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The efficient initialization of a quantum system is a prerequisite for quantum technological applications. Here
we show that several classes of quantum states of a harmonic oscillator can be efficiently prepared by means of a
Jaynes-Cummings interaction with a single two-level system. This is achieved by suitably tailoring external fields
which drive the dipole and/or the oscillator. The time-dependent dynamics that leads to the target state is identified
by means of optimal control theory (OCT) based on Krotov’s method. Infidelities below 10−4 can be reached for
the parameters of the experiment of Raimond, Haroche, Brune and co-workers, where the oscillator is a mode
of a high-Q microwave cavity and the dipole is a Rydberg transition of an atom. For this specific situation we
analyze the limitations on the fidelity due to parameter fluctuations and identify robust dynamics based on pulses
found using ensemble OCT. Our analysis can be extended to quantum-state preparation of continuous-variable
systems in other platforms, such as trapped ions and circuit QED.
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I. INTRODUCTION

Control of the quantum dynamics of physical systems lies
at the core of quantum technological applications. A key
issue is the initialization of nonclassical states which requires
a sufficiently high fidelity to permit efficient information
processing. In this context, protocols based on quantum
optimal control theory [1,2] have been acquiring increasing
relevance. This is due to the flexibility of the approach, which
allows for implementing almost arbitrary dynamics [3–5] over
relatively short time scales; see Refs. [6–9] for a few examples.

Here we apply optimal control theory (OCT) based on
Krotov’s method [10–12] to the efficient preparation of the
quantum state of a harmonic oscillator, which interacts for a
fixed time with a dipolar transition. The dipolar transition
is quasiresonant with the oscillator frequency and couples
to it via a Jaynes-Cummings type of dynamics [13]. This
coupling renders the harmonic oscillator controllable. With
the proper sequence of pulses, it is possible to perform any
desired unitary transformation on the Hilbert space spanned
by the dipole states together with the lowest n energy levels of
the oscillator [14–16]. Specific implementations of algorithms
based on OCT of the Jaynes-Cummings dynamics include
quantum state preparation of a trapped ion’s center of mass
motion [17,18] and of superconducting circuits [19,20]. Here,
we focus on quantum-state preparation of the electromagnetic-
field mode of a high-finesse microwave resonator via the
interaction with a transition of a Rydberg atom. Our purpose
is to theoretically analyze the efficiency of quantum-state
preparation of a class of nonclassical states, which have been
often discussed in the literature. The efficiency of most of the
proposed protocols for these states is limited by the onset
of decoherence and by the fact that, in some cases, they
are based on projective measurements. It is thus desirable
to identify generic procedures for identifying deterministic
protocols which can be realized over sufficiently fast times to
avoid the detrimental effect of decoherence. We address these
issues by developing optimal-control-based protocols.

Our theoretical analysis makes specific reference to the
setup of the experiment of Raimond, Haroche, Brune and
co-workers [21,22]. The elements of the experiment which
are relevant to our study are schematically illustrated in
Fig. 1: A mode of the electromagnetic field is driven by the
dipolar transition between two circular Rydberg states of an
atom flying through the resonator. Atom and microwave field
mode undergo a textbook realization of the Jaynes-Cummings
dynamics [13,22]. A fixed interaction time is set by selecting
the atom’s velocity. To this setup we add the control tools,
which are classical fields driving the atomic transition and/or
the cavity mode. The specific shape of the fields is determined
by OCT using Krotov’s method. Our target is the realization
of specific quantum states of the resonator with fidelities
exceeding 0.9999 (and correspondingly infidelities below
10−4).

The time-dependent Hamiltonian we optimize has first been
analyzed by Law and Eberly [14] specifically for arbitrary
control of the mode of a quantum electromagnetic field.
They proposed a procedure based on a sequence of unitary
transformations, in which only one coupling element of the
Hamiltonian acts at a time. This protocol has the asset of
offering physical insight into the dynamics one needs to shape
and serves as initial guess to our search. Our procedure,
and optimal control in general, goes nevertheless beyond
this intuitive procedure, as it simultaneously considers all
processes driving the system and thus exploits interference
among them. Analysis performed with superconducting cir-
cuits demonstrate its better performance over Law-Eberly type
of schemes [23].

