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Steering the optimization pathway in the control landscape using constraints
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We show how additional constraints, restricting the spectrum of the optimized pulse or confining the system
dynamics, can be used to steer optimization in quantum control towards distinct solutions. Our examples are
multiphoton excitation in atoms and vibrational population transfer in molecules. We show that a spectral
constraint is most effective in enforcing nonresonant two-photon absorption pathways in atoms and avoiding
unnecessarily broad spectra in Raman transitions in molecules. While a constraint restricting the system to stay
in an allowed subspace is also capable of identifying nonresonant excitation pathways, it does not avoid spurious
peaks in the pulse spectrum. Both constraints are compatible with monotonic convergence but imply different
additional numerical costs.
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I. INTRODUCTION

Quantum optimal control utilizes shaped external fields to
reach a desired target in the best possible way [1]. It has been
successfully applied in a variety of settings, from femtosecond
laser spectroscopy to nuclear magnetic resonance or quantum
information processing; see Ref. [2] and references therein for
a recent overview. The enormous success of quantum control,
both in optimal control theory [3] and adaptive feedback
control experiments [4], has been rationalized in terms of
the favorable properties of the control landscape [5]. This
landscape visualizes the optimization target as a function of
the control parameters. Optimization corresponds to a search
for the maxima or minima in the landscape. Success of control
is explained by broad peaks that can easily be climbed [6].
Suboptimal peaks, while not completely excluded [7], seem
to play no significant role in actual control applications. The
intuitive picture of the control landscape can not only elucidate
search pathways but also help to find the mechanism under-
lying an optimized control field. It is thus not surprising that
the theoretical concept has triggered a number of experimental
investigations [8–10].

Any experiment is, however, subject to constraints such
as finite pulse power, bandwidth, and time or frequency
resolution. These constraints will necessarily make some of
the optimal peaks in the landscape inaccessible and may lead
to traps and saddle points [11]. In order to search for control
solutions in optimal control theory that can be realized in
a given experiment, the experimental constraints should be
included as additional costs in the optimization functional. For
example, the system dynamics can be restricted to a certain
subspace in order to block undesired strong-field effects or
avoid decoherence [12]. Formulating the additional costs is
not always straightforward. In particular, imposing conditions
simultaneously on the spectrum and the shape of an optimized
pulse has proven to be challenging [13–17]. Although they
exclude part of the ideal control landscape [11], additional
constraints are not necessarily detrimental. They can also
be used to actively steer the optimization pathway toward a
particular solution out of several available ones. This is the
subject of our current work.

We employ spectral constraints, imposing filters on the
optimized spectrum [13], and state-dependent constraints,

restricting the system dynamics to a subspace [12], to optimize
for nonresonant excitation in atoms and vibrational population
transfer in molecules. Unless one employs a two-photon rotat-
ing wave approximation which excludes resonant one-photon
pathways a priori, finding nonresonant transitions poses a
notoriously difficult problem in optimal control theory since it
contradicts the condition of minimal power consumption. This
is particularly dissatisfying in view of the many experimental
studies of nonresonant two-photon absorption for ns to
(n + 1)s transitions in alkali-metal atoms in the weak- [18–20],
strong- [21–23] and intermediate-field regimes [24–27]. To
date, only solutions using one-photon transitions are found,
while the experimental result of nonresonant two-photon
control [18–27] could not be reproduced. Here we employ
optimal control theory using Krotov’s method [28–30] and
impose spectral and state-dependent constraints to enforce a
nonresonant two-photon solution. We then extend our study
to vibrational population transfer. For this example, optimal
control calculations have also been hampered by an enormous
spectral spread of the field, so much so that the resulting
spectral widths by far exceed experimentally realistic values
[14,31]. We show that for both examples, a spectral constraint
successfully suppresses all undesired frequency components.

The paper is organized as follows: Section II presents a
brief review of Krotov’s method for quantum optimal control.
Special emphasis is placed on how to include additional
constraints in a way that preserves monotonic convergence.
Multiphoton absorption in sodium atoms is studied in Sec. III
for two different optimization targets—maximizing two-
photon absorption and generating a third harmonic with
near-infrared light. The problem of broad spectral widths
in vibrational population transfer in molecules is studied in
Sec. IV. Section V summarizes our findings.

