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Boı̂te Postale 47 870, F-21078 Dijon cedex, France

Marc Lapert
Institut für Quanteninformationsverarbeitung, Universität Ulm, D-89069 Ulm, Germany

Christiane P. Koch
Theoretische Physik, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany

Dominique Sugny*

Laboratoire Interdisciplinaire Carnot de Bourgogne, ICB UMR 6303 CNRS–Université de Bourgogne, 9 Avenue A. Savary,
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We apply two different monotonically convergent optimization algorithms to the control of molecular rotational
dynamics by laser pulses. This example represents a quantum control problem where the interaction of the system
with the external field is nonlinear. We test the validity and accuracy of the two methods on the key control targets
of producing molecular orientation and planar delocalization at zero temperature, and maximizing permanent
alignment at nonzero temperature.
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I. INTRODUCTION

Optimal control theory is nowadays a mature mathematical
discipline with a wide range of applications in science and
engineering [1]. The technique has been used with success
in quantum mechanics since the beginning of the 1990s
[2–5] to control spins, atoms, and molecules by external
electromagnetic fields. Control problems can be tackled
by two different types of approach, geometric [6–8] and
numerical methods [9–15] for quantum systems of low and
high dimensions, respectively. It is this second aspect which is
at the core of this article. Numerical optimal control algorithms
can roughly be divided into gradient ascent algorithms [12] and
Krotov’s method [10,16–21]. The latter guarantees monotonic
convergence independent of the specific choice of optimization
functional, type of interaction between system and external
control, and equations of motion. In the quantum control
literature, Krotov’s method was first established for dipole
transitions, where the interaction of the system with the control
field is linear [10,21–23]. In recent years, several modifications
to the known algorithms have been brought forward to account
for the nonlinear case, a problem which arises naturally in a
variety of control problems in atomic and molecular physics.
In particular it occurs when the intensity of the laser field is
sufficiently large, so that the linear model is no longer a good
approximation of the dynamical system. While the generaliza-
tion is straightforward for gradient algorithms, the extension
of the monotonic approach is more involved [19,24,25]. Here,
our goal is to explore the efficiency of two different schemes of
monotonically convergent optimization algorithms for the con-
trol of a molecule interacting nonlinearly with the control field.

*dominique.sugny@u-bourgogne.fr

The control of molecular rotation [26–33], for which such
nonlinear models are well established [34,35], is used as a
testbed case to analyze the features of these algorithms. A
first modification of a monotonically convergent algorithm to
account for a nonlinear interaction with the control assumes
the cost to be quadratic in the field and decomposes the
control into n components for a nonlinearity of order n [24].
The decomposition leads to 2n Schrödinger equations that
need to be solved, n for the wave function and n for the
adjoint state. This can be numerically costly. The approach
was successfully applied to the control of molecular orientation
and alignment [36]. At the same time, some of us proposed
a different algorithm using only one component of the wave
function [25]. This comes at the price of changing the cost
functional. Instead of penalizing the intensity of the field,
i.e., the square of the control parameter, it penalizes a higher
exponent, the value of which depends on the order of the
nonlinearity. The algorithms of Refs. [24,25] have recently
been compared [37]. In the case of a two-color control strategy
for molecular orientation, it was shown that the efficiency of
the two optimized solutions designed by the two algorithms
was similar. In parallel, it has been mentioned that the Krotov
method allows for constructing a monotonically convergent
algorithm with the standard cost functional penalizing the field
intensity [19]. Here, we examine this claim and perform an
extensive comparison with our algorithm introduced in [25].
We analyze the efficiency, numerical cost, and structure of
the optimized solutions obtained by the two approaches. The
rotational dynamics of a diatomic molecule driven by an
electromagnetic field will be used as an illustrative example.

The remainder of this paper is organized as follows.
The molecular model is presented in Sec. II. Section III is
devoted to the application of the two algorithms to the control
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objectives of controlling molecular orientation and planar
delocalization at zero temperature, and producing permanent
alignment at nonzero temperature. We conclude in Sec. IV. The
Appendix summarizes briefly the two optimization algorithms.