The article is organized as follows. Section II introduces
the Hamiltonian and the optimization algorithm. Specifically,
we discuss the functional which is minimized by means of
OCT and the different classes of target states. The results
for quantum-state preparation are presented in Sec. III.
We show how experimental uncertainties and noise can
be accounted for in Sec. IV and draw our conclusions
in Sec. V.
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(a) (b)

FIG. 1. (Color online) Scheme of the considered experimental
setup. (a) The field of a high-finesse microwave cavity C is prepared
in an arbitrary quantum state by means of the interaction with
a quasiresonant dipolar transition of a circular Rydberg atom,
schematically shown in (b). The arbitrary superposition of atomic
states |e〉 and |g〉 is prepared in B. The atom then crosses C with a fixed
velocity, defining the interaction time. The target field state is reached
with high fidelity by a suitably tailored time-dependent dynamics
identified by means of OCT. The latter delivers the time-dependent
form of the electric fields driving the atom, at coupling strength �(t),
and the cavity, at strength η(t), that efficiently drive the cavity mode
into the target state.

II. MODEL

The physical system we consider is a harmonic oscillator
that is coupled to a quasiresonant two-level transition (dipole)
by a Jaynes-Cummings type of interaction. Our objective is to
prepare the harmonic oscillator in a specific desired state at
the end of a fixed interaction time τ with the dipole. This is
achieved by means of optimized electric fields, which couple
either to the atom via a side propagation through the cavity,
and/or to the cavity via a diffraction on the mirror edges or
surface defects.

A. Time-dependent Hamiltonian

Let ωf be the frequency of the oscillator and a,a† the
annihilation and creation operators of an oscillator excitation,
with [a,a†] = 1. We denote by |n〉 the number-state basis of
the harmonic oscillator, with n = 0,1,2, . . ., such that a|n〉 =√

n|n − 1〉 for n > 1 and a|0〉 = 0. The oscillator couples to
a dipolar transition at frequency ωa with ground state |g〉 and
excited state |e〉, as illustrated in Fig. 1(b). The dynamics is
generated by the time-dependent Hamiltonian H (t),

H (t) = H0 + Hc(t). (1)

Here, H0 is the Jaynes-Cummings Hamiltonian, which governs
the coupled oscillator-atom dynamics in absence of external
drives. It reads

H0 = �ωf a†a + �ωa

σz

2
+ �

g

2
(a†σ + σ †a), (2)

with σz the Pauli operator for the dipole pseudospin and
g the vacuum Rabi frequency, determining the strength of
the coupling between oscillator and dipole. For ωa = ωf the
eigenstates of the Jaynes-Cummings Hamiltonian (2) are the
dressed states |±,n〉, which read

|±,n〉 = (|g,n + 1〉 ± |e,n〉)/
√

2, (3)

with eigenvalues E±,n = �(nωf ± g
√

n). The coupling be-
tween dipole and oscillator thus gives rise to an anharmonic
spectrum of excitations of the composite system.

The Hamiltonian Hc(t) contains the coupling to the external
fields which can induce a time-dependent Stark shift �(t)
on the dipolar transition. It can also quasiresonantly drive
the atomic transition and cavity mode with time-dependent
strengths �(t) and η(t), respectively:

Hc = ��(t)
σz

2
+ �

�(t)

2
(e−i(φl (t)+ωl t)σ † + H.c.)

+ �
η(t)

2
(e−i(φp(t)+ωpt)a† + H.c.). (4)

The pulses driving cavity and atom have carrier frequencies
ωp and ωl , respectively, with corresponding phases φp and φl .
To reduce the numerical effort, we employ a frame that rotates
with the oscillator frequency. The total Hamiltonian then reads

H ′(t) = �(ωa − ωf + �(t))
σz

2
+ �

g

2
(a†σ + σ †a)

+ �

(
�̃(t)

2
σ † + η̃(t)

2
a† + H.c.

