controllable it can be
viewed as a concatenation of two or more three-level STIRAP
systems [and possibly type (I) paths], and then the detuning is
irrelevant. If the system is uncontrollable, the detuning cannot
make it controllable, based on the argument presented at the
end of Sec. III.

VI. CONCLUSION

We have considered the optimal control problem of trans-
ferring population in a quantum system between states in a
subspace free of dissipation, where the transfer has to proceed
via states that are subject to decay. We treated only the case
of resonant controls with fixed carrier frequency and phases,
controlling only the amplitudes of our pulses as a function
of time. Such situations occur frequently in atomic and
molecular physics applications. For example, transfer between
different levels in the electronic ground manifold can proceed
via Raman transitions. In quantum information applications,
stable qubit states are often connected via auxiliary states that
are subject to decay. In particular, this may be the case for
logical qubits encoded in a decoherence-free subspace.

We have obtained analytical solutions to this optimal
control problem by solving the Hamilton-Jacobi-Bellman
equation for the optimal return function. For a single inter-
mediate decaying state, we have recovered the stimulated
Raman adiabatic passage process [1] as the globally optimal
solution in the limit of infinite time. Perfect state transfer
is achieved only in this limit. This is in accordance with
experimental realizations where at best 99.5% state transfer
were achieved [24].

In Ref. [17], the STIRAP solution in a three-level system
was previously obtained using geometric control methods.
There, the optimal return function was specifically designed
to avoid the hard pulses obtained by us (which cause the
sudden population transfer from level 1 to 2 at t = 0). Note
that generalizing the results of Ref. [17] from the three-level
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system to N -level systems is hampered by the system’s state
being represented in terms of six real variables, compared to
two variables, r1 and r2, in our case.

In contrast to the analytical solutions presented here and
in Ref. [17], Refs. [13–16] employ numerical optimization
procedures based on the calculus of variations. Our current
work may help to clarify the disagreement in the literature
on whether STIRAP is obtained as a solution to an optimal
control problem [6,13,15]: The assertion of Ref. [13] that
adiabatic passage population transfer cannot be obtained as
the solution to an optimal control problem implicitly assumes
finite pulse fluence and finite control time. Yet adiabaticity,
strictly speaking, does not comply with these assumptions.

We have also presented analytical solutions for the case
of population transfer that proceeds via two consecutive
intermediate decaying states. In particular, we have shown
that the optimal control does not yield perfect state transfer
even in the limit of infinite time, unless the pulse coupling the
intermediate levels has infinite power. This gives an analytical
framework for understanding an earlier control solution,
termed straddling STIRAP, that was obtained numerically [6]
and that is essentially based on adiabatically eliminating the
intermediate levels [7,8]. Taking dissipation explicitly into
account, we have clarified that the adiabatic elimination of
the decaying levels is possible only in the limit of infinite
power.

Finally, we have generalized these results to characterize the
topologies of paths that can be achieved in N -level systems
by finite-power controls and in the presence of dissipation.
Population transfer with unit efficiency is only possible if
each decaying state is connected to two nondecaying states.
Complete population transfer is then achieved in the adiabatic
limit (i.e., in a sequence of STIRAP processes). Finite-power
state-to-state controllability on the relaxation-free subspace
is thus equivalent to connectivity [22], augmented by the
condition that only one out of two consecutive levels may
be subject to dissipation.
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APPENDIX: OPTIMAL CONTROL FOR THE
THREE-LEVEL SYSTEM

In this appendix, we derive the solution of the optimal
control problem for the three-level system. As introduced in
Sec. II, we are going to solve the Hamilton-Jacobi-Bellman
equation, Eq. (5), with the classical Hamiltonian of the control

problem defined in Eq. (6). Introducing adjoint variables λ1,
λ2,

λ1 = ∂V

∂r1
, λ2 = ∂V

∂r2
, (A1)

where V denotes the optimal return function, the Hamiltonian
of the optimal control problem can be expressed as

H (u) = −kλ1r1u
2 − Aλ1r2u + Aλ2r1u

= −kλ1r1

[
u2 + A

k

(
r2

r1
− λ2

λ1

)
u

]

= −kλ1r1

{[
u − A

2k

(
λ2

λ1
− r2

r1

)]2

−
[

A

2k

(
λ2

λ1
− r2

r1

)]2}
. (A2)

We rewrite the ratios appearing in Eq. (A2) in terms of variables
a and b,

a = λ2

λ1
, b = r2

r1
. (A3)

The optimal return function is a nondecreasing function of r1,
r2 [starting from a larger r1(0) or r2(0), one can achieve a larger
r2(T )]. Due to Eq. (A1) we therefore find λ1 � 0, λ2 � 0 and
hence a � 0. Since λ1 � 0 and r1 � 0, maximizing H with
respect to u is equivalent to minimizing the function

f (u) =
[
u − A

2k
(a − b)

]2

.