II. THE MODEL

We consider the control of the rotational dynamics of the
linear CO molecule described in a rigid-rotor approximation
and driven by the electric field �E(t). The field is expressed as
follows:

�E(t) = εx(t) cos(ωt + �x)�ex + εz(t) cos(ωt + �y)�ey

+ εz(t) cos(ωt + �z)�ez, (1)

where εν(t), �eν , and �ν , ν = x,y,z, are the amplitude, the
unit vector, and the phase along the ν axis, respectively. The
Hamiltonian of the system can be written as [34,35]

H = BJ 2 + �μ · �E(t) + α̂ · �E2(t) + β̂ · �E3(t), (2)

where B is the rotational constant. The first term of the right-
hand side of Eq. (2) is the field-free rigid-rotor Hamiltonian.
Its eigenstates are the spherical harmonics denoted by |j,m〉,
with j � 0 and |m| � j . The operators �μ, α̂, and β̂ are
associated, respectively, with the permanent dipole moment
and the polarizability and hyperpolarizability tensors. The
spatial position of the diatomic molecule is given in the
laboratory frame by the spherical coordinates (θ,φ).

We first study the interaction of the molecule with a
nonresonant laser field, polarized linearly along the z axis
of the laboratory frame. In this case, the variable θ is the angle
between the molecular axis and the polarization vector of the
electric field. The Hamiltonian (2) then simplifies to

H = BJ 2 − μ0 cos θEz(t) − 1
2 [�α cos2 θ + α⊥1]E2

z (t)

− 1
6 [(β‖ − 3β⊥) cos3 θ + 3β⊥ cos θ ]E3

z (t), (3)

where �α = α‖ − α⊥. The parameter μ0 is the permanent
dipole moment and the coefficients α‖, α⊥, β‖, and β⊥
denote, respectively, the polarizability and hyperpolarizability
components of the molecule with the labels ‖ and ⊥ indicating
the components parallel and perpendicular to the internuclear
axis. The numerical values used in our simulations for the
different molecular parameters are reported in Table I. For
details see Ref. [25]. If we further assume that the frequency ω

of the laser field is much higher than the rotational frequencies
and nonresonant with respect to all rovibronic transitions, we
can average over the fast oscillations of the electric field in
Eq. (3) and obtain [34,35]

H (t) = BJ 2 − 1
4 [�α cos2 θ + α⊥1]ε2

z (t)

− 1
8 [(β‖ − 3β⊥) cos3 θ + 3β⊥ cos θ ]ε3

z (t). (4)

As a second example we consider the interaction of the
CO molecule with a pulse that is elliptically polarized in the

TABLE I. Numerical values of the different molecular parameters.

B (cm−1) μ0 (a.u.) α‖ (a.u.) α⊥ (a.u.) β‖ (a.u.) β⊥ (a.u.)

1.9312 0.112 15.65 11.73 28.35 6.64

(x,y) plane. We neglect here the hyperpolarizability term of
the interaction since it does not play a quantitative role in this
case. After optical-cycle averaging as above, the corresponding
Hamiltonian is expressed as

H = BJ 2 − 1
4

[
(�α cos2 θx + α⊥1)ε2

x (t)

+ (�α cos2 θy + α⊥1)ε2
y (t)

+ 2�α cos(�x − �y) cos θx cos θyεx(t)εy(t)
]
, (5)

where cos θx = sin θ cos ϕ and cos θy = sin θ sin ϕ.
In the case of zero rotational temperature (T = 0 K),

the time evolution of the system is described by the time-
dependent Schrödinger equation,

i
∂

∂t
|ψ(t)〉 = H (t)|ψ(t)〉, (6)

where |ψ(t)〉 is the wave function of the system at time t . The
Liouville equation is used to describe the time evolution for
T �= 0 K:

i
∂

∂t
ρ(t) = [H (t),ρ(t)], (7)

where ρ(t) represents the density matrix associated with the
system at time t . Equations (6) and (7) are solved numerically
with the split-operator algorithm [38]. The Hamiltonian is
represented in spherical harmonics |j,m〉 where all matrix
elements are known analytically. We use atomic units unless
otherwise specified.

III. NUMERICAL RESULTS

We explore three different control targets presenting a
comparative study of the Krotov algorithm and the algorithm
from [25]. The technical details of the algorithms are briefly
reviewed in the Appendix.

