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Minimum number of input states required for quantum gate characterization
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We derive an algebraic framework which identifies the minimal information required to assess how well a
quantum device implements a desired quantum operation. Our approach is based on characterizing only the
unitary part of an open system’s evolution. We show that a reduced set of input states is sufficient to estimate the
average fidelity of a quantum gate, avoiding a sampling over the full Liouville space. Surprisingly, the minimal
set consists of only two input states, independent of the Hilbert-space dimension. The minimal set is, however,
impractical for device characterization, since one of the states is a totally mixed thermal state and extracting
bounds for the average fidelity is impossible. We therefore present two further reduced sets of input states that
allow for, respectively, numerical and analytical bounds on the average fidelity.
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I. INTRODUCTION

The usual measure to assess how well a quantum device
implements a desired quantum operation is the average
fidelity:

Fav =
∫

〈�|O+D(|�〉〈�|)O|�〉d�, (1)

where O denotes the desired unitary and the actual time
evolution is described by the dynamical map D. The standard
approach to determine Fav relies on quantum process tomogra-
phy [1]. In practice, the average fidelity of a quantum process in
a d-dimensional Hilbert space is often estimated by performing
quantum state tomography in a d2-dimensional Hilbert space.
For N qubits, d = 2N . The fidelity can also be obtained by
determining the process matrix, which is of size d2 × d2. In
both cases quantum process tomography scales exponentially
in resources [2]. For quantum devices to be realized and tested
in practical applications, a less resource-intensive approach to
characterization is required.

Recent attempts at reducing the required resources employ
stochastic sampling of the input states and measurement
observables [3–6]. The process matrix can be estimated
efficiently if it is sparse in a known basis [5–7]. For general
unitary operations and without assuming any prior knowledge,
Monte Carlo sampling to determine state fidelities in the
d2-dimensional Hilbert space currently seems to be the most
efficient approach [3,4,8]. This is due to the fact that the
approach directly targets the fidelity between the desired
operation and the implemented process rather than fully
characterizing the process and subsequently comparing it to
the desired operation. It also comes with the advantage of
separable input states and Pauli measurements. For N qubits,
this approach requires the ability to prepare 6N input states,
since there are six eigenstates for the three Pauli operators
for each qubit, and the ability to measure all of the d2 =
22N operators that form an orthonormal Hermitian operator
basis.
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Another approach to the estimation of the average fidelity
exploits its property of being a second-degree polynomial in
the states, utilizing a so-called two design [9]. A commonly
used two design is made up of the d(d + 1) states of d + 1
mutually unbiased bases. The average fidelity is then written
as a sum over state fidelities for these states [9]. The latter
implies preparation of entangled input states, since only
three out of the d + 1 mutually unbiased bases consist of
separable states [10]. Both Monte Carlo characterization and
the two-design approach yield the average fidelity with an
arbitrary prespecified accuracy. Alternatively, bounds on the
average fidelity can be obtained from two classical fidelities
[11] where each classical fidelity is expressed as a sum
over d state fidelities. The different requirements of Monte
Carlo characterization, the two-design approach and the two
classical fidelities in terms of the number of input states,
raise the question of what is the minimal set of states to
determine Fav.

Here we show that a minimal set of states can be identified
by the requirements to allow for distinguishing any two
unitaries and assess whether the time evolution is unitary.
We find the minimal set of states to consist of only two
states, independent of the size of Hilbert space. The minimal
set contains, however, a totally mixed thermal state which
is impractical for experiments. We therefore also introduce a
reduced set of states that consists of the minimum number of
pure states required to distinguish any two unitaries and assess
whether the time evolution is unitary. The average fidelity can
then be estimated by evaluating a distance measure for the
reduced set of states. The corresponding protocol consists of
preparing d + 1 pure states, defined in d-dimensional Hilbert
space, and measuring the corresponding state fidelities. We
show numerically that the estimate of the gate error differs
from Fav by a factor of less than 2.5 in the worst case and
1.2 on average. We furthermore demonstrate that evaluation
of state fidelities for the reduced set of states is also sufficient
to quantify the nonunitarity of the process. This allows us to
determine whether the gate error is due to decoherence or due
to unitary errors that are easier to mitigate.

If analytical instead of numerical bounds on the average
fidelity are desired, the reduced set needs to contain 2d states;
i.e., our approach generalizes the estimate of the average
fidelity in terms of two classical fidelities [11]. We show
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that the specific states utilized by Refs. [11,12] also fulfill
the requirements for distinguishing any two unitaries and
assessing unitarity of the time evolution—as do the states of
any two mutually unbiased bases.

Our paper is organized as follows: The algebraic framework
for identifying the minimum requirements to distinguish any
two unitaries and assess unitarity of the time evolution is
derived in Sec. II, introducing the concepts of commutant
space and total rotation. Section III presents the reduced sets
of states and discusses their use for extracting an estimate
of the average fidelity. The relationship of our approach
to the two classical fidelities of Ref. [11] is established in
Sec. IV, and our results are summarized in Sec. V. Detailed
proofs of the claims made in Sec. II are provided in the
Appendix.

II. ALGEBRAIC FRAMEWORK: COMMUTANT SPACE
AND TOTAL ROTATION

To identify the reduced set of states, we introduce the
concepts of commutant space of a set of density operators
and total rotation. We assume purely coherent time evolution
with an unknown unitary U ∈ U (d), such that ρ(T ) = D(ρ) =
UρU+, and generalize later to nonunitary time evolution.
Since the evolution is insensitive to a global phase, U is
an element of the projective unitary group, PU (d), i.e.,
the quotient U (d)/U (1) of the unitary groups U (d) and
U (1). Given a set of states, {ρj = ρj (t = 0)}, we consider
the map M : PU (d) −→⊕

j C
d×d , mapping the unitary

U onto the set of time-evolved states, {ρU
j (T ) = UρjU

+}.
We can differentiate any two unitaries U , U ′ if and only
if the map M is injective. We show that M is injective
if the commutant space of the set {ρj } has only one element,
the identity.