)
, (5a)

with complex-valued controls

�̃(t) = �(t)e−i(ωl−ωf )t e−iφl (t), (5b)

η̃(t) = η(t)e−i(ωp−ωf )t e−iφp(t). (5c)

Equation (5a) accounts for an imposed time-dependent Stark
shift of the atomic transition, which is generated by a pulse
of amplitude ϑ(t). We report it for completeness, since the
realizations we consider here will not implement this latter
kind of pulse.1

We seek to identify optimized time dependences of the
classical fields which efficiently lead to the preparation of a
target state of the oscillator, denoted by |
target〉, starting from
a well-defined initial state |φ(0)〉 of oscillator and dipole. In
particular, we will assume that the oscillator is initially in the
ground state |
(0)〉 = |0〉, whereas we take the atom to be in
the most convenient state |�a(0)〉, depending on the target.
The initial state thus reads

|φ(0)〉 = |�a(0)〉 ⊗ |0〉, (6)

where |�a(t = 0)〉 = α|g〉 + β|e〉, with α = cos θ, β =
eiφ sin θ , and φ,θ ∈ R. The desired state at time t = τ has
the form

|φ(τ )〉 = |�a(τ )〉 ⊗ |
target〉, (7)

where we do not impose any constraint on the atomic state
|�a(τ )〉, except for the fact that atom and cavity must be
disentagled at time t = τ .

1These pulses can take the form �(t) = ϑ2(t)/δ where ϑ(t) is the
slowly varying amplitude of a third external field coupling state
|g〉 to an auxiliary state |h〉 at detuning |δ| � | maxt [ϑ(t)]|. In the
experiment of Raimond, Haroche, Brune and co-workers this can be
more simply realized by using the differential Stark effect in a static
electric field.
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B. Optimal control theory

In order to determine the classical controls which transfer
state (6) into state (7) by the unitary time evolution that is
generated by Hamiltonian (5a), we minimize the functional J ,
which is composed of two terms:

J = Jτ +
∫ τ

0
Jt [ϑ(t),�̃(t),η̃(t)] dt. (8)

The first term on the right-hand side is the final time functional
which corresponds to the infidelity, i.e., the difference between
unity and the fidelity for obtaining the target state |
target〉,

Jτ = 1 − 〈
target|Tra[U (τ )ρ(0)U †(τ )]|
target〉. (9)

Here, U (τ ) = T {exp[−i
∫ τ

0 dtH (t)]} is the unitary evolution
operator generated by H (t) in Eq. (1), with T being the time-
ordering operator, while ρ(0) denotes the initial state of the
total system, ρ(0) = |φ(0)〉〈φ(0)|, and Tra is the partial trace
over the dipolar degrees of freedom. The presence of the partial
trace indicates that the fidelity for reaching the cavity target
state is optimized regardless of the dipole final state. This
ideally requires the dipole to be disentagled from the oscillator
at time t = τ .

The second term in Eq. (8) is the intermediate-time
functional. It explicitly depends on the controls ϑ(t) [i.e.,
the field that generates the detuning �(t)], �̃(t), and η̃(t).
A convenient choice corresponds to minimizing the change of
the controls with respect to reference fields [5],

Jt [ϑ(t),�̃(t),η̃(t)] = λϑ

Sϑ (t)
[ϑ(t) − ϑref(t)]

2

+ λ�̃

S�̃(t)
[�̃(t) − �̃ref(t)]

2

+ λη̃

Sη̃(t)
[η̃(t) − η̃ref(t)]

2. (10)

Here, Sϑ (t), S�̃(t), and Sη̃(t) are shape functions to ensure
a smooth switch on and off of the control fields at times
t = 0 and t = τ . Unless specified otherwise, we take them
to be sin2(πt/τ ), allowing maximum flexibility for shaping
ϑ(t), �̃(t), and η̃(t). The parameters λϑ , λ�̃, and λη̃ represent
weights that govern the step size of the optimization, and
ϑref(t), �̃ref(t), and η̃ref(t) are reference fields. A good choice
takes the references fields to be the controls obtained from the
previous step of the iterative optimization. This ensures that
Jt tends to zero as the optimum is approached such that the
value of the total functional J close to the optimum is solely
determined by the final-time part Jτ [5].

An optimization problem is completely specified in terms of
the optimization functional, equations of motion, and coupling
to the controls [12]. Based on these ingredients, Krotov’s
method allows for deriving an optimization algorithm that,
in the continuous-time limit, guarantees monotonic conver-
gence [10]. It consists in the coupled control equations which
need to be solved iteratively. An implementation of Krotov’s
method is found for example in the spin dynamics software
SPINACH [24,25]. In our example the linear version of Krotov’s
method is sufficient for obtaining a monotonically convergent
algorithm, since we deal with linear equations of motion, with
an intermediate-time functional that is independent of the state

of the system, and with a final-time functional that depends
only linearly on the state of the system [12]. The update
equation for the control, exemplarily given for �̃(t), reads

�̃(i+1)(t) = �̃(i)(t) + S�̃(t)