A. Orientation dynamics driven by a linearly polarized field

We first investigate the control of molecular orientation
by a field linearly polarized along the z axis. In this
case, the dynamics is described by Eq. (3). The control
duration tf is chosen to be equal to one rotational period
Tper of the molecule, Tper ≈ 8.6 ps. We consider a finite
Hilbert space of size jmax = 15, which is sufficient for the
intensity of the laser field used here. The expectation value
〈cos θ〉 is taken as a quantitative measure of the orientation.
The molecule is oriented when |〈cos θ〉| 	 1. Following
Refs. [39,40], we do not maximize this expectation value but
a target state |ψf 〉 maximizing |〈cos θ〉| in a sub-Hilbert space
of finite dimension defined by j � jf . The details of |ψf 〉 can
be found in Refs. [39,40]. Figure 1 shows the projection of
the target state onto the eigenstates |j,0〉 of the molecule, with
jf = 4. A Gaussian pulse of 144 fs full width at half maximum
(FWHM), centered at t0 = Tper/5, is taken as guess field for
all optimizations discussed in this section:

E(t) = E0e
(t−t0)2/2σ 2

, (8)

where 1
2ε0cE

2
0 = 1012 W/cm2 is the peak intensity of the laser

field and the parameter σ is defined such that the FWHM is
2
√

2 ln 2σ . This choice of guess field is standard in the control
of molecular orientation [39]. It provides an efficient initial
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FIG. 1. (Color online) Population of the target state maximizing
orientation of the CO molecule along the z axis. The corre-
sponding wave function is given by |ψf 〉 ≈ 0.34|0,0〉 + 0.54|1,0〉 +
0.56|2,0〉 + 0.46|3,0〉 + 0.25|4,0〉.

solution with a population transfer from the state |0,0〉 to a
superposition of |j,0〉 states with j = 0,1, . . . ,jf . The cost
functional is defined by

C = |〈ψf |ψ(tf )〉|2 − λ

∫ tf

0
[E(t) − Eref(t)]

n/S(t)dt, (9)

where n = 2 and n = 4 for the Krotov algorithm and the
algorithm in [25], respectively. The parameter λ penalizes the
pulse energy and Eref(t) is a pulse reference. The function S,
given by S(t) = sin2(πt/tf ), suppresses the pulse amplitude
at the beginning and end of the time window, ensuring a pulse
that is smoothly switched on and off. We denote the final
fidelity of the control by Ctf = |〈ψf |ψ(tf )〉|2.

We first analyze the role of the parameter λ in the two
algorithms. The results reported in Table II show that the
Krotov algorithm requires smaller λ values to converge to
a high fidelity Ctf than the method of [25]. In order to observe
a convergence with realistic optimized pulses, the parameter
λ should be larger than 102 for our method and lower than 0.1

TABLE II. Analysis of the convergence of the two algorithms
with respect to the parameter λ. CLp

tf
and CKr

tf
are the fidelities obtained

from the Krotov algorithm and our (Lapert) algorithm, respectively.
E

Lp
max and EKr

max correspond to the maximum amplitude in absolute
value of the two optimized solutions. The number of iterations is set to
20. In our algorithm, small values of λ lead to very fast oscillations of
the corresponding optimized field, which are not physically relevant.
Therefore results are not indicated in columns 2 and 4 when λ is
smaller than 5 × 102.

λ C
Lp
tf

CKr
tf

E
Lp
max EKr

max

5 × 106 0.9892 0.0205 5.5 × 10−3 5.5 × 10−3

5 × 104 0.9993 0.0205 5.5 × 10−3 10−2

5 × 102 0.9996 0.0205 5.5 × 10−3 2.8 × 10−2

5 × 10−1 0.5789 5.5 × 10−3

5 × 10−2 0.9959 5.5 × 10−3

5 × 10−3 0.9944 5.5 × 10−3
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FIG. 2. (Color online) Convergence of our algorithm from [25]
and the Krotov algorithm measured by the final cost Ctf plotted as
a function of the number of iterations (top panel) and Ctf plotted
as a function of the CPU time (bottom panel). The results for the
formulation of [25] are depicted as a black solid line with circles,
while a blue dashed line with stars represents the results with the
Krotov algorithm.

for the Krotov one. This difference is easily understood from
the fact that, in the Krotov formulation, the running cost is a
quadratic function of the electric field [cf. Eq. (9)], while in
the algorithm by Lapert et al., this power is 4. Since in atomic
units, |E(t) − Eref| < 1, the same order of magnitude for the
two running costs is obtained for λLp � 102λKr. Note that
the parameter λKr has to satisfy the relation (A12) in order for
the Krotov algorithm to be monotonic. The fact that there is no
constraint in the choice of λLp allows more flexibility in the use
of our algorithm. However, one should keep in mind that large
values of λLp are required in order to avoid fast oscillations in
the optimized solution. In this section, the two coefficients will
be fixed at λLp = 5 × 106 and λKr = 5 × 10−2. The evolution
of the final fidelity Ctf as a function of the number of iterations
and the CPU time is displayed in Fig. 2. While the Lapert et al.
formulation converges faster initially, the insets of Fig. 2 show
that the Krotov algorithm becomes faster when the fidelity is
close to 1.