We define the commutant space K(ρ) of a single density
operator ρ as the set of all linear operators in PU (d) that
commute with ρ. It contains the identity and all operators
that have a common eigenbasis with ρ. Unitaries Ũ in the
commutant space of ρ cannot be distinguished from 1 by
time-evolving ρ since ŨρŨ+ = Ũ Ũ+ρ = ρ. Therefore, to
distinguish a unitary U from the identity, the time evolution
of at least two density operators with different eigenbases is
required. Once we can differentiate an arbitrary unitary from
the identity, we can differentiate it from any other unitary (and
M is injective). This follows from the fact that PU (d) is a
group. We define the commutant space of a set of density
operators, K({ρj }), as the intersection of all K(ρj ), i.e., the set
of all linear operators that commute with each ρj . Suppose the
identity is the only element of the commutant space K({ρj }).
Then the identity is the only time evolution that leaves all
ρj unchanged and we can distinguish the identity from all
other time evolutions by inspecting the time-evolved states.
The detailed proof that injectivity of M is equivalent to
K({ρj }) having identity as its only element is given in the
Appendix.

In order to determine the states of the reduced set {ρj }
that have a commutant space K({ρj }) with identity as its only
element, we introduce the concept of total rotation. Unitary
evolution corresponds to rotations in Hilbert space. Spanning

the Hilbert space by an arbitrary complete orthonormal basis
{|ϕi〉}, a complete set of d one-dimensional orthonormal
projectors is obtained, Pc ≡ {Pi = |ϕi〉〈ϕi |}. We construct
density operators within this basis, for example, by choosing
a single state, ρB =∑d

i=1 λiPi with λi �= λj for i �= j ,
or a set of d states, {ρB,i}, ρB,i = Pi , i = 1, . . . ,d. The
time-evolved basis state ρB(T ) or states {ρB,i(T )} allow for
distinguishing all those unitaries from identity that do not
have common eigenspaces with all Pi . To distinguish the
remaining unitaries from identity, we construct one additional
state, ρTR, that is guaranteed to have no common eigenspace
with any Pi . This is achieved by introducing a totally rotated
one-dimensional projector PTR obeying PTRPi �= 0 ∀Pi ∈ Pc

and taking ρTR = PTR. Adding PTR to Pc makes the set of
projectors complete and totally rotating, PcT R = Pc ∪ {PTR}.
A set of states {ρj } is complete and totally rotating if the
subset of the projectors onto the one-dimensional eigenspaces
of the {ρj } is complete and totally rotating. For example,
{ρB,ρTR} or {ρB,1, . . . ,ρB,d ,ρTR}. We show in the Appendix
that the identity is the only projective unitary operator that has
a common eigenbasis with all elements of such a set of states.

We have thus constructed a reduced set of states {ρj } that
allows for differentiating any two unitaries by inspection of
the time-evolved states, {ρj (T )}. For coherent time evolution,
we can evaluate

Fj = Tr
[
ρO

j ρj (T )
]
, (2)

which matches each state ρj , subjected to the ideal operation,
ρO

j = OρjO
+, to the actually evolved state, ρj (T ) = D(ρj ),

for all ρj (T ). A suitable combination of the resulting Fj yields
an estimate of Fav. However, for a possibly incoherent time
evolution, we need to quantify the “nonunitarity” of the actual
evolutions D(ρj ). This can be done by checking whether D
maps projectors onto projectors, reflecting rotations in Hilbert
space. We show in the Appendix that indeed unitarity of a
dynamical map D is equivalent to D mapping (i) a set {Pi}
of d one-dimensional orthogonal projectors onto another such
set {P̃i} of d one-dimensional orthogonal projectors and (ii) a
projector PTR that is totally rotated with respect to the set {Pi}
onto a one-dimensional projector.

III. REDUCED SET OF STATES YIELDING NUMERICAL
BOUNDS ON THE AVERAGE FIDELITY

A set of density operators that allows for both differentiating
any two unitaries and measuring the nonunitarity of any
dynamical map D is thus given by

ρB,i = |ϕi〉〈ϕi |, i = 1, . . . ,d, (3a)

ρTR = 1

d

d∑
i,j=1

|ϕi〉〈ϕj |. (3b)

By construction, the states ρB,i , ρTR are pure. They are
separable if a separable basis is chosen, i.e., if all |ϕi〉 are
separable. Another suitable reduced set to differentiate any
two unitaries and measure nonunitarity of D is given by{
ρB =

∑
i

λiPi,ρTR

}
with λi �= λj for i �= j. (4)
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This is the minimal set.1 However, for the characterization of
quantum gates, it is preferable to use the pure input states
defined in Eq. (3). Each of these states, when evolved in
time, is characterized, to leading order, by d2 real parameters.
Knowledge of the total d2(d + 1) parameters is sufficient to
determine whether the time evolution matches the desired
unitary.

Note that both reduced sets are also sufficient to reconstruct
a unitary that is close to a given open system evolution.
This implies that, in optimal control calculations for quantum
gates in the presence of decoherence, propagation of two
states, {ρB =∑i λiPi,ρTR} independent of the system size
d, is sufficient. This reduces significantly the numerical effort
compared to the d2 states used to date [13].