II. CONSTRAINTS IN KROTOV’S METHOD

We briefly review optimization using Krotov’s method fol-
lowing Refs. [12,13,28]. An optimization problem is defined
in terms of the equation of motion,

d

dt
|ψ(t)〉 = − i

h̄
Ĥ[ε(t)]|ψ(t)〉, (1)
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and the optimization functional,

J [{ψk},ε] = JT [{ψk(T )}] + Ja[ε] + Jb[{ψk}], (2)

which consists of the target and additional constraints. Here JT

is the target functional, evaluated at final time T , and {ψk(t)}
are a set of state vectors which all fulfill Eq. (1). ε(t) represents
the control variable, e.g., the electric field of a laser pulse. The
additional constraints are assumed to depend either on the
control or on the states,

Ja =
∫ T

0
ga(ε,t)dt, (3)

Jb =
∫ T

0
gb({ψk},t)dt. (4)

We first present the optimization equations for the most
general form of ga(ε,t) preserving monotonic convergence
in Sec. II A, followed by a discussion of optimization under
state-dependent constraints gb({ψk},t) in Sec. II B.

A. Spectral constraints

We have recently shown that a monotonically converging
optimization algorithm is obtained if the constraint depending
on the control is formulated in terms of a positive semidefinite
kernel [13],

ga(ε,t) = 1

2π

∫ T

0
�ε(t)K(t − t ′)�ε(t ′)dt ′, (5a)

K̄(ω) � 0 ∀ ω, (5b)

where K̄(ω) is the Fourier transform of K(t − t ′). In this way,
one can enforce constraints which depend both on time and
frequency. Since the derivation of the update equation requires
evaluation of ∂ga

∂ε
as a function of time [28,29,32], the Fourier

transform of K̄(ω) should have a closed form in addition to
being positive semidefinite. An obvious choice is Gaussian
kernels,

K̄(ω) = λ0
a −

∑
j

λ
j
a

2

[
e
− (ω−ωj )2

2σ2
j + e

− (ω+ωj )2

2σ2
j

]
, (6a)

K(t − t ′) = 2πλ0
aδ(t − t ′)

−
∑

j

λj
a

√
2πσ 2

j cos[ωj (t − t ′)]e− σ2
j

(t−t ′)2
2 , (6b)

which come with the additional advantage of smoothness
which is desirable in view of numerical stability. For (ap-
proximately) nonoverlapping Gaussians in frequency domain,
monotonic convergence is obtained if

λj
a � 2λ0

a ∀ j �= 0. (7)

Note that we assume real pulses in Eq. (6a), which is why
the kernel is symmetric. An extension to complex pulses is
straightforward by mapping it to a real pulse on a time grid of
twice the size. The first term in Eq. (6b) reproduces the standard
choice for ga which minimizes the change in intensity [32] with
constant shape function. For λ

j
a > 0 (λj

a < 0), the kernel (6b)
implements a frequency pass (filter) for �ε(t) around the
frequencies ωj . Due to the condition (7), the strength of
frequency passes that still allows for monotonic convergence
is restricted. This reduces their effectiveness in practice, and
frequency passes should rather be enforced by expressing them
as a sum over many frequency filters. An amplitude constraint
with nonconstant shape function S(t) can be reintroduced
additively in time domain for λ

j
a < 0, setting λ0

a = 0. The
update equation for the control at iteration i + 1 for Gaussian
band filters and an additional amplitude constraint imposed by
a shape function λ0/S(t) is obtained as

ε(i+1)(t) = ε(i)(t) +
∑

j

λ
j
aS(t)

2πλ0

√
2πσ 2

j

∫ T

0
cos[ωj (t − t ′)] e− σ2

j
(t−t ′)2

2 [ε(i+1)(t ′) − ε(i)(t ′)]dt ′

+ S(t)

λ0
Im

{∑
k

〈
χ

(i)
k (t)

∣∣ ∂Ĥ
∂ε

∣∣ ψ (i+1)
k (t)

〉 + 1

2
σ (t)

∑
k

〈
�ψk(t)

∣∣ ∂Ĥ
∂ε

∣∣ψ (i+1)
k (t)

〉}
, (8)

where |�ψk(t)〉 is the change in state from iteration i to i + 1, i.e., |�ψk(t)〉 = |ψ (i+1)
k (t)〉 − |ψ (i)

k (t)〉.
The adjoint states {χk(t)} are subject to the same equations of motion, given by Eq. (1), as the {ψk(t)}, but their “initial”

condition is given at the final time T , i.e., they are propagated backward in time. The specific form of the initial condition is
determined by the final-time target, ∣∣χ (i)

k (T )
〉 = −∇〈ψk |JT

∣∣
{ψ (i)

k (T )}, (9)

which is evaluated using the forward-propagated states {|ψ (i)
k (T )〉}.