The algorithm of [25] is, however, more costly in terms of
computer time (CPU time). The faster convergence of Krotov’s
method in terms of CPU time is not surprising since in the
Lapert et al. formulation, at each iteration, the roots of a
polynomial of power 3 need to be determined in order to
compute the updated new pulse; see Appendix A 2 for details.
Figure 3 compares the optimized pulses obtained from the al-
gorithm of [25] [Fig. 3(a)] and from the Krotov one [Fig. 3(c)].
Figure 3(b) displays the guess field considered for the two
algorithms. Note that the structure of the Krotov solution is
very simple, since the optimized field is mainly composed
of the guess pulse plus additional small deformations. The
solution designed by the algorithm of [25] is rather more
complex, in the sense that fast oscillations appear between
the middle and the end of the optimization time interval. As
already pointed out in [25], this behavior seems to be quite
general, with a cost functional penalizing the power 4 of the
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FIG. 3. (Color online) Comparison of the optimized pulses
obtained from the Krotov algorithm (c) and the algorithm of [25]
(a). (b) depicts the initial field used for the two algorithms.

field. Note that spectral filters can be added to avoid such
oscillatory structures [41,42].

The dynamics induced by the two optimized pulses is
plotted in Fig. 4. More precisely, Fig. 4 displays the projection
of the wave function onto the molecular eigenstates as a
function of time. The two dynamics show similar features in
the first fifth of the optimization time interval, [0,0.2tf ]. Most
of the population remains in the ground state, |j = 0,m = 0〉,
since, in this time interval, both optimized pulses are almost
zero. At time t = 0.2tf , both optimized solutions contain a
kick which leads to a superposition of states with j = 0, . . . ,3.
For the dynamics induced by the Krotov optimized pulse, we
observe that most of the population is concentrated in states
|j = 3,0〉 and |j = 4,0〉 during the time interval [0.4tf ,0.6tf ],

j
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FIG. 4. (Color online) Projection of the time-dependent wave
function onto the eigenstates of the system. The top and bottom panels
represent respectively the dynamics induced by the pulses optimized
with the Krotov algorithm and the algorithm of [25].

while these states are populated for t ∈ [0.6tf ,0.8tf ] in our
case. In the time interval [0.6tf ,0.8tf ], the dynamics induced
by the Krotov optimized field shows a superposition of states
|1,0〉, |2,0〉, and |3,0〉, more or less similar to the target
state. In the final step, i.e., in the time interval [0.8tf ,tf ],
the small oscillations of the field of [25] and the Krotov field
are responsible for the complete transfer of the superpositions
to the target state.

B. Delocalization in the (x, y) plane

The second example is dedicated to controlling the orienta-
tion of the angular momentum of the CO molecule along the z

axis of the laboratory frame. The degree of orientation is given
here by 〈Jz〉/

√
〈J 2〉, where Jz is the z component of the angular

momentum J . This aspect has been recently studied in a
series of works, both theoretically [43–45] and experimentally
[46–48]. In particular, it has been shown in Ref. [45] that
orientation of the angular momentum can be achieved by
a sequence of two short laser pulses, properly delayed and
polarized at 45◦ with respect to each other. Here we reconsider
this control problem using the two monotonically convergent
algorithms. An elliptical polarization is considered to realize
this orientation. The corresponding Hamiltonian is given by
Eq. (5). Since the angular momentum of a diatomic molecule
is classically orthogonal to the molecular axis, its alignment
along the laboratory z axis is equivalent to a delocalization of
the molecular axis in the (x,y) plane. This delocalization can
also be interpreted as a minimization of the expectation value
〈cos2 θ〉 [44].

Let us consider a state of the form |j,±j 〉. Straightforward
computation shows that

〈j,±j | cos2 θ |j,±j 〉 = 1

2j + 3
. (10)

When j → ∞, the right-hand side of Eq. (10) converges to
its minimum value, 0. Therefore, in a sub-Hilbert space of
finite dimension, the states |j,±j 〉 minimize 〈cos2 θ〉 for large
j . In other words, these states maximize the delocalization
of the molecular axis in the (x,y) plane. Consequently, the
states |j,j 〉 and the states |j, − j 〉 maximize and minimize
〈Jz〉, respectively [45].