λ�̃

× Im

{
〈χ (i)(t)|∂H

∂�̃

∣∣∣∣
�̃(i+1)(t),ϕ(i+1)(t)

|φ(i+1)(t)〉
}
,

(11)

where i denotes the iterative step. The equations for η̃(t) and
ϑ(t) are completely analogous to Eq. (11). Calculating the im-
proved control �̃(i+1)(t) according to Eq. (11) requires forward
propagation of the state of the system |φ〉 under the “new” con-
trols, �̃(i+1)(t), η̃(i+1)(t), and ϑ (i+1)(t), and backward propaga-
tion of the so-called adjoint states |χ〉 under the “old” controls
�̃(i)(t), η̃(i)(t), and ϑ (i)(t). That is, |φ(i+1)(t)〉 and |χ (i)(t)〉 are
obtained as the solution of the Schrödinger equations

d

dt
|φ(i+1)(t)〉 = − i

�
H [ϑ (i+1)(t),�̃(i+1)(t),η̃(i+1)(t)]|φ(i+1)(t)〉

(12)
and

d

dt

∣∣χ (i)(t)
〉 = − i

�
H [ϑ (i)(t),�̃(i)(t),η̃(i)(t)]

∣∣χ (i)(t)
〉
. (13a)

For our specific choice of optimization functional and
Hamiltonian, the equation of motion for the adjoint state |χ〉,
Eq. (13a), turns out to be simply the standard Schrödinger
equation [12]. The initial condition for the backward propaga-
tion, at final time τ , is given by the derivative of the final-time
functional with respect to 〈φ|, evaluated at time t = τ :

|χ (i)(t = τ )〉 = −∇〈φ|Jτ ||φ(i)(t=τ )〉. (13b)

For Jτ in Eq. (8), it becomes

∣∣χ (i)(τ )
〉 =

∑
a

|a,
target〉〈a,
target|φ(τ )〉, (13c)

where the states |a〉 correspond to an orthonormal basis
of the dipole’s Hilbert space. Since Eq. (11) is implicit in
�̃(i+1)(t), the time grids for the states and for the controls are
shifted by �t/2 such that �̃(i+1)(t + �t/2) is obtained from
|φ(i+1)(t)〉 [5]. The iteration is started by choosing a guess
for each of the controls. The guess fields must be physically
sensible choices, otherwise the change in the control in Eq. (11)
may be very small and convergence correspondingly slow.

C. Targets

Our goal is to determine controls for the preparation of the
following classes of states of the harmonic oscillator, namely,
(i) Fock states of arbitrary number n,

|
target〉 = |n〉, (14)

(ii) Fock-state superpositions of the form

|
target〉 = |0〉 + |n〉√
2

with n > 1, (15)
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and (iii) even cat states such as

|
target〉 = |
+
cat〉 = |α〉 + | − α〉√

2(1 + e−2|α|2 )
, (16)

where |α〉 = e−|α|2/2 ∑
n αn/(

√
n!)|n〉 is a coherent state and α

a complex number. The restriction to these classes of states is
motivated by the possibility of comparing the efficiency and the
dynamics under the optimized controls to previous work which
employed protocols based on ingenious intuition of the key
elements leading to the desired target states [17,18,20,21,26–
30]. In this way we can acquire a better understanding of the
dynamics induced by the optimal control protocol we identify.

There are several physical platforms in which the dynamics
discussed here can be implemented. We focus on microwave
cavity quantum electrodynamics (QED), where the harmonic
oscillator is a mode of a high-finesse microwave resonator
and the dipole is a quasiresonant atomic transition between
two Rydberg states. The protocols that have so far been
implemented experimentally in microwave cavity QED are
based on the interaction of the cavity field with a beam
of atoms [21,31] and in several cases rely on projective
measurements. Our purpose is to develop protocols which
lead to the deterministic preparation of an arbitrary state of
the microwave field with a single atom.