A. Estimating the gate error

The usual figure of merit in quantum process tomography,
the average fidelity Fav or, respectively, the gate error 1 − Fav,
can be estimated by averaging over the distance measures Fj ,
Eq. (2), for each state ρj in the reduced set. Each Fj becomes
maximal if and only if OρjO

+ = Dρj . Our protocol thus
consists in the preparation of d + 1 states ρj , Eq. (3), and
measurement of the corresponding state fidelities, Fj , for the
time-evolved states, D(ρj ). A possible choice of states is, e.g.,(

ρO
B,i

)
nm

≡ (Pi)nm = δniδmi (5)

in the computational basis. The average over the Fj can employ
the arithmetic mean or a modified geometric mean,

F arith
unitary = 1

d + 1

[
d∑

i=1

FB,i + FTR

]
, (6)

F
geom
unitary = 1

d + 1
+
(

1 − 1

d + 1

)[ d∏
i=1

FB,i · FTR

]
, (7)

or a combination of the two. The first term in Eq. (7) ensures
F

geom
unitary to take values in the same interval, [ 1

d+1 ,1], as Fav for

unitary evolution. F
arith/geom
unitary = 1 only for a purely coherent

time evolution that perfectly implements the desired gate O

for all states in the reduced set. While the arithmetic mean
weights all state fidelities linearly, the geometric mean works
best if the error is due to a single Fj . An optimized way to
extract information from all the Fj is obtained by a suitable
combination of the arithmetic and geometric mean: We define a
fidelity that switches from the arithmetic mean to the geometric
one, should the state fidelities for all the ρB,i be close to 1:

Fλ
unitary = λF

geom
unitary + (1 − λ)F arith

unitary, (8a)

with

λ = 1 − 1 −∏d
i=1 FB,i

1 −∏d
i=1 FB,i · FTR

. (8b)

1The corresponding extension of the proof requires D to be unital.
Any distance measure based on {ρB =∑i λiPi,ρTR} must therefore
contain an additional check whether D maps the identity onto itself.
which can be performed by adding a suitable third state to the set.
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FIG. 1. (Color online) Probability of the estimated gate error’s
relative deviation from the standard gate error, � = (εestim − εav)/εav,
for 100.000 realizations when using F arith

unitary, Eq. (6) (left column),
and F λ

unitary, Eq. (8) (right column). Shown are the results for (a, b)
randomized dynamical maps with O = CNOT, (c, d) truly random
unitaries with O = CNOT, and (e, f) randomized unitaries with O =
1. Positive and negative values of �, corresponding to under- and
overestimation of the gate error, do not scale equivalently. The scale
for overestimation (� > 0) ranges from zero to infinity while that for
underestimation (� < 0) is confined to [−1,0).

The choice of λ is motivated as follows: λ = 1 such that
Fλ

unitary = F
geom
unitary if FB,i = 1 for all i, i.e., in cases where

the gate error is captured by FTR alone; and λ = 0 yielding
Fλ

unitary = F arith
unitary if FTR = 1, i.e., when the gate error is

comprised in the FB,i .
Figure 1(a) shows the probability of obtaining a certain

relative deviation of the estimated gate error for randomized
dynamical maps and CNOT as the target gate. The randomized
dynamical maps were obtained by creating a random matrix
[14] for twice as many qubits as there are system qubits. The
random matrices were hermitized, multiplied by a randomly
chosen scaling factor, and exponentiated. The resulting matrix
was multiplied by the tensor product of the target unitary with
1, and the bath qubits were traced out. For most dynamical
maps, F arith

unitary yields a good estimate of the gate error. If,
however, the state fidelities for all ρB,i are very high, but
the fidelity for the totally rotated state is comparatively small,
the arithmetic mean seriously underestimates the gate error.
This can happen, for example, if the evolution is perfectly
unitary, D(ρj ) = Ũρj Ũ

+, and Ũ and the target O have a
common eigenbasis with all the ρB,i . Then the information
relevant for the gate error is completely contained in FTR.
This is illustrated in Fig. 1(e) for randomized unitaries with
an eigenbasis very close to the ρB,i and O = 1. In such a case
the geometric average over all state fidelities will yield a much
better estimate of the gate fidelity. In most cases, however, the
geometric mean is too strict and overestimates the gate error,
motivating the definition Eq. (3). Indeed, the best estimates
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TABLE I. Numerically obtained bounds for over- and under-
estimation of the average fidelity of the form αiF i

unitary � Fav �
βiF i

unitary for the arithmetic mean over the state fidelities (i = arith)
and the combination of arithmetic and geometric mean (i = λ),
using 100.000 realizations, for two and three qubits with O

corresponding to CNOT (N = 2), the Toffoli gate (N = 3), and
identity (randomized unitaries).

N Type of dynamics αarith βarith αλ βλ

2 Randomized dynamical map 0.83 1.31 0.44 1.26
Random unitaries 0.76 2.35 0.75 1.92
Randomized unitaries 1.00 4.39 0.90 1.15