If a − b < 0, then the solution is the trivial one, u∗ = 0. We
therefore conclude that obtaining a nonzero control requires
a − b � 0. Later we will show explicitly that a − b is a
nondecreasing function of time. Since b(0) = 0 and a(0) � 0,
we have a(t) − b(t) � 0 for all times t . We further distinguish
two cases.

Case I. If A
2k

(a − b) � 1, then the minimum of f (u) is
achieved at the maximum value that u = cos θ can take,
u∗ = 1.

Case II. If 0 � A
2k

(a − b) < 1, then the minimum of f (u)
is achieved at u∗ = A

2k
(a − b).

It is a standard result that, along the optimal trajectory
[r1(t),r2(t)], the adjoint variables [λ1(t),λ2(t)] satisfy the
equations

dλ1

dt
= −∂H

∂r1
,

dλ2

dt
= −∂H

∂r2
,

i.e.,

d

dt

(
λ1

λ2

)
=

(
ku2 −Au

Au 0

)(
λ1

λ2

)
(A4)

with the terminal condition λ1(T ) = 0, λ2(T ) = 1.
With Eqs. (A4) and (4), we can derive the dynamics for a

and b along the optimal trajectory,

d

dt
a = Aua2 − ku2a + Au, (A5a)

d

dt
b = Aub2 + ku2b + Au. (A5b)
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Therefore
d

dt
(a − b) = (a + b)u[A(a − b) − ku]. (A6)

For the optimal trajectory start-
ing at (r1,r2) = (1,0), b(0)=0.
Depending on a(0) we have the following cases.

Case A. If a(0) � 2k
A

, we start in Case I, u∗ = 1. From
Eq. (A6), it follows that

d

dt
(a − b) = (a + b)[A(a − b) − k] � k(a + b) � 0,

i.e., a − b is nondecreasing. Therefore we will remain in
Case I for the whole time interval. Substituting u∗ = 1 into
the dynamical equation for (λ1,λ2), Eq. (A4), and running it
backwards, we obtain

d

dt

(
λ1(T − t)
λ2(T − t)

)
=

( −k A

−A 0

) (
λ1(T − t)
λ2(T − t)

)
(A7)

with the initial condition λ1(T ) = 0, λ2(T ) = 1. Integrating
this equation yields(

λ1(t)
λ2(t)

)

=
(

1
ω

[−Ae− 1
2 (k+ω)(T −t) + Ae− 1

2 (k−ω)(T −t)]
1

2ω
[−e− 1

2 (k+ω)(T −t)(k − ω) + e− 1
2 (k−ω)(T −t)(k + ω)]

)
,

(A8a)
where

ω =
{√

k2 − 4A2 if k2 > 4A2

i
√

4A2 − k2 if k2 < 4A2

and (
λ1(t)
λ2(t)

)
=

(
Ae−A(T −t)(T − t)

e−A(T −t)[A(T − t) + 1]

)
(A8b)

for k2 = 4A2. Solving the equation a(0) = λ2(0)
λ1(0) = 2k

A
for T ,

we obtain a critical time, TM . When T � TM , the optimal
control is to set u∗ = 1 for the whole time [0,T ]. An analytical
expression can be derived for TM . For example, when k2 >

4A2,

TM =
ln

[−2A2+5k2+3k
√

k2−4A2

2(A2+2k2)

]
√

k2 − 4A2
. (A9)

The other cases can also be worked out. The critical time TM

as a function of the decay rate k and the amplitude bound A is
displayed in Fig. 7. TM takes large values corresponding to the
trivial optimal solution u∗ = 1 for all t ∈ [0,T ] only for small
decay rates and small amplitude bounds. As k and A increase,
TM quickly becomes fairly small (for example, TM = 0.06 for
k = A = 10) and the optimal solution is determined according
to Eq. (7).

Case B. If a(0) < 2k
A

, we start in Case II, u∗ = A
2k

(a − b).
From Eq. (A6), we get in this case

d

dt
(a − b) = (a + b)

A

2k
(a − b)

[
A(a − b) − A

2
(a − b)

]

= A2

4k
(a + b)(a − b)2 � 0 (A10)

If a(0) − b(0) = 0, then it will remain zero for the whole time.
We will see that this only occurs as T → ∞. If a(0) > 0, then

FIG. 7. (Color online) The critical time TM as a function of decay
rate k and amplitude bound A. For control times T shorter than TM the
optimal control is simply set to u∗ = 1 for all t ∈ [0,T ], for control
times larger than TM , Eq. (7) applies.

a(t) − b(t) is strictly increasing, and at some time τ , it will
reach 2k

A
. We then switch to Case I, setting u∗ = 1 afterwards.

So in this case, the optimal control is u∗(t) = A
2k

[a(t) − b(t)]
for t � τ and u∗(t) = 1 for τ < t � T .