Before presenting our results we recall existing proposals
for and implementations of the preparation of Fock states,
Fock-state superpositions, and Schrödinger cat states. Several
proposals for preparing the mode of a resonator in a Fock state
can be found in the literature; see, e.g., Refs. [21,26,30–36].
Fock states have been experimentally realized with the motion
of single trapped ions coupled via lasers to an ion internal
transition [28], with a high-Q mechanical resonator coupled
to superconducting circuits [19,20], in circuit QED [37],
and with the mode of a high-Q cavity coupling to a two-
level transition [31,35,36,38–48]. Fock-state superpositions,
cf. Eq. (15), have been deterministically created with super-
conducting circuits [19,20]. The ability to create such states is
required in order to prepare so-called NOON states of two
harmonic oscillators [49], which are relevant for quantum
metrology. Schrödinger cat states are popular in the literature
due to their peculiar nonclassical properties. Remarkable
experimental realizations have been reported in microwave
cavity QED [50,51], trapped ions [27,28,52], and most recently
with superconducting circuits [20].

The efficiency of most of these protocols is limited by the
onset of decoherence and by the fact that, in some cases,
they are based on projective measurements. It is thus desirable
to identify generic procedures for identifying deterministic
protocols which can be realized over sufficiently fast times to
avoid the detrimental effect of decoherence.

III. RESULTS

The time scale τ of the interaction is fixed in relation to the
experimental parameters. In detail, in the setup of the experi-
ment of Raimond, Haroche, Brune and co-workers [21,22], the
transition frequencies are ωa = ωf = 2π × 51 GHz, the cou-
pling strength (vacuum Rabi frequency) amounts to g = 2π ×
50 kHz. We choose here the interaction times to not exceed

10 ms, which justifies our assumption of unitary time evo-
lution, the atomic transition lifetime being 30 ms and the
cavity decay time 0.1 s. In particular, we analyze and compare
the efficiency of quantum-state preparation for two different
time scales: (i) the time scale of the atom-cavity interaction
determined by g, namely, gτ ∼ 1, such that τ ranges in the
interval τ ∼ 10–40 μs and (ii) the time scale corresponding
to gτ � 1, namely, τ = 10 ms. For such large time scales the
dressed states of the coupled atom-cavity system are spectrally
resolved up to a precision of the order of 2π × 0.1 kHz.

In order to understand the dynamics induced by the
optimized controls and identify the control mechanisms, we
analyze the ground- and excited-state populations of the
two-level system,

ρjj (t) = Tr{|φ(t)〉〈φ(t)||j 〉〈j |}, (17)

with j = e,g, the average photon number in the cavity

〈n〉φ(t) = 〈φ(t)|a†a|φ(t)〉, (18)

together with its standard deviation

�n =
√

〈n2〉φ(t) − 〈n〉2
φ(t), (19)

and the spectra of the optimized fields Iξ (ω) = |ξF (ω)|2, with

ξF (ω) = 1

2π

∫ τ

0
ξ̃ (t)e−iωtdt (20)

and ξ̃ (t) = �̃(t),η̃(t).

A. Fock states

We first consider the preparation of the oscillator in a Fock
state, Eq. (14), assuming that at t = 0 it is in the ground state.
The preparation of a number state with n = 1 follows a very
simple dynamics, solely determined by the Jaynes-Cummings
Hamiltonian H0 in Eq. (2) [14]. In fact, by preparing the atom
in the excited state and the cavity in the vacuum, the cavity will
end up in a single-photon n = 1 Fock state after the interaction
time τ = T0/2, with T0 = 2π/g. In general, provided that
the initial state is |e,n〉, the Jaynes-Cummings dynamics will
naturally let the system evolve to the state |g,n + 1〉 after the
time τ = (2m + 1)Tn/2, with m a natural number and

Tn = 2π/(g
√

n + 1). (21)

This concept requires control of the initial state and of the
interaction time, but no additional field. It is at the basis
of several protocols [17,18,29,30] for creating a Fock state
starting from the vacuum which is relatively simple to prepare.
In detail, the preparation of Fock states with n > 1 starting
from n = 0 can make use of external fields which perform π

pulses on the atom after one excitation has been transferred to
the resonator. The number of such pulses will correspond to n,
such that the interaction time τ � τn with τn = ∑n

j=0 Tj/2.
On the basis of this knowledge, we choose the initial state

of the atom to be |e〉 and analyze the pulses predicted by OCT
for the target state |n = 4〉 and an interaction time τ = 40 μs.
Note that for the value g = 2π × 50 kHz, the interaction time τ