3 Randomized dynamical map 0.96 1.04 0.51 1.03
Random unitaries 0.90 1.32 0.90 1.32
Randomized unitaries 1.00 8.67 0.91 1.20

of the gate error are obtained using ελ
unitary = 1 − Fλ

unitary as
shown in the right part of Fig. 1. Figures 1(a), 1(b), 1(e),
and 1(f) present results for randomized dynamical maps and
randomized unitaries that were generated by exponentiating
random Hermitian matrices. Since this is not truly random, we
have also generated random unitaries based on Gram-Schmidt
orthonormalization of randomly generated complex matrices
[15] [cf. Figs. 1(c) and 1(d) with O = CNOT]. ελ

unitary yields
a faithful estimate of the gate error in all cases. On average,
it underestimates the gate error by factors 1.03 [Fig. 1(b)],
1.11 [Fig. 1(d)], and 1.02 [Fig. 1(f)] and overestimates it
by 1.16 [Fig. 1(b)], 1.08 [Fig. 1(d)], and 1.01 [Fig. 1(f)].
This illustrates that Fλ

unitary makes best use of the information
contained in the d + 1 state fidelities, FB,i and FTR. Bounds for
over- and underestimating the gate error, obtained numerically,
are presented in Table I with CNOT, identity, and the Toffoli
gate as target operations. For three-qubit gates, we find the
numerical bounds to be essentially contained by those for
two-qubit gates (see Table I). This suggests our numerical
bounds to be independent of system size. A verification of this
conjecture for larger system sizes is, however, hampered by
the enormous increase in numerical effort for randomization.
For our examples of CNOT, the Toffoli gate, and identity, we
find the estimated gate error based on Eqs. (8) to deviate from
the standard one in the worst case by a factor smaller than 2.5
and on average by a factor smaller than 1.2. This confirms that
d + 1 state fidelities Fj are sufficient to accurately estimate
the gate error.

B. Quantifying nonunitarity

If, in a given experimental setting, the gate error turns out to
be larger than expected, one might want to know whether it is
due to unitary errors or decoherence. This can be determined
by quantifying nonunitarity of the time evolution using the
following distance measure:

Fdiss = 1 − 1

d + 1

{
d∑

i=1

Tr
[
ρ2

B,i(T )
]+ Tr

[
ρ2

TR(T )
]}

, (9)

where ρj (T ) = D(ρj ). Fdiss = 0 if and only if the evolution is
completely unitary. Evaluation of Fdiss requires preparation of

the d + 1 input states of Eq. (3) and measurement of d2 + d

populations.
Equation (9) cannot replace full process tomography when

complete identification of the error sources is desired. How-
ever, some information can already be gained by inspection
of the d + 1 purities of Eq. (9). For example, if the purity
loss is due to a single or very few terms in Eq. (9), this
identifies the state evolutions that are subject to dissipation.
On the other hand, if the purity loss is equally distributed over
all basis states, the chosen basis is likely not an eigenbasis
of the error operators (but another mutually unbiased basis
presumably is).

IV. REDUCED SET OF STATES YIELDING ANALYTICAL
BOUNDS ON THE AVERAGE FIDELITY

We now connect our notion of a reduced set of input states
to the result of Ref. [11] that two classical fidelities can be used
to obtain an upper and a lower bound on the average fidelity.
The classical fidelity is given by the average probability of
obtaining the correct output for each of the d classically
possible input states:

Fc = 1

N

d∑
i=1

〈
k

(1)
i

∣∣U †
0D
(∣∣k(1)

i

〉〈
k

(1)
i

∣∣)U0

∣∣k(1)
i

〉
, (10)

for an arbitrary orthonormal Hilbert-space basis {|k(1)
i 〉}i=1,...,d .

It can be interpreted as the arithmetic average over the overlaps
between expected and actual population evolution for the
basis states |k(1)

i 〉. Defining ρ
(1)
i = |k(1)

i 〉〈k(1)
i |, such a classical

fidelity can be rewritten analogously to Eq. (6):

F1 = 1

N

d∑
i=1

〈
k

(1)
i

∣∣U0D
(
ρ

(1)
i

)
U

†
0

∣∣k(1)
i

〉

= 1

N

d∑
ij=1

〈
k

(1)
j

∣∣k(1)
i

〉〈
k

(1)
i

∣∣U0D
(
ρ

(1)
i

)
U

†
0

∣∣k(1)
j

〉

= 1

N

d∑
i=1

Tr
[
ρ

(1)
i U0D

(
ρ

(1)
i

)
U

†
0

]

= 1

N

d∑
i=1

Tr
[
U

†
0ρ

(1)
i U0D

(
ρ

(1)
i

)]
,

with U
†
0ρ

(1)
i U0 the ideal and D(ρ(1)

i ) the actual evolutions. In
our terminology, the states ρ

(1)
i “fix” the basis [see Eq. (3a)]. In

order to fulfill the requirements of a reduced set, i.e., to allow
for differentiating any two unitaries and assessing unitarity of
the time evolution, another state corresponding to the totally
rotated projector is necessary (see Sec. II). Instead of a single
state ρTR, Ref. [11] chooses d such states with each state
fulfilling the condition of total rotation: ρ

(2)
i = |k(2)

i 〉〈k(2)
i | with

∣∣〈k(1)
i

∣∣k(2)
j

〉∣∣2 = 1

d
∀i,j,

i.e., a complete mutually unbiased basis [16]. Evaluating
the classical fidelities for the two bases {|k(1)

i 〉}i=1,...,d ,
{|k(2)

i 〉}i=1,...,d then allows for analytical bounds on the average
fidelity [11].
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Note that Ref. [11] discusses a specific choice of the
two bases. From our derivation in Sec. II, it is clear that
any two mutually unbiased bases are suitable, and one can
choose the most convenient ones. There exist d + 1 = 2N + 1
mutually unbiased bases for N qubits [17], but only three of
them consist of separable states while the remaining d − 2
mutually unbiased bases are made up of maximally entangled
states [10]. Any two of the three separable mutually unbiased
bases constitute a natural choice for most experimental
setups.