At T = 0 K, the initial state is |0,0〉 and |4,4〉 is
taken as the target state. The minimum expectation value
that can be reached with this choice is of the order of
〈4,±4| cos2 θ |4,±4〉 ≈ 0.1. Note that the more we increase j ,
the better the delocalization becomes. However, both difficulty
and numerical cost increase with j . Therefore, target states of
the form |j,±j 〉 with j > 4 will not be analyzed.

When the relative phase �x − �y is chosen so that the
cross term of the Hamiltonian (5) vanishes, the dynamics
cannot distinguish the states |j,j 〉 and |j,−j 〉 (see [44] for
the analytical proof). Here, in order to get a completely
controllable system, the relative phase �x − �y is set to π/4.
The guess field is constructed as a series of Gaussian pulses
of 150 fs FWHM for each component εx and εy . We have
chosen λLp = 105 and λKr = 0.1. Our choice of a large λ

value for the algorithm of [25] motivated by the fact that
small values induce very fast oscillations of the optimized
control field, which are physically and numerically not very
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FIG. 5. (Color online) (a) Convergence of the algorithm of [25]
and the Krotov algorithm measured by the final cost Ctf . Ctf =
|〈4,4|ψ(tf )〉|2 (top panel) is plotted as a function of the number of
iterations. (b) x components of the optimized fields. (c) y components
of the optimized fields. The black and blue (dark gray) curves depict
respectively the results derived with the algorithm of [25] and the
Krotov algorithm.

interesting. For 50 iterations, the target state is reached with
a probability of the order of 0.99 for the two algorithms. The
convergence of the cost Ctf (top panel), plotted as a function
of the number of iterations, is shown in Fig. 5 for the two
algorithms. The corresponding optimized pulses are shown
in the bottom panels. The convergence to the target state is
similar to the one observed in the first example. In particular,
the algorithm of [25] converges faster initially, the Krotov
algorithm remaining more efficient, specifically in terms of
CPU time. In addition, Fig. 5 clearly shows that the structure
of the Krotov solution is simpler than that of [25].

C. Control of a thermal rotational sample

The last example concerns the control of a thermal sample
at nonzero temperature. The initial state is given by the
Boltzmann distribution, which can be written as follows:

ρ0 = 1

Z

∑
j

j∑
m=−j

e−Bj (j+1)/kBT |j,m〉〈j,m| , (11)

where T is the temperature, kB the Boltzmann constant, and
Z the partition function, which is expressed as

Z =
∑

j

j∑
m=−j

e−Bj (j+1)/kBT . (12)

The control aims at reaching the state that maximizes the
permanent alignment of the molecule along the z axis. The
molecular alignment is measured by the expectation value
〈cos2 θ〉, which can be written as the sum of two terms:

〈cos2 θ〉 = 〈cos2 θ〉p + 〈cos2 θ〉c, (13)

where 〈cos2 θ〉p = ∑
j,m,m′ ρjm,jm′Cjm,jm′ and 〈cos2 θ〉c =∑

j �=j ′,m,m′ ρjm,j ′m′Cjm,j ′m′ . The coefficients Cjm,j ′m′ denote
the matrix elements of the operator cos2 θ . Partitioning the
alignment measured into diagonal and off-diagonal terms (with

respect to the quantum number j ) reveals interesting physical
information about the rotational dynamics. While 〈cos2 θ〉p
provides a direct measure of the rotational population,
〈cos2 θ〉c leads to the temporal evolution of the coherences.
By definition, 〈cos2 θ〉p is constant when the pulse is switched
off. In some applications, it can be interesting to maximize
only the permanent alignment.