we choose is of the same order of magnitude as τn. We assume
that only the atom is driven by an external field, i.e., η̃(t) = 0,
�(t) = 0, since this is relatively simpler to implement in the
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FIG. 2. (Color online) Preparation of the Fock state |n = 4〉 in
τ = 40 μs using OCT: (a) Amplitude of the pulse driving the atom,
�̃(t), as a function of time (in μs). The guess pulse (dashed line) is a
Gaussian with a maximal amplitude of E0 = 40 kHz and σ = 5 μs.
(b) Spectrum of the pulse, according to Eq. (20) [since �̃(t) = �(t)
is real, the spectrum is symmetric around 0, and we show only
the positive frequencies]. The other subplots show the temporal
dependence of (c) mean intracavity-photon number 〈n〉 (solid line)
and its standard deviation �n (dashed line) [cf. Eqs. (18) and (19)],
and (d) population of the atomic states ρgg (solid line) and ρee (dashed
line) [Eq. (17)]. The initial state is |e,0〉; the other parameters are
specified in the text.

setup of Ref. [21]. Moreover, amplitude control turns out to be
sufficient, i.e., we keep φl(t) = 0, and �̃(t) = �(t) is real.

Figure 2 displays the temporal (a) and spectral (b) behavior
of the pulse, which leads to a fidelity F = 1 − 3 × 10−5 for
reaching the target state. The driving field consists of a series
of pulses, whose effect on the dynamics of the composite
system can be inferred from Figs. 2(c) and 2(d). Figure 2(c)
displays the time evolution of the mean intracavity photon
number 〈n〉 and its standard deviation �n [cf. Eqs. (18)
and (19)]: The number of photons increases in a stepwise
manner, as in protocols based on Refs. [14,30], in which one
photonic excitation at a time is transferred to the cavity mode.
Correspondingly, the variance remains limited, and vanishes
exactly at t = τ . Figure 2(d) shows the populations of the
atom’s ground and excited states as a function of time t [cf.
Eq. (17)]: They oscillate according to the stepwise increase of
the photon number, performing a series of half Rabi cycles.
Thus, the protocol obtained numerically essentially follows
the analytical intuition: As in the proposal of Ref. [14] there
is only one active coupling at a time.

At this stage several comments are in order. First, by
testing other initial atomic states than |e〉, it turned out that
the choice of |e〉 leads to better fidelities for preparing Fock
states. The second comment concerns the interaction time.
Optimization delivers a pulse that maximizes the fidelity for the
specified interaction time. Times shorter than τ = 40 μs lead
to comparable efficiencies, as long as they are longer than τn.
Interaction times shorter than τn lead to inefficient dynamics:
the fidelity is drastically reduced. We have verified that this
is a fundamental limit by allowing for optimization of the

additional external fields η̃(t) and ϑ(t). These optimizations
confirmed that τn is the minimal time needed to transfer
one excitation to the cavity containing already n excitations.
These considerations are quite generic: We have tested them
for the preparation of other number states, n = 2 and n = 4,
yielding the same conclusion. Our analysis thus indicates that
τn is a good estimate of the quantum speed limit (namely,
the minimum time required to transfer a quantum state into
another, orthogonal state [53]) for transferring the vacuum to
the Fock number state |n〉. This result, moreover, attests to the
ability of OCT to identify the quantum speed limit in cases
where an analytical estimate is not possible [7].

We have also verified that it is possible to create other
number states with infidelities of the order of 10−5 using OCT
and solely by means of a time-dependent drive on the atom
with real amplitude. We note, moreover, that as there are many
possible solutions for the shape of the atom pulse, the choice of
the guess pulse influences the form of the optimized pulse but
not the final infidelity. The preparation of the Fock state n = 1
is peculiar since in principle it requires no external control, as
the Jaynes-Cummings Hamiltonian naturally drives the atom
from the excited to the ground state by emitting a photon into
the resonator with a half Rabi cycle at the interaction time τ1.
Nevertheless, also in this case and for the same interaction time
we find time-dependent dynamics based on external pulses,
whose maximum fidelity is the same as the one obtained
for the Jaynes-Cummings dynamics without external fields.
This property is not surprising [54], and reflects a landscape
with several possible optimization. We note, in particular, that
the solution with no external field can be indeed recovered
by OCT, introducing a cost functional that minimizes the
integrated pulse energy. Such a cost functional, however, leads
to inefficient dynamics for the preparation of Fock states with
n > 1 as well as for the preparation of other classes of states.