V. CONCLUSIONS

We have shown that a reduced set of input states can be
used to estimate the average fidelity or gate error of a quantum
gate. It provides the information to characterize, instead of
the full open system evolution, only the unitary part. The
average over all Hilbert space can then be estimated by a
modified average over a reduced set of states that allows us
to differentiate any two unitaries and quantify nonunitarity
of the evolution. The states in the reduced set correspond to a
complete set of orthonormal one-dimensional projectors plus a
one-dimensional projector that is rotated with respect to all the
other projectors. The reduced set can be realized by two mixed
states, irrespective of the dimension d of the Hilbert space, or
by d + 1 pure states. Our concept of total rotation is related
to the notion of mutually unbiased bases [16] where all states
of the second basis are totally rotated with respect to the first
basis. It is also the underlying principle in constructing the
input states for two complementary classical fidelities [11].
Consequently, one can estimate the average fidelity using
d + 1 or 2d pure separable input states. In both cases, the
gate error is determined in terms of state fidelities for the
time-evolved states of the reduced set. The approach using 2d

input states comes with the advantage of analytical bounds
on the gate error. For the smaller set of d + 1 input states,
numerical calculations demonstrate the estimate to deviate
from the true gate error by a factor of less than 1.2 on average
and 2.5 in the worst case.

While the average gate fidelity currently enjoys great
popularity, other very useful performance measures exist [18].
For example, the worst case fidelity is relevant in the context
of the error correction threshold [19]. It would be interesting
to see whether the d + 1 or 2d state fidelities of the reduced
set allow for estimating bounds on the worst case fidelity. This
is, however, beyond the scope of our current work.

Another important question concerns the scaling of the
gate error estimate employing a reduced set of states with the
number of qubits. The straightforward but not most efficient
approach consists in determining the required d + 1 or 2d

state fidelities by state tomography. This yields a scaling
of 23N for standard state tomography and 22N for Monte
Carlo state characterization [3,4], i.e., no improvement over
current approaches. Alternatively, a reduced set of states can be
combined with Monte Carlo process characterization [3,4]. We
show in Ref. [20] that in this case the experimental effort and
the classical computational resources to obtain tight analytical
bounds on the average error are reduced by a factor of 2N

compared to the best currently available protocol for general
unitary operations.

The ability to measure the gate performance efficiently with
a reduced set of input states is not only a prerequisite for
the development of quantum devices; it also opens the door
to designing quantum gates in coherent control experiments
using, e.g., genetic algorithms where repeated checks of the
performance are required.
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APPENDIX: PROOFS

We provide here detailed proofs of the claims made in
Sec. II.

1. Injectivity of M equivalent to the commutant space K({ρi })
having identity as its only element

Definition. Let ρ be a density operator defined in a d-
dimensional Hilbert space and Ui elements of the projective
unitary group PU (d). We call the set of operators

K(ρ) = {Ui ∈ PU (d)|[Ui,ρ] = 0}
the commutant space of ρ in PU (d). The commutant space of
a set of density operators {ρj } is defined as

K({ρj }) =
⋂
j

K(ρj ).

Proposition. The map M : PU (d) →⊕
i C

n×n, which
maps any unitary U ∈ PU (d) to the set of propagated density
operators {ρ(U )

i (T )}, is injective if and only if the commutant
space of {ρi} in PU (d), K({ρi}), contains only the identity.

Proof. Injectivity of M is equivalent to the condition

∀i : ρ
(U )
i (T ) = ρ

(V )
i (T ) ⇐⇒ U = V.

We first show that this condition is equivalent to

∀i : ρ
(U )
i (T ) = ρi ⇐⇒ U = 1.

Assuming validity of ∀i : ρ
(U )
i (T ) = ρ

(V )
i (T ) ⇐⇒ U = V ,

just choose V = 1. Then ρ
(V )
i (T ) = ρi and the second state-

ment follows immediately. Conversely, assume

∀i : ρ
(U )
i (T ) = ρi ⇐⇒ U = 1.

Then, for arbitrary V,W ∈ PU (d) we set U = V −1W =
V +W and

∀i : ρ
(V +W )
i (T ) = ρi ⇐⇒ ∀i : V +WρiW

+V = ρi

⇐⇒ ∀i : WρiW
+ = VρiV

+

⇐⇒ ∀i : ρ
(W )
i (T ) = ρ

(V )
i (T ) .

By assumption ∀i : ρ
(V +W)
i (T ) = ρi ⇐⇒ V +W = 1, but

since

∀i : ρ
(V +W)
i (T ) = ρi ⇐⇒ ∀i : ρ

(W )
i (T ) = ρ

(V )
i (T )
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and the relation

V +W = 1 ⇐⇒ W = V

always holds for V,W ∈ PU (d), this leads to the desired
result: ∀i : ρ

(U )
i (T ) = ρ

(V )
i (T ) ⇐⇒ U = V .

We now show that K({ρi}) = 1 if and only if

∀i : ρ
(U )
i (T ) = ρi ⇐⇒ U = 1.

Consider the following calculation:

∀i : ρ
(U )
i (T ) = ρi ⇐⇒ ∀i : UρiU

+ = ρi

⇐⇒ ∀i : Uρi = ρiU

⇐⇒ ∀i : Uρi − ρiU = 0

⇐⇒ ∀i : [U,ρi] = 0
(∗)⇐⇒ U = 1.

The equivalence relation (∗) is true if and only if K({ρi}) = 1.
This concludes the proof.

2. Total rotation and commutation with identity

Definition. LetH be a d-dimensional Hilbert space. A setPc

of d one-dimensional orthogonal projectors from H onto itself
is called complete. For example, spanning the Hilbert space by
an arbitrary complete orthonormal basis {|ϕi〉 |}, Pc = {Pi =
|ϕi〉 〈ϕi |}. A one-dimensional projector PTR from H onto itself
is called totally rotated with respect to the set Pc if ∀Pi ∈
Pc : PTRPi �= 0. A setPcTR ≡ {Pc,PTR} of projectors is called
complete and totally rotating.