In the examples presented below, we assume the interaction with the control to be linear,

Ĥ[ε] = Ĥ0 + μ̂ε(t), (10)

and the target functional to be convex in the states. The latter allows for the choice σ (t) ≡ 0, and Eq. (8) reduces to

ε(i+1)(t) = ε(i)(t) + S(t)

λ0
Im

{∑
k

〈
χ

(i)
k (t)

∣∣ μ̂∣∣ψ (i+1)
k (t)

〉}

+
∑

j

λ
j
aS(t)

2πλ0

√
2πσ 2

j

∫ T

0
cos[ωj (t − t ′)] e− σ2

j
(t−t ′)2

2 [ε(j+1)(t ′) − ε(j )(t ′)]dt ′, (11)
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with the third term due to the spectral constraint. In order to
solve Eq. (11) which is implicit in ε(i+1)(t), we rewrite it as
a Fredholm integral equation of the second kind in �ε(t) =
ε(i+1)(t) − ε(i)(t),

�ε(t) = I (t) + γ

∫ T

0
K(t,t ′)�ε(t ′)dt ′. (12)

The inhomogeneity I (t) depends on the unknown states
{ψ (i+1)

k (t)}; cf. Eq. (11). We approximate them by calculating
�ε(t) without frequency constraints and solve the Fredholm
equation, mapped from the interval [0,T ] to [0,1], using the
method of degenerate kernels with triangularly shaped basis
functions [33,34]. This corresponds to writing KN (t,t ′) =∑N

j,k=0 αj (t)βk(t ′) for an N th-order approximation with

αj (t) =
{

1 − N
∣∣t − j

N

∣∣, j−1
N

� t � j+1
N

0 else,
(13)

with βj (t) = αj (t) and solving a system of linear equations,

[1N+1 − γ C] 	X = γ 	b, (14)

with matrix elements

Cjk =
n∑

i=0

K(tj ,ti)
∫ 1

0
αi(t)αk(t)dt ≡

n∑
i=0

K(tj ,ti)Aik,

where

Aik =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
3n

for i = k = 0 or i = k = n

2
3n

for i = k,1 � i � n

1
6n

for i = k + 1 or i = k − 1

0 else,

and

bk =
∫ 1

0
I (t)

[
n∑

i=0

K (tk,ti) αi (t)

]
dt.

The solution to Eq. (12) is then given by

�ε(t) = I (t) +
N∑

j=0

Xjαj (t), (15)

where Xj is the solution of Eq. (14).
To summarize, optimization in the presence of spectral

constraints proceeds in two steps: It requires forward (back-
ward) propagation of the states |ψk(t)〉 (adjoint states |χk(t)〉)
according to Eq. (1) and evaluation of the update, given by
Eq. (11), without the spectral constraint, i.e., λ

j
a = 0 for all j .

This yields the input for I (t) in Eq. (12) which is solved in the
second step.

B. State-dependent constraints

State-dependent constraints can be employed to optimize
a time-dependent expectation value or enforce the system to
stay within a subspace of the total Hilbert space [12]. It takes
the form

gb({ψk(t)},t) = λb

N∑
k=1

〈ψk(t)|D̂(t)|ψk(t)〉, (16)

where the dependence on the states is quadratic. We will
employ, in the examples below, D̂(t) = P̂allow. For this specific
choice, σ (t) in Eq. (8) can be set to zero, and the update for
the control is again given by Eq. (11), possibly with λ

j
a = 0

for all j . Any other choice of D̂(t) requires nonzero σ (t) and
use of Eq. (8) as discussed in Ref. [28].