For this purpose, we use the strategy proposed in Ref. [40].
Considering a sub-Hilbert space Hjf

of finite dimension
defined by the condition j � jf , we introduce the diagonal
projection of the cos2 θ operator,

cos2 θp =
∑

j,m,m′
|j,m〉〈j,m| cos2 θ |j,m′〉〈j,m′|, (14)

such that 〈cos2 θp〉 = 〈cos2 θ〉p. The target state ρf of the
control problem is defined as the density matrix maximizing
〈cos2 θp〉 and reachable from the initial state ρ0. Due to the
constraint of unitary evolution, the density matrices ρ0 and
ρf have the same spectrum. In addition, it can be shown that,
in this subspace, the two operators cos2 θp and ρf can be
simultaneously diagonalized. One therefore deduces that

max[〈cos2 θp〉] =
N∑

k=1

χkωk, (15)

where χ1 � χ2 � · · · � χN and ω1 � ω2 � · · · � ωN are the
eigenvalues of cos2 θp and ρf , respectively. The integer N is
the dimension of Hjf

. If we denote by |χk〉 the eigenvectors
of cos2 θp, ρf becomes

ρf =
N∑

k=1

ωk|χk〉〈χk|. (16)

Since the subspaces of a given parity of j are not coupled by the
operators cos2 θx,y,z, the subdivision Hjf

= H(even)
jf

⊕ H(odd)
jf

has to be considered to properly define the target state; see
Ref. [40] for details of this construction.

Figure 6 displays the partial trace Trj [·] with respect to j of
the target state ρf , with jf = 4, for the CO molecule at T =
5 K. For a given value m, this trace is defined by

∑jmax
j=|m| ρ

2
jm,jm.

For comparison, we have also plotted the same distribution for
the initial state ρ0. One clearly sees in Fig. 6 that the optimal
distribution is narrowed compared to the thermal one. Since
ρf is a diagonal matrix, there is no coherence and we get
〈cos2〉c = 0. At T = 0 K, the maximum permanent alignment
is equal to 0.6. This maximum is a temperature-dependent
function, and for T �= 0 K, max[〈cos2 θp〉] � 0.6. For example
at T = 5 K, max[〈cos2 θp〉] = 0.518.

We use Eq. (5) and the same guess pulse as in Sec. III B. The
parameter jf is fixed to 4. We have chosen λ = 2 × 10−2 and
5 × 105 for the Krotov algorithm and the algorithm of [25],
respectively. Figure 7 compares the permanent alignment
dynamics for the two algorithms at T = 5 K. The pulse
is switched off at tf = Tper. The dynamics are found to
be steplike, such that 〈cos2 θ〉p is either constant or varies
suddenly. A permanent alignment of the order of 0.47 and
0.49 is reached for the algorithm of [25] and the Krotov
algorithm, respectively, for 500 iterations. In this example,
the comparison of the convergence measured by the final cost
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FIG. 6. (Color online) Partial trace Trj [·] with respect to the
quantum number j of initial and target state distributions at T = 5 K.
The target distribution corresponds to ρf (red or dark gray bar)
which is the density matrix maximizing the permanent alignment
at T = 5 K. The partial trace of the initial density matrix is in gray.
The parameter jf is set to 4.

is not shown. We observe as in Fig. 2 the same behavior for the
two algorithms. As illustrated in Fig. 7, the optimized solution
designed by the Krotov algorithm is simpler than the one given
by the algorithm of [25].

IV. SUMMARY

For key control problems of the rotational dynamics, we
have designed in this work different optimized pulses from
two monotonically convergent algorithms, that of [25] and the
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FIG. 7. (Color online) (a) Permanent alignment dynamics during
and after the application of the optimized pulses. The black and blue
(dark gray) solid lines correspond to the dynamics generated by the
optimized pulse of [25] and that of Krotov. The red (light gray)
horizontal solid line depicts here the maximum permanent alignment
that can be reached in the subspace Hjf

. (b) x components of the
optimized fields. (c) y components of the optimized fields. The black
and blue (dark gray) curves depict respectively the results derived
with the algorithm of [25] and the Krotov algorithm.

Krotov one. Our numerical findings confirmed by the three
examples discussed in this work are as follows:

(1) The final fidelities reached by the two algorithms are
very similar.

(2) The algorithm of [25] is somewhat more flexible
compared to the Krotov one in the sense that the parameter
λ can be chosen without any constraints, while this parameter
has to satisfy the relation (A12) in the Krotov approach in
order to ensure monotonic convergence.

(3) The Krotov algorithm is more efficient than that of [25]
in terms of CPU time.

(4) The optimized Krotov field has a simpler structure
than that of [25], which generally presents some unwanted
oscillatory behaviors.