Definition. Let H be a d-dimensional Hilbert space. A set
of density operators {ρi} with ρi ∈ H ⊗ H is called complete
if the set of projectors on the eigenspaces of the {ρi} is
complete and is called complete and totally rotating if the
set of projectors on the eigenspaces of the {ρi} is complete and
totally rotating.

Our goal is to prove that the only projective unitary matrix
that commutes with each element of a complete and totally
rotating set of states is the identity. In order to make use of
the assumed commutation relations in the proof, we translate
commutation of a unitary with a state into commutation of a
unitary with one or more projectors. To this end, we introduce
a lemma. Using commutation of a unitary with projectors, it
is then straightforward to show that the unitary must be the
identity.

Lemma. If [U,ρ] = 0 for a unitary U ∈ PU (d) and a
density operator ρ which has at least one nondegenerate
eigenvalue λ1, then [U,P1] = 0 where P1 is the projector onto
the eigenspace E1 corresponding to the eigenvalue λ1.

Proof. Since ρ has a nondegenerate eigenvalue λ1, we can
expand it in a set of orthonormal projectors, ρ = λ1P1 +∑d

i=2 λiPi , with P1 = |ξ1〉 〈ξ1| the projector onto the one-
dimensional eigenspace E1. By assumption,

[U,ρ] = 0 = λ1UP1 − λ1P1U +
d∑

i=2

(λiUPi − λiPiU )

= λ1UP1U
+ − λ1P1 +

d∑
i=2

(λiUPiU
+ − λiPi),

where in the second line we have multiplied by U+ from the
right. Defining P̄i = UPiU

+, this is equivalent to

λ1P̄1 +
d∑

i=2

λiP̄i = λ1P1 +
d∑

i=2

λiPi.

The operator equality can be applied to |ξ1〉, leading to

λ1P̄1 |ξ1〉 +
d∑

i=2

λiP̄i |ξ1〉 = λ1 |ξ1〉 .

Inserting identity,
∑d

i=1 P̄i = 1, in the right-hand side, we
obtain

λ1P̄1 |ξ1〉 +
d∑

i=2

λiP̄i |ξ1〉 = λ1P̄1 |ξ1〉 +
d∑

i=2

λ1P̄i |ξ1〉 .

Multiplying from the left by P̄i �=1 and using orthogonality
of the P̄i and nondegeneracy of λ1, λi �=1 �= λ1, we find that
P̄i |ξ1〉 = 0 for all i �= 1. Therefore |ξ1〉 lies also in the one-
dimensional eigenspace corresponding to P̄1, and the one-
dimensional eigenspaces of P1 and P̄1 must be identical. This
implies

P1 = P̄1,

and, by definition of P̄1, we find that U leaves the one-
dimensional eigenspace corresponding to P1 invariant and
hence commutes with P1.

Note that if a density operator ρ that commutes with
U has more than one nondegenerate eigenvalue, the lemma
implies commutation of U with all the projectors onto the
one-dimensional eigenspaces.

Proposition. The only projective unitary matrix that com-
mutes with a set of states {ρi} that is complete and totally
rotating is the identity.

Proof. Repeated application of the lemma to states ρi yields
a set of one-dimensional projectors that each commute with
U . By definition of a complete and totally rotating set of states,
d + 1 projectors within this set must be elements of {Pc,PTR}.
We can thus choose the complete set of one-dimensional
projectorsPc to represent U , U =∑d

i=1 uiPi . An equally valid
choice {P̃i} employs the totally rotated projector, P̃1 = PTR,
with ETR the corresponding eigenspace, and a suitable set of
orthonormal one-dimensional projectors {P̃i}i=2,...,d for the
space E⊥

TR such that U =∑d
i=1 uiP̃i . The spectrum {ui} is of

course independent of the representation. Consider the action
of U on a vector |ζ 〉 ∈ ETR:

U |ζ 〉 =
d∑

i=1

uiPi |ζ 〉

=
d∑

i=1

uiP̃i |ζ 〉 = u1 |ζ 〉 =
d∑

i=1

u1Pi |ζ 〉 , (A1)

where we have inserted
∑d

i=1 Pi = 1 in the last step. By total
rotation, PTRPi �= 0 ∀Pi ∈ Pc, or equivalently, PiPTR �= 0.
Applying this to |ζ 〉, we find

PiPTR |ζ 〉 = Pi |ζ 〉 �= 0 ∀i.
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Since the Pi are one-dimensional orthonormal projectors, i.e.,
Pi = |ϕi〉 〈ϕi | with {|ϕi〉} being a complete orthonormal basis
of the Hilbert space, we can rewrite Pi |ζ 〉:

Pi |ζ 〉 = μi |ϕi〉 ,

with μi ∈ C, μi �= 0. Inserting this into Eq. (A1), we obtain

d∑
i=1

u1μi |ϕi〉 =
d∑

i=1

uiμi |ϕi〉 .

Comparing the coefficients yields u1μi = uiμi ∀i. Since all
μi �= 0 due to total rotation, we can divide and obtain

u1 = ui ∀i,

i.e., a unitary with complete degeneracy in its eigenvalues.
This necessarily has to be the matrix eiϕ1 for ϕ ∈ [0,2π ] or,
as an element of PU (d), the unit matrix.

We have thus shown that only the identity commutes with
a set of states that is complete and totally rotating. This
set of states is therefore sufficient to differentiate any two
unitaries.