A state-dependent constraint does not only affect the update
equation for the control via σ (t), but also the equation of
motion for the adjoint states which follows from the first-
order extremum condition on the optimization functional [12].
When evaluating the derivatives, an additional dependence of
the optimization functional on the states due to gb yields an
additional term in the equation of motion. The corresponding
inhomogeneous Schrödinger equation reads

d

dt
|χ (t)〉 = − i

h̄
Ĥ[ε(t)]|χ (t)〉 + λbP̂allow|ψ(t)〉. (17)

It is evaluated for the “old” control, ε(i)(t), and the “old”
state, |ψ (i)(t)〉, and can be solved by a modified Chebychev
propagator [35].

To summarize, optimization in the presence of state-
dependent constraints requires forward propagation of the
states |ψk(t)〉 according to Eq. (1), solution of an inho-
mogeneous Schrödinger equation, given by Eq. (17), for
the backward propagation of the adjoint states |χk(t)〉, and
evaluation of the update, given by Eq. (11).

III. CONTROL OF NONRESONANT
TWO-PHOTON ABSORPTION

We compare Krotov’s method using a spectral constraint
and using a state-dependent constraint to maximize the
nonresonant two-photon absorption in sodium atoms. Our
model,

Ĥ[ε] =
∑

j

ωj |j 〉〈j | + ε(t)
∑
i �=j

μij |j 〉〈i|, (18)

is comprised of the levels |j 〉 = |3s〉, |4s〉 and |np〉 (n =
3, . . . ,8) and all |ns〉 → |n′p〉 dipole-allowed transitions. The
energies and dipole moments are taken from Ref. [36]. For
the spectral constraint, forward and backward propagation
involve solution of the standard time-dependent Schrödinger
equation, given by Eq. (1), which is carried out by a Chebychev
propagator [37]. In contrast, for the state-dependent constraint,
an inhomogeneous Schrödinger equation [cf. Eq. (17)] governs
the backward propagation. It can be solved with a modified
Chebychev propagator [35] which is most efficient when
high accuracy is desired. Here, we simply utilize a zeroth-
order approximation as discussed in Ref. [12]: We calculate
exp[iĤ�t]|χ (ti)〉 by diagonalization of the Hamiltonian with
the time dependence evaluated at ti + �t and assumed
constant over �t . The inhomogeneous term in Eq. (17)
is approximated by λb/2[P̂allow|ψ(ti)〉 + P̂allow|ψ(ti+1)〉]. We
use 4096 time grid points, ensuring a sufficiently small �t for
the approximation to be valid. The guess pulse is chosen to be
Gaussian centered around the two-photon transition frequency,
ω3s,4s/2. The shape function, S(t) in Eq. (8), takes the form
S(t) = sin2(πt/T ).

We consider two different targets to maximize population
in |4s〉 and in (|3s〉 + |7p〉) /

√
2. The |7p〉 state is reached
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FIG. 1. Transition probability landscape for nonresonant two-
photon absorption (〈4s|4s〉, top) and harmonic generation
(2Re [〈7p|3s〉], bottom) for transform-limited 50 fs Gaussian pulses,
parametrized by Eq. (19).

from the ground |3s〉 state by a (2+1) transition via the
|4s〉 state using near-infrared photons [23,38,39]. The tar-
get (|3s〉 + |7p〉) /

√
2 yields a maximum transition dipole

between |3s〉 and |7p〉 and thus corresponds to maximizing
harmonic generation of ultraviolet light [40].

The constraints are necessary since two obvious control
strategies are available—resonant two-color one-photon tran-
sitions with frequencies ω3s,3p and ω3p,4s or off-resonant
two-photon transitions with frequencies close to ω3s,4s/2. This
is illustrated by Fig. 1 which displays the two figures of
merit, i.e., population of |4s〉 and maximum coherence on the
|3s〉 → |7p〉 transition at the end of the pulse, as a function of
one-photon and two-photon amplitudes. The visualization of
the control landscape is based on parametrizing the field by

E(t) = e
− (t−T )2

2τ2 {E1[cos(ω3s,3pt) + cos(ω3p,4s t)]

+E2 cos(ω3s,4s t/2)}. (19)