Having in mind the work of Ref. [49], an open question
is now the application of these optimal control algorithms to
more complex systems. The computation of the optimal field
allowing the cooling of rovibrational dynamics could be an
interesting test case, in particular because nonunitary processes
have to be taken into account.
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APPENDIX: DESCRIPTION OF MONOTONICALLY
CONVERGENT ALGORITHMS

The Krotov and optimization algorithm and that of [25]
are summarized here for pure-state quantum dynamics. This
description is straightforwardly extended to the density-matrix
formalism. To simplify notation, we restrict ourself to the
maximization of the projection onto a target state. The two
algorithms can analogously be used for maximization or
minimization of the expectation value of a given observable.
The control problem is characterized by maximization of the
functional C,

C = Ctf [{|ψ(tf )〉}] −
∫ tf

0
Ct [{|ψ(t)〉},E(t)]dt, (A1)

where Ctf is the final-time cost functional and Ct the running
cost. The parameter E denotes the external field and |ψ(t)〉
the wave function describing the state of the system at time t .
Its time evolution is governed by Eq. (6). If |ψf 〉 is the target
state, the final cost can be defined as follows:

Ctf [{|ψ(tf )〉}] = |〈ψf |ψ(tf )〉|2. (A2)

Here, only a running cost which does not depend on the state
of the system is considered:

Ct [{|ψ(t)〉},E(t)] = g[E(t)].

Extension to a state-dependent running cost is described in
Ref. [19]. The main difference between the two algorithms is
in the choice of the running cost.
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1. Krotov’s method

The derivation of the Krotov algorithm presented here
follows closely Ref. [19], specializing it to a nonlinear
interaction of the system with the control field; see Eqs. (2)
and (5). There is no requirement for a specific power of E(t)
the running cost g so we choose it to minimize the change in
the energy of the field [21],

g[E(t)] = λ

S(t)
[E(t) − Eref]

2, (A3)

with Eref denoting a reference field, S(t) a shape function, and
λ a weight.

Krotov’s method is based on the construction of an auxiliary
functional L[{|ψ〉},E,�] with � an arbitrary functional. It
is chosen such that the maximization of L is equivalent to
maximization of C of Eq. (A1). � is used to ensure a global
minimum with respect to changes in the state. Then any change
in the state will lead to an increase in the value of L, i.e., to
monotonic convergence [16,20]. This is achieved by expanding
� to second order in the change of the state |�ψ(t)〉,

�[{|ψ〉},t] = 〈χ (t)|ψ(t)〉 + 〈ψ(t)|χ (t)〉
+ 1

2 〈�ψ(t)|σ̂ (t)|�ψ(t)〉 . (A4)

When the equations of motion are linear with respect to the
state and the running cost functional does not depend on
the state, the second-order contribution is not required [19].
Since, in this work, we consider a quantum control problem
which fulfills these conditions, a first-order construction of �

is sufficient. The construction of � is described in detail in
Ref. [19]. The auxiliary functional is defined by

L[{|ψ〉},E,�] = G[{|ψ(tf )〉}] − �[{|ψ(0)〉},0]

−
∫ tf

0
R[{|ψ(t)〉},E(t),t]dt, (A5)

where the final-time functional and running functional, G and
R, are given by

G[{|ψ(tf )〉}] = Ctf [{|ψ(tf )〉}] + �[{|ψ(tf )〉},tf ],

(A6a)

R[{|ψ(t)〉},E(t),t] = ∂�

∂t
+ g[E(t)] − i( �∇|ψ〉�)|Hψ(t)〉

+ i〈ψ(t)|H ( �∇〈ψ |�). (A6b)

For a maximization problem, the following conditions have to
be fulfilled:

L[{|ψk〉},Ek,�] � L[{|ψk+1〉},Ek+1,�], (A7)

where k indicates the iterative step. Sufficient conditions for
maximizing L translate into maximizing G and minimizing R

at each time:

L[{|ψk+1〉},Ek,�] − L[{|ψk〉},Ek+1,�]

= �1 +
∫ tf

0
�2(t)dt +

∫ tf

0
�3(t)dt, (A8)

where the �i , i = 1, . . . ,3, are given by

�1 = G[{|ψk+1(tf )〉}] − G[{|ψk(tf )〉}], (A9)

�2(t) = R[{|ψk+1(t)〉},Ek(t),t] − R[{|ψk+1(t)〉},Ek+1(t),t],

(A10)

and

�3(t) = R[{|ψk(t)〉},Ek(t),t] − R[{|ψk(t)〉},Ek+1(t),t].