3. Unitarity of D equivalent to projectors
being mapped onto projectors

Proposition. A dynamical map D, defined on a d-
dimensional Hilbert space, is unitary if and only if D maps
(i) a set {Pi} of d one-dimensional orthonormal projectors
onto a set of d one-dimensional orthonormal projectors {P̃i}
and (ii) a one-dimensional projector that is totally rotated with
respect to {Pi} onto a one-dimensional projector (which is
totally rotated with respect to {P̃i}).

Proof. We first prove the forward direction. If the time
evolution is unitary, the action of D on any state is described
by D(ρ) = UρU+. Specifically for orthonormal projectors
PiPj = δij , we find

D(Pi)D(Pj ) = UPiU
+UPjU

† = UPiPjU
† = δijUPiU

†.

Since a one-dimensional projector can be written Pi =
|ϕi〉〈ϕi |, where {|ϕi〉} is a complete orthonormal basis of
H, UPiU

† is also one-dimensional projector. By the same
argument, PTR is mapped onto a one-dimensional projector
if D(ρ) = UρU+. Therefore a dynamical map D describing
unitary time evolution maps a set of d orthonormal projectors,
{Pi}, onto another such set, {P̃i = UPiU

+}, and PTR onto a
one-dimensional projector.

We now prove the backward direction, starting from the
representation of D,

D =
K∑

k=1

EkρE+
k , (A2)

by Kraus operators Ek , i.e., linear operators that fulfill

K∑
k=1

E+
k Ek = 1. (A3)

We employ the canonical representation in which the Kraus
operators are orthogonal, Tr[E+

k El] ∼ δkl . By assumption,

a set of d one-dimensional, orthonormal projectors {Pi} is
mapped by D onto another such set {P̃i}:

D (Pi) =
K∑

k=1

EkPiE
+
k = P̃i . (A4)

We need to show that this implies D(ρ) = UρU+ or equiva-
lently, as we demonstrate below, that D is made up of a single
Kraus operator E1 in the representation where Tr[E+

k El] ∼ δkl .
In general, we can employ a polar decomposition for each
Kraus operator, factorizing it into a unitary and a positive-
semidefinite operator, Ek = UkẼk . For unitary evolution,
Uk = Ũ for all k and E1 = U1, which is a special case of
Ẽk being diagonal. We first show that the assumption for the d

orthonormal projectors {Pi} implies Uk = Ũ and diagonality
of Ẽk . In a second step, we prove that the assumption for
the totally rotated projector implies that there is only a single
Kraus operator and Ẽ1 = 1.

We first show that Ẽk = EkU
+ is diagonal in the or-

thonormal basis {|ϕi〉} corresponding to the Pi . Equa-
tion (A4) suggests the definition of an operator �

(i)
k ≡

EkPiE
+
k which is obviously Hermitian and moreover

semipositive definite. The latter is seen by making use
of P 2

i = Pi and Pi = P +
i : 〈ζ |�(i)

k ζ 〉 = 〈ζ |EkPiPiE
+
k ζ 〉 =

〈PiE
+
k ζ |PiE

+
k ζ 〉 = 〈ξ |ξ 〉 � 0 for any |ζ 〉 ∈ H. Equation (A4)

implies
∑K

k=1 �
(i)
k = P̃i . For the normalized vector spanning

the eigenspace of P̃i , |ϕ̃i〉 ∈ Ei , we find

K∑
k=1

〈
ϕ̃i

∣∣�(i)
k ϕ̃i

〉 = 1,

while for all |ξ 〉 ∈ E⊥
i

K∑
k=1

〈
ξ
∣∣�(i)

k ξ
〉 = 0.

Due to positive semidefiniteness of �
(i)
k , this im-

plies 〈ξ |�(i)
k ξ 〉 = 0. Reinserting the definition of �

(i)
k

leads to 〈ξ |EkPiE
+
k ξ 〉 = 〈PiE

+
k ξ |PiE

+
k ξ 〉 = 0; i.e., we find

PiE
+
k |ξ 〉 = 0 for all k, i and |ξ 〉 ∈ E⊥

i . For an arbitrary
Hilbert-space vector |ζ 〉, (1 − P̃i) |ζ 〉 lies in E⊥

i such that
PiE

+
k (1 − P̃i) |ζ 〉 = 0 for all k and i. Therefore,

PiE
+
k (1 − P̃i) = 0, or PiE

+
k = PiE

+
k P̃i ∀i,k.

To make use of the orthogonality of the P̃i , we multiply by
P̃j , j �= i from the right. Since P̃j can be written as P̃j =
ŨPj Ũ

+ for a specific Ũ , we obtain, for all i, k, and j �= i,
PiE

+
k ŨPj Ũ

+ = 0. Multiplication by Ũ from the right yields

PiE
+
k ŨPj = 0.

This implies that the operators E+
k Ũ have to be diagonal in the

basis corresponding to the Pi :

E+
k Ũ =

d∑
i=1

ek
i Pi . (A5)

Note that the unitary Ũ is the same for all Kraus operators
Ek .