The two different solutions, i.e., resonant one-photon tran-
sitions and nonresonant two-photon transitions, are clearly
visible in the upper panel of Fig. 1. A possible solution to
achieving maximum population in |4s〉 is a two-photon π

pulse [41]. For one-photon transitions, this requires equal Rabi
frequencies on both transitions [41]. Since the transition dipole
moments for the |3s〉 → |3p〉 and the |3p〉 → |4s〉 transitions
are fairly similar, this condition can almost be fulfilled even
by identical E1 on both transitions, as assumed in Eq. (19).
Correspondingly, a series of dark shaded regions is found
in Fig. 1 for E2 = 0, for a two-photon π pulse, 3π pulse
and 5π pulse. The population of |4s〉 becomes smaller as E1

is increased. This is due to the dynamic Stark shift getting
larger and shifting the transition off-resonance. Analogously
to the series of dark shaded regions as a function of E1 for
E2 = 0, a similar series is found as a function of E2 for
E1 = 0. The amplitude for a nonresonant two-photon π pulse
with a duration of 50 fs corresponds to E2 = 0.00201 a.u.
Since our parametrization allows only for transform-limited
pulses, population transfer is not complete at this value of E2.
This is again due to the large dynamic Stark shift. It can be
compensated by chirping the pulse [21] but, for the sake of
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FIG. 2. Control of nonresonant two-photon absorption:
Optimized spectra with (b),(d) and without (a),(c) bandwidth
constraint (λ0 = 400 left, λ0 = 1000 right). The bandwidth
constraint consists of filters at ω3s,3p , ω3p,4s , 3ωL, and 5ωL (where
ωL = ω3s,4s/2) with σi = 0.004 a.u. and λi

a = 106 ∀i.

a simple pulse parametrization that allows for visualizing the
control landscape in terms of two parameters, we only analyze
transform-limited pulses. Another reason for the population in
|4s〉 to be smaller than one is population leakage to |7p〉 since
the transition energy ω4s,7p is very close to ω3s,4s/2. When
both E1 and E2 are nonzero, the purely one-photon and purely
two-photon solutions are smoothly connected by pulses which
contain both spectral components. The lower panel of Fig. 1
illustrates that the solution to maximizing coherence on the
|3s〉 → |7p〉 transition is less obvious.

We discuss now how the spectral constraints can be used
to steer the optimization pathway in the control landscape
shown in the upper panel of Fig. 1. Our guess pulse is of the
form (19) with E1 = 0, E2 = 0.0005 a.u., and a pulse duration
of 50 fs. For this guess pulse, there are two possible pathways:
increasing the intensity to obtain a two-photon solution, i.e.,
moving along the E2 axis, or adding new frequencies to the
pulse to obtain the resonant |3s〉 → |3p〉 and |3p〉 → |4s〉
transitions, i.e., moving along the E1 axis. Once the guess pulse
is fixed, the only free parameter in the standard Krotov method
is λ0, which determines the step size for changes in the control;
cf. Eq. (11). For this simple example, it turns out that the choice
of λ0 is sufficient to steer the optimization pathway in one of
the two possible directions (cf. Fig. 2): A small value of λ0

allows for finding the two-photon solution, i.e., no peaks at the
one-photon frequencies, ω3s,3p = 16 956 cm−1 and ω3p,4s =
8766 cm−1, are observed in Fig. 2(a), whereas for a large
value of λ0, these peaks are present [cf. Fig. 2(c)]. Figure 3
displaying the population dynamics under the optimized fields
of Fig. 2 confirms this interpretation: The |3p〉 state is
populated significantly at intermediate times in Fig. 3(c). A
small value of λ0 is, however, not very useful in general since
it often leads to “exotic” solutions with spurious peaks at
harmonics of the laser frequency, such as the peaks at 3ωL and
5ωL in Fig. 2 (the latter being outside of the figure’s scale).
In our simple example, these peaks can simply be removed
from the spectrum without compromising the figure of merit
or affecting the population dynamics. However, as we show
below, this is not always the case. The solution is then an
increase in λ0, but this implies that any capability of steering
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FIG. 3. (Color online) Control of nonresonant two-photon
absorption: Population dynamics under the optimized fields (b),(d)
with and (a),(c) without bandwidth constraint (λ0 = 400 left, λ0 =
1000 right) as shown in Fig. 2.

the optimization pathway in the algorithm without additional
constraints is lost.