(A11)

Non-negativeness of the �i (i = 1, . . . ,3) ensures monotonic
convergence. For a quantum control problem where the cost
functional is state independent and the equations of motion
are linear with respect to the state, positivity of �1 and �3 is
automatically satisfied [20,21]. Non-negativeness of �2 can
be obtained by a proper choice of λ and the shape function
S(t) [19]:

λ

S(t)
> �ME

2
, (A12)

where �ME
2

is the spectral radius of ME
2 = ∂2H [E(t)]/∂E2.

Evaluating the extremum condition for L yields the control
equations:

(1) The equation of the control field,

∂g

∂E

∣∣∣∣
Ek+1

(t) = 2Im

[
〈χk(t)|∂H [E(t)]

∂E

∣∣∣∣
Ek+1

|ψk+1(t)〉
]
.

(A13)

(2) The equation of motion for the adjoint state |χ〉, with
“initial” condition

i
∂

∂t
|χk(t)〉 = H [Ek(t)]|χk(t)〉 (A14a)

|χk(t = T )〉 = −�∇〈ψk |Ctf

∣∣
|ψk〉. (A14b)

(3) The equation of motion of the state |ψ〉, with initial
condition |ψini〉,

i
∂

∂t
|ψk+1(t)〉 = H [Ek+1(t)]|ψk+1(t)〉 (A15a)

|ψk+1(t = 0)〉 = |ψini〉. (A15b)

At each iteration, the update of the field Ek+1(t) ob-
tained from Eq. (A13) involves a backward and a forward
propagation, Eq. (A14) and Eq. (A15), respectively. If the
system interacts nonlinearly with the control field, both left-
and right-hand sides of Eq. (A13) depend on Ek+1(t). For
simplicity, we assume that the change of the control field
between iterations k and k + 1 is small enough such that
∂H [E(t)]/∂E|Ek+1 ≈ ∂H [E(t)]/∂E|Ek

.

2. The approach of [25]

a. General description

While in the Krotov method, this running cost minimizes
the change in the energy of the field, in the algorithm of [25],
this choice is different. Basically, g is chosen so that Eq. (A13)
admits a real solution at any time t . The cost is defined as
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follows:

g[E(t)] = λ

S(t)
[E(t) − Eref]

2n , (A16)

For a Hamiltonian given by Eq. (2), Eq. (A13) leads to

2n
λ

S(t)
[Ek+1(t) − Ek(t)]2n−1

−2Im[〈χk|μ̂ + 2α̂Ek+1 + 3β̂E2
k+1|ψk+1〉] = 0. (A17)

The left-hand side of Eq. (A17) can be viewed as a polynomial
of Ek+1. Choosing the integer n such that λ/S(t)E2n−1

k+1 is a
monomial of order higher than the right-hand side of Eq. (A17)
ensures that there exists a real solution to the equation at each
time t . For a nonlinearity of order 3, n = 2 is sufficient. The
conditions for monotonic convergence are determined through
variation of �C given by

�C = Ck+1 − Ck = Ctf [{|ψk+1(tf )〉}] − Ctf [{|ψk(tf )〉}]

+
∫ tf

0
g[Ek+1(t)] − g[Ek(t)]dt,

(A18)

which needs to be positive [25].

b. Role of the parameter λ

We discuss in this section the way the parameter λ affects
the optimized solution. For this purpose, we have analyzed the
behavior of one of the real roots of the polynomial Eq. (A17).
To simplify the description, the operators �μ, α̂, and β̂ have been
replaced by their maximum eigenvalues. For n = 2, Eq. (A17)
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FIG. 8. (Color online) Variation of one of the real roots of
Eq. (A19) as a function of x = 〈χ (t)|ψ(t)〉 for different values
of λ, 102 � λ � 107.

can then be written as follows:

4
λ

S(t)
[Ek+1(t) − Ek(t)]3 − 6|β|maxIm[〈χk|ψk+1〉]E2

k+1

− 4|α|maxIm[〈χk|ψk+1〉]Ek+1 − 2|μ|maxIm[〈χk|ψk+1〉] = 0.

(A19)

Figure 8 illustrates the variation of one of the real roots of
Eq. (A19) as a function of x = 〈χ (t)|ψ(t)〉 for different values
of λ. The range of λ is taken from 102 to 107. For large values
of λ, the variation of the root is very slow with respect to x

while for a value smaller then 104, the change of the roots can
be very fast. This observation qualitatively explains the fast
oscillations occurring in the optimized fields of [25].
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