In the second step, we now need to show that the right-
hand side of Eq. (A5) is equal to the identity, making
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use of the assumption that the totally rotated projector
is mapped by D onto a one-dimensional projector. The
crucial information is captured in the coefficients ek

i . Let
us summarize what we know about the ek

i . From or-
thogonality of the Kraus operators, we find Tr[E+

k El] =
Tr[
∑d

i,j=1 ek
i (el

j )∗PiŨ
+ŨPj ] = ∑d

i,j=1 ek
i (el

j )∗Tr[PiPj ] =∑d
i,j=1 ek

i (el
j )∗δij =∑d

i=1 ek
i (el

i)
∗ !∼ δkl . The last sum can be

interpreted as a scalar product for two orthogonal vectors
�e k,�e l ∈ Cd with coefficients ek

i , el
i . Defining the proportion-

ality constants N (k),

N (k) ≡ Tr[E+
k Ek] =

∑
i

ek
i

(
ek
i

)∗ = 〈�e k,�e k〉 � 0, (A6)

we find from Eq. (A3) and Tr[1] = d that
∑K

k=1 N (k) =
d [and, if we can show that N (k) = d for one k, then
the number of Kraus operators, K , must be 1]. Equa-
tion (A3) together with Eq. (A5) yields yet another condition
on the ek

i : 1 =∑K
k=1 E+

k Ek =∑d
i,j=1

∑K
k=1(ek

i )∗ek
jPiPj =∑

i,k |ek
i |2Pi such that

∑
k |ek

i |2 = 1 for each i. This can be
interpreted as a normalization condition for a vector �εi ∈ CK

with coefficients ek
i :

1 =
K∑

k=1

∣∣ek
i

∣∣2 = 〈�εi,�εi〉. (A7)

Since the vector sets {�ek} and {�εi} are not independent, it is
clear that any information on the scalar product 〈�εi,�εj 〉 will
be useful to determine N (k) (such that we can check whether
there is one k for whichN (k) = d). To this end, we employ the
assumption that PTR is mapped by D onto a one-dimensional
projector, P̃TR = D(PTR), or, in other words the purity of PTR

is preserved:

Tr{[D(PTR)]2} = 1.

Inserting Eqs. (A2) and (A5), making use of the orthogonality
of the Pi and of the trace being invariant under cyclic
permutation, we find

Tr[D(PTR)2]

= Tr

⎡
⎣U

⎛
⎝∑

ij

∑
k

∑
i
′
j

′

∑
k

′

(
ek
i

)∗
ek
j

(
ek

′

i
′
)∗

× ek
′

j
′ PiPTRPjPi

′ PTRPj
′

⎞
⎠U+

⎤
⎦

= Tr

⎡
⎣∑

ij

∑
k

∑
j

′

∑
k

′

(
ek
i

)∗
ek
j

(
ek

′

j

)∗
ek

′

j
′ PiPTRPjPTRPj

′

⎤
⎦

=
∑
ij

∑
k

∑
j

′

∑
k

′

(
ek
i

)∗
ek
j

(
ek

′

j

)∗
ek

′

j
′ Tr[PiPTRPjPTRPj

′ ]

=
∑
ij

∣∣∣∣∣
∑

k

(
ek
i

)∗
ek
j

∣∣∣∣∣
2

Tr[PiPTRPjPTR]

=
∑
ij

|〈�εi,�εj 〉|2Tr[PiPTRPjPTR].

The trace over the projectors is easily evaluated in
the basis {|ϕi〉}, Pi = |ϕi〉 〈ϕi |, in which PTR = |�〉 〈�|.
It yields Tr[PiPTRPjPTR] = |〈ϕi |�〉|2|〈ϕj |�〉|2 = |μi |2|μj |2
with μi ≡ 〈ϕi |�〉 and μi �= 0 due to total rotation, PiPTR �=
0∀i. Estimating |〈�εi,�εj 〉|2 by the Cauchy Schwartz inequality,
|〈�εi,�εj 〉|2 � 〈�εi,�εi〉〈�εj ,�εj 〉, and making use of the normaliza-
tion of �εi [see Eq. (A7)], we obtain

1 = Tr[D(PTR)2] =
∑
ij

|μi |2|μj |2|〈�εi,�εj 〉|2

�
∑
ij

|μi |2|μj |2 = 1.

In the last step, we have used
∑

i |μi |2 =∑i |〈ϕi |�〉|2 =∑
i〈�|ϕi〉〈ϕi |�〉 = 〈�|�〉 = 1. Since we find one on the

left-hand and right-hand sides, equality must hold for the
inequality. Since μi �= 0 for all i, this is possible only
for

|〈�εi,�εj 〉|2 = 1, or |〈�εi,�εj 〉| = 1 ∀i,j.

Therefore, the normalized vectors �εi , �εj are identical up to a
complex scalar, |ek

i | = |ek
j | for all i, j , and k. This implies for

the proportionality constants N (k), Eq. (A6), equality of all
summands:

N (k) =
d∑

i=1

ek
i

(
ek
i

)∗ = d
(
ek
a

)∗
ek
a.

Each component is thus given by ek
i = √

N (k)/d exp [iφi],
which, making use of the orthogonality of the vectors �ek ,∑

i e
k
i (el

i)
∗ ∼ δkl , leads to

d∑
i=1

ek
i

(
el
i

)∗ =
d∑

i=1

√
N (k)N (l)

d
exp [iφi] exp [−iφi]

=
√
N (k)N (l) = 0 ∀k �= l.

For this to be true, all N (k) except one and consequently all
Ek except one must be zero. By Eq. (A5), its representation is

E = Ũ

[∑
i

(
e1
i

)∗
Pi

]
.

Making use of PiPj = δijPi and Pi = P +
i , unitarity of the

time evolution follows immediately, since

E+E =
d∑

i=1

e1
i

(
e1
i

)∗
Pi =

2∑
i=1

√
N (1)

d
Pi =

k∑
i=1

Pi = 1,

EE+ = Ũ

(∑
i=1

e1
i

(
e1
i

)∗
Pi

)
Ũ+ = Ũ1Ũ+ = 1,

such that

D(ρ) = ŨρŨ+

for a unitary Ũ ∈ PU (d). This concludes the proof.
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