The situation changes when the spectral constraint is
included in the optimization functional; cf. Figs. 2(b) and 2(d).
No matter what the value of λ0 is, a pure two-photon solution is
found. Additionally, the spurious peaks at the higher harmonics
can be suppressed by adding a filter at the corresponding
frequencies. The nonresonant character of the excitation is
confirmed by Figs. 3(b) and 3(d), where almost no population
in |3p〉 is observed. Moreover, the population leakage to higher
|p〉 states is slightly smaller in Figs. 3(b) and 3(d) than in
Figs. 3(a) and 3(b).

The enhanced functionality of Krotov’s method including
spectral constraints comes at a price. This is illustrated by
Fig. 4, which shows how the final-time target JT functional
approaches its optimum, JT = 1. Independently of the value
of λ0, more iterations are required when the spectral con-
straint, which makes the control problem harder, is included.
However, the increase in the number of iterations is very
moderate. The actual additional computational cost due to the
spectral constraint depends on the complexity of the quantum
system. In the current example, the forward and backward
propagations are numerically very inexpensive. The solution
of the Fredholm equation (12) then represents a significant
computational overhead [13]. However, for complex quantum
systems, propagation of the states and adjoint states requires
by far most of the numerical effort, and the additional cost of
solving the Fredholm equation becomes negligible. Figure 4
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FIG. 4. (Color online) Convergence toward the optimum with
and without spectral constraint for two-photon absorption and two
different optimization step sizes.
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FIG. 5. (Color online) Control of two-photon absorption:
(a)–(c) Spectra and (d)–(f) population dynamics for optimization with
(b),(e) spectral, (c),(f) state-dependent, and (a),(d) no constraint for a
50 fs guess pulse with E2 = 0.0005 a.u., λ0 = 1000, and λbT = −1.
The same filters and λi

a for the spectral constraint as in Fig. 2 and the
same color coding for the population dynamics as in Fig. 3 are used.

also shows a faster convergence for a smaller value of λ0. This
is not surprising since a smaller value of λ0 implies a larger
change in the control; cf. Eq. (11).

The control strategy using resonant two-color one-photon
transitions populates the |3p〉 state; cf. Fig. 3(c). Alternatively
to employing a spectral constraint, it should therefore be
possible to enforce a nonresonant two-photon solution with
a state-dependent constraint that suppresses the population of
|3p〉 at any time. To this end, we define the allowed subspace
to be spanned by |3s〉 and |4s〉 and maximize population in
this subspace for all times using a state-dependent constraint.
Figure 5 compares optimization of two-photon absorption
without any additional constraint [Figs. 5(a) and 5(d)] to
that with the spectral constraint used before [Figs. 5(b)
and 5(e)] and the state-dependent constraint just defined
[Figs. 5(c) and 5(f)]. The peak amplitude of the initial Gaussian
guess pulse corresponds to a two-photon π/4 pulse. Both
optimizations with an additional constraint avoid population
of the |3p〉 state completely; cf. the green lines in the lower
part of Fig. 5. Correspondingly, the one-photon peaks at
ω3s,3p = 16 956 cm−1 and ω3p,4s = 8766 cm−1 are missing
in the spectrum obtained with the state-dependent constraint
in Fig. 5(c). However, only the spectrum obtained with
the spectral constraint in Fig. 5(b) corresponds to a pure
two-photon solution. This observation emphasizes that one
should use a mathematical formulation of the constraint that
best captures the physical goal, in our case the nonresonant
two-photon solution.

Maximizing the |3s〉 → |7p〉 transition dipole represents
a somewhat harder optimization problem than maximizing
two-photon absorption, and transform-limited pulses are not
sufficient to approach the optimum; cf. the lower panel of
Fig. 1. The difficulty of the optimization problem is reflected
in the fact that optimization without any additional constraint
always yields spectra that contain the one-photon peaks at
ω3s,3p = 16 956 cm−1 and ω3p,4s = 8766 cm−1; cf. the upper
panel of Fig. 6. This is true even for very large values of λ0, up
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FIG. 6. (Color online) Control of harmonic generation: Spectrum
and population dynamics for optimization (c),(d) with and (a),(b)
without spectral constraint for λ0 = 400 and a 50 fs guess pulse with
E2 = 0.00201 a.u. The same filters and λi

a as in Fig. 2 are used.

to 100 000, that imply a very cautious search in small steps.
The one-photon character of the transition is confirmed by the
large population of |3p〉, up to 70% at about t = 50 fs, shown in
Fig. 6(b). In addition to the two-photon and one-photon peaks,
a peak at 3ωL is also observed in the upper panel of Fig. 6.
This spectral component is spurious with little influence on
the population dynamics. The broad spectrum of Fig. 6(a) is in
contrast to that obtained by optimization under the spectral
constraint which yields a perfect nonresonant two-photon
solution [cf. Fig. 6(c)], demonstrating the effectiveness of the
spectral constraint. In both cases, the |3s〉 state is completely
depleted and later refilled; cf. the black lines in Figs. 6(b)
and 6(d).