Even though fast dynamics are in general preferable,
the analysis of the optimization results for longer times is
instructive. We now focus on the preparation of |n = 4〉 starting
from |e,0〉 for the interaction time τ = 10 ms, which is orders
of magnitude larger that τn. This interaction time allows for
the spectral resolution of the lowest-energy dressed states
of the atom-cavity system. In this regime, a well-defined
number of photons can be pumped into the resonator by
resonantly driving a dressed state of the Jaynes-Cummings
spectrum [35,36]. Figure 3 displays the spectrum of the
optimized pulse which yields an infidelity of 2 × 10−6. The
amplitude of the optimized pulse is in general three orders
of magnitude smaller than that in Fig. 2 and oscillates on
the microsecond time scale. The spectrum of the optimized
pulse in Fig. 3 exhibits well-defined peaks at the dressed-
state frequencies. In detail, the peaks which are particularly
pronounced correspond to transitions |±,2〉 → |±,3〉 for (1),
|±,1〉 → |±,2〉 for (2), |±,0〉 → |±,1〉 for (3), |±,0〉 →
|∓,1〉 for (4), |±,1〉 → |∓,2〉 for (5), and |±,2〉 → |∓,3〉
for (6). This shows that, in the limit of a sufficiently long
interaction time scale, the protocol tends to address the indi-
vidual transitions between dressed states, adding excitations
sequentially until the target state is reached.

For both τ = 40 μs and τ = 10 ms, the required numerical
effort is very moderate: Figure 2 shows the results of an
optimization using 4000 iteration steps, with each iteration
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taking 5–10 s on a regular workstation computer. For longer
τ such as in Fig. 3 the CPU time per iteration goes up to
10–20 s but a much smaller number of iterations, of the order
of 100, is required. This indicates that the overall operation
time is a resource for control: The control problem becomes
simpler as more time is available. Note that the exact number of
iterations needed to reach a certain fidelity threshold depends
on the initial guess.

B. Fock-state superpositions

We now analyze the efficiency of preparing a coherent
superposition of Fock states of the form given in Eq. (15) using
OCT, and first discuss in detail the efficiency of preparing the
superposition

|
target〉 = |0〉 + |2〉√
2

(22)

for the interaction time τ = 20 μs and solely using pulses
driving the atom. Our study thus focuses on optimizing the field
described by the control �̃(t) and shows that complex-valued
�̃(t), that is time-dependent amplitude and phase, lead to
higher efficiencies. Therefore, the preparation of Fock-state
superpositions requires control over both amplitude and phase
of the pulses. This is a logical consequence of the fact
that the final state bears a phase information. Figure 4(a)
displays the temporal dependence of the pulse, which has been
obtained by minimizing the functional to a final infidelity of
2 × 10−5. The spectrum is shown in Fig. 4(b): It is broad
and asymmetric about the resonance frequency. This feature
is due to the complex amplitude of the pulse. Figure 4(c)
shows that the intracavity photon number evolves from the
vacuum state to the desired target state, which is characterized
by a mean photon number 〈n〉 = 1 and standard deviation
�n = 1. The atomic level populations in Fig. 4 (d) display
some oscillatory behavior until almost all the population ends
up in |g〉. We note that better efficiencies are found by taking
the initial atomic state to be a superposition of ground and
excited state: In the case of Fig. 4 the initial atomic state is
|�a〉 = (|g〉 + i|e〉)/√2.

FIG. 3. (Color online) Preparation of the Fock state |n = 4〉 in
τ = 10 ms using OCT: Positive-frequency part of the pulse spectrum
(in arbitrary units), according to Eq. (20) (the spectrum is symmetric
about the resonance frequency since the amplitude is real). The initial
state is |e,0〉; the other parameters are specified in the text. Differing
from the other cases, the shape function used for this optimization is
a constant. The numbers in the plot label transitions between dressed
states of the atom-cavity system; for details see the text.
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FIG. 4. (Color online) Preparation of the Fock-state superposi-
tion (|0〉 + |2〉)/√2 in the interaction time τ = 20 μs with a pulse
driving the atom. (a) Temporal dependence of the pulse amplitude
(solid line) and phase (dash-dotted line). The dashed line shows
the guess pulse amplitude (amplified by a factor 10): This is a
Gaussian with a maximal amplitude of E0 = 50 kHz and σ = 2.5 μs.
(b) Spectrum of the pulse, according to Eq. (20). The amplitude is in
arbitrary units. The other subplots show the temporal dependence of
(c) mean intracavity-photon number 〈n〉 and standard deviation �n,
and (d) population of the atomic states ρgg and ρee. The initial state
is (|g〉 + i|e〉)/√2 ⊗ |0〉.