We now show how to calculate the switching time τ of
Case B. Using Eq. (A5) and u∗ = A

2k
(a − b), one can show

that within the time interval [0,τ ],

d

dt

(
a − b

a + b

)
= −A2

k

(
a − b

a + b

)2

. (A11)

Together with the initial condition, a(0)−b(0)
a(0)+b(0) = 1, keeping in

mind that b(0) = 0, this yields

a(τ ) − b(τ )

a(τ ) + b(τ )
= 1

A2

k
τ + 1

. (A12)

Since at time t = τ , a(τ ) − b(τ ) = 2k
A

, we obtain

a(τ ) = Aτ + 2k

A
, (A13a)

b(τ ) = Aτ. (A13b)

In the time interval [τ,T ], u∗ = 1, and we can again run
Eq. (A7) for (λ1,λ2) backward in time from T to τ . This
yields another expression of a(τ ) from Eqs. (A8a) and (A8b).
Setting it equal to Aτ + 2k

A
, we obtain the switching time τ .

Note that T − τ � TM . From Eq. (A13), the fact that b(t)
is non-negative for all times t and a(t) − b(t) is an increasing
function, it follows that

a(t) >
2k

A
for t ∈ [τ,T ].

The assumption T − τ > TM then leads to a contradiction: If
T − τ > TM , then a(T − TM ) = 2k/A at time t = T − TM .

Next we evaluate the value of the optimal control u∗(t) =
A
2k

[a(t) − b(t)] for t � τ . We know that in the interval [0,τ ],
a − b satisfies the dynamical equation, Eq. (A10), which can
be rewritten

d

dt
(a − b) = A2

4k

a + b

a − b
(a − b)3. (A14)
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From Eq. (A12), we get a+b
a−b

= A2

k
t + 1. Substituting it into

the above differential equation and solving it, we obtain a(t) −
b(t) for t ∈ [0,τ ],

a(t) − b(t) = 2k

A

1√
A2(τ 2 − t2) + 2k(τ − t) + 1

. (A15)

So in Case B, the optimal control is obtained to be

u∗(t) =
{

1√
A2(τ 2−t2)+2k(τ−t)+1

for t ∈ [0,τ ]

1 for t ∈ [τ,T ]
. (A16)

In summary, there is a critical time, TM , which depends on the
relaxation rate k and the amplitude bound A and determines
whether the control is switched or not: For T � TM the optimal
control is just set to one, u∗(t) = 1, for all times t ∈ [0,T ], and
for T > TM ,

u∗(t) =
{

1√
A2(τ 2−t2)+2k(τ−t)+1

for t ∈ [0,τ ]

1 for t ∈ [τ,T ]
.

The optimal control u∗(t) is thus determined by the system
parameters A and k and the switching time τ which is obtained
by matching the dynamics of a(t) at t = τ [cf. Eqs. (A13a)
and (A8)].

We derive the optimal Rabi frequency, �p(t), from r1(t),
r2(t) and u∗(t). From Eq. (2), it follows that

d

dt
x2 = �px1 − kx2 − �sx3. (A17)

Substituting in Eq. (A17) x2 = r1u, x1 = r1

√
1 − u2, and x3 =

r2, we obtain

�p = −ku2r1 − Aur2 + r1u̇ + kr1u + Ar2

r1

√
1 − u2

. (A18)

It is difficult to obtain a closed form of �p(t), but Fig. 2 shows a
few numerical examples. The solution u∗(t) = 1 occurs toward
the end of the interval [0,T ]. For finite control times T , this
solution for u∗(t) corresponds to �p(t) being infinity. For T →
∞, a rescaling of time leads to finite �p(t) as explained in
Sec. II B.

The interpretation of the optimal pulses is as follows: For
small control time T , the major limitation for the population

FIG. 8. (Color online) The optimal transfer efficiency, r2(T ) as
a function of the control time T for different relaxation rates k (the
maximum Rabi frequency, or pulse power, respectively, is limited
by A = 1). The curves are fairly concave, reaching a high transfer
efficiency in relatively short time. This is compatible with the fact that
in real experiments stimulated Raman adiabatic passage is actually
done in relatively short time. To reach 100% transfer efficiency,
however, infinite time is needed.

transfer is not due to relaxation, but the limited available
time. The optimal choice u∗ = 1 maximizes the transfer speed,
but also maximizes the decay of r1(t), respectively x2(t), as
can be seen from Eq. (4). However, for a small available
control time T , the gain obtained by maximizing the desired
transfer at each moment is more important than the relaxation
losses.As the control time T increases, the relaxation degrades
the performance more and more and the choice u = 1 ceases
to be optimal. For finite time the optimal solution becomes
a compromise between maximizing the transfer speed and
minimizing the decay. When time goes to infinity, minimizing
the relaxation loss becomes more important than the transfer
speed.

Substituting the optimal control u∗(t) into the dynamics,
Eq. (4), and integrating it yields the value of r2(T ). For finite
T this gives an upper bound for the maximum achievable
population transfer due to the possibility of �p(t) going to
infinity. As shown in Fig. 8 the upper bound approaches unity
in the limit T → ∞ even for large decay rates k, illustrating the
recovery of STIRAP. For small and moderate decay rates, the
convergence toward unit efficiency is much faster, reflecting
the easier control problem.
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