The effect of a state-dependent constraint is studied in
Fig. 7 for increasing weight of the constraint, λbT . The
allowed subspace is now defined as {|3s〉,|4s〉,|7p〉}. As in-
dicated by the very different population dynamics observed in
Figs. 7(d)–7(f), the optimization identifies very different
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FIG. 7. (Color online) Control of harmonic generation with a
state-dependent constraint: (a)–(c) Spectra and (d)–(f) population
dynamics for optimization with (a),(d) λbT = −0.5, (b),(e) λbT =
−1.0, and (c),(f) λbT = −1.5, and a 50 fs guess pulse with E2 =
0.000 201 a.u., λ0 = 400.
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FIG. 8. (Color online) Convergence toward the optimum with
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for (a) two-photon absorption and (b) harmonic generation. The
parameters in (a) correspond to those of Fig. 5; the parameters in
(b) correspond to those of Fig. 7.

solutions when changing the weight of the constraint. How-
ever, the corresponding spectra are very complex, i.e., none
of these solutions resemble the simple spectrum obtained
by optimization with the spectral constraint; cf. Fig. 6(c).
Increasing the weight λbT leads to larger widths of each of
the spectral peaks, with the optimized spectrum for the largest
value of λbT containing also a peak at 5ωL [not shown on the
scale of Fig. 7(f)]. Although the two-photon peak is central for
the population dynamics (cf. the red lines in the lower part of
Fig. 7), the contribution of the additional peaks is needed to
realize the desired population transfer.

The convergence behavior of the optimization algorithm
for maximizing two-photon absorption (upper panel) and
maximizing the transition dipole of the |3s〉 → |7p〉 transition
(lower panel) is shown in Fig. 8, comparing spectral (red
dashed line), state-dependent (green dotted and dash-dotted
lines), and no (black solid line) constraint. Not surprisingly,
restricting the search by additional constraints increases the
number of iterations to reach a prespecified value of the
target functional. Which of the constraints, spectral or state
dependent, requires more iterations depends on the weights λi

a

and λbT . The dotted and double-dot-dashed green curves in
Fig. 8(b) reach 1 − JT = 10−3 after 347, respectively 3146,
iterations. This illustrates that too large a value of the weight
can lead the algorithm to become stuck. For both constraints,
the additional numerical effort is not only due to a larger
number of iterations. While the Fredholm equation (12) needs
to be solved for the spectral constraint as discussed above,
the state-dependent constraint requires backward propagation
with an inhomogeneous Schrödinger equation; cf. Eq. (17).
Since the latter requires more applications of the Hamiltonian
than propagation for a regular Schrödinger equation [35],
the numerical effort due to the inhomogeneity increases with
system complexity. This is in contrast to the spectral constraint
where the additional effort due to the constraint is independent
of the system complexity and depends only on the number of
points used in the time discretization. This represents another
important advantage of the spectral constraint approach.
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IV. CONTROL OF VIBRATIONAL
POPULATION TRANSFER

We apply Krotov’s method using a spectral constraint to
a second example, i.e., vibrational population transfer in Rb2

molecules. Our model accounts for the 32 lowest vibrational
levels in each of two electronic states: the X1�+

g ground state
and the (1)1�+

u electronically excited state. The details of the
model are found in Ref. [12]. The time-dependent Schrödinger
equation for the forward and backward propagation, given by
Eq. (1), is solved using a Chebychev propagator [37] and
16 384 time grid points. The guess pulse is chosen to be
Gaussian centered around the frequency of the X1�+

g (v =
0) → (1)1�+

u (v′ = 10) transition, and the shape function is
the same as in Sec. III.

The optimization goal consists of driving population from
v = 10 to v = 0, both in the electronic ground state, using
Raman transitions via the electronically excited state. This
type of population transfer is known to yield optimized
pulses with very broad spectra [14,31]. We therefore apply
a spectral constraint to see whether solutions with more
favorable spectra exist and can be identified. Obviously, a
state-dependent constraint is of no use in this context, since
the many spectral components are not easily connected to
specific levels that could then be assigned to the forbidden
subspace.

The results of optimization with and without spectral
constraint are shown in Fig. 9 for a Gaussian guess pulse
with central frequency ωL = 11 127 cm−1, corresponding to
the transition frequency ωv=0,v′=10, peak amplitude E0 =
10−4 a.u. and pulse duration of 960 fs. In addition to the
peak of the guess pulse and an obvious peak at ωv=10,v′=10 =
10 565 cm−1, the spectrum obtained by optimization without
constraint contains peaks at 9440 cm−1, 10 000 cm−1, and
11 676 cm−1; cf. Fig. 9(a). These peaks are not spurious: When
removed from the pulse, the population in the target level v = 0
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FIG. 9. (Color online) (a),(c) Spectra and (b),(d) population
dynamics for vibrational Raman transfer in Rb2 molecules from
v = 10 to v = 0 optimized (c),(d) with and (a),(b) without spectral
constraint using λ0 = 1000. The bandwidth constraint consists of
filters at 9440 cm−1, 10 000 cm−1, and 11 676 cm−1 with σi =
220 cm−1 and λi

a = 105 ∀i. The green dot-dashed lines in (b),(d)
represent the population in v = 0 for pulses where all spectral
amplitude outside the interval indicated by the vertical green lines
in (a),(c) was removed.

is reduced by more than 10%; cf. the red dashed and green
dot-dashed lines in Fig. 9(b). When using the new algorithm
with filters at those frequencies, the spectral amplitudes are
largely reduced. Their influence on the population dynamics
is negligible, as seen by the red dashed and green dot-dashed
lines in Fig. 9(d), which are nearly indistinguishable.

This example demonstrates the effectiveness of the spectral
constraint for a system which is too complex to guess a simple
solution to the control problem. Indeed, optimization with
and without spectral constraint yields distinct solutions with
different spectral properties.

V. CONCLUSIONS

We have shown how additional constraints can be used in
quantum optimal control to steer the optimization pathway
towards one desired solution out of several possible ones.
We have considered nonresonant excitation of atoms and
vibrational Raman transfer in molecules. In order to enforce
nonresonant absorption, both a spectral constraint and a state-
dependent constraint are effective in suppressing resonant
excitation pathways. However, only the spectral constraint
yields simple spectra without spurious peaks. For vibrational
population transfer using Raman transitions, the spectral
constraint allows for finding solutions with minimal spectral
support. This is in contrast to unconstrained optimization
which yields spectra consisting of several peaks that are all
relevant for reaching the final-time target. There also exist
control problems where the state-dependent constraint repre-
sents the best-suited approach, for example when avoiding
population transfer to states that are resonant with the main
pulse frequencies [12]. In this case, the spectral constraint
would not be helpful. In all of these examples, the additional
constraint allows for identifying different control strategies
than those obtained by unconstrained optimization. A similar
conclusion is reached by a related investigation of the control
of molecular orientation using state-dependent and time
constraints [42].

Both constraints imply a larger numerical cost than the
standard optimization without additional constraints. They
lead to a moderate increase in the number of iterations
required to reach a prespecified value of the final-time target.
This reflects that a constrained control problem is harder to
solve. Moreover, the spectral constraint requires solution of
an implicit integral equation for the change in the control,
whereas an inhomogeneous Schrödinger equation needs to be
solved when using the state-dependent constraint. Notably,
the additional numerical effort for the spectral constraint is
independent of system size and depends only on the number
of points used in the time discretization.

In summary, most quantum control problems provide many
solutions. In order to select the “best” solution, it is crucial to
employ a mathematical formulation of additional constraints
that closely captures the physical desiderata. Spectral con-
straints represent a particularly important class of constraints
since the pulse bandwidth in any experiment is necessarily
finite. Moreover, smooth spectra with minimal support are
typically associated with more robust solutions. A possible
connection between spectral constraints and robustness of the
control will be the subject of future work.
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