When instead the interaction time is large, τ = 10 ms, the
amplitude of the pulses becomes approximately three orders
of magnitude smaller in comparison to the pulses obtained
for shorter interaction times. Here, the amplitude changes
are carried out on time scales of the order of microseconds.
Figure 5 displays the spectrum of the corresponding optimized
pulse, which leads to a final infidelity below 10−10. Since
the pulse is real, its form is symmetric about the resonance
frequency. The peaks correspond to the frequencies of transi-
tions between dressed states of the atom-cavity system, as
follows: (1) corresponds to the transition |±,1〉 → |±,2〉,

FIG. 5. (Color online) Preparation of the Fock-state superposi-
tion (|0〉 + |2〉)/√2 for the interaction time τ = 10 ms: the positive-
frequency part of the spectrum of the pulse (in arbitrary units),
according to Eq. (20) (since the pulse is real, the spectrum is
symmetric about the resonance frequency). The initial state is
(|g〉 + i|e〉) ⊗ |0〉/√2. The shape function used for this optimization
is a constant. The numbers label transitions between dressed states;
for details see the text.
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FIG. 6. (Color online) (a) Final infidelity Jτ as a function of time
(in μs) for the preparation of the target state (|0〉 + |2〉)/√2. The
crosses correspond to the numerical data, and the solid line serves
as a guide for the eyes, whereas the red dashed line corresponds to
the fitted curve f (x) = a cos2(bx), with a = 0.25 and b = 0.66. (b)
Minimum time (in μs) as a function of n required to prepare the
target state (|0〉 + |n〉)/√2 with infidelity below 10−4. The initial
state is (|g〉 + i|e〉) ⊗ |0〉/√2, and only the atom-pump pulse �̃(t) is
employed in Eq. (4).

(2) to |±,0〉 → |±,1〉, (4) to |±,0〉 → |∓,1〉 and (5) to
|±,1〉 → |∓,2〉, whereas (3) corresponds to the transition
from the cavity vacuum state to the dressed states |∓,0〉. The
spectrum shows that, for sufficiently long interaction times,
quantum-state preparation here is reached by means of a pulse
which resonantly drives the dressed-state transitions leading
to the target state.

We finally perform an optimization over the minimum time
required to prepare the superposition

|
target〉n = |0〉 + |n〉√
2

as a function of the Fock-state number n. In doing so, we
require the infidelity to be below 10−4. We take the initial state
to be

|φ(t = 0)〉 = |g〉 + i|e〉√
2

⊗ |0〉,

and optimize only the atom pump pulse �̃(t). Figure 6(a)
displays the final infidelity Jτ as a function of the interaction
time τ for the preparation of the state (|0〉 + |2〉)/√2. The
behavior clearly shows that infidelities below 10−4 are reached
for interaction times exceeding 12 μs. At shorter times, the
infidelity decreases with a functional behavior that can be
fitted to the function f (x) = a cos2(bx). Analogous behavior
has been reported in other optimization studies [7,55]. The
sharp change in the infidelity allows for the determination
of the quantum speed limit, which for this specific state and
dynamics lies at about 12 μs. By means of the same procedure
we identify the minimum time required to prepare the state
(|0〉 + |n〉)/√2 with final infidelity below 10−4 as a function
of n. Figure 6(b) shows that the required interaction time scales
linearly with n. This time exceeds the time found by simple
estimates, which should scale as

√
n for protocols which make

use of a third, ancillary state as in Ref. [49]. Here, instead, the
scaling of time is found for the evolution constrained to occur
between the two states |g〉 and |e〉 coupling resonantly to the
cavity field.

We note that the preparation of Fock-state superpositions
is achieved here by solely employing an external pulse that
drives the atom. We have also applied optimization of the

pulse driving the cavity and that generating a time-dependent
dynamical Stark shift on the atom, but found no significant
improvement with respect to the case in which only the pulse
on the atom was employed. A systematic comparison indeed
reveals that the atom pulse leads to the target state in an efficient
way, whereas employing solely the pump on the cavity leads
to dynamics which are characterized by lower fidelities over
time scales of the order of tens of microseconds. The required
numerical effort is very similar to the one reported in Sec. III A.

C. Schrödinger cat states

In this section we focus on the deterministic preparation
of Schrödinger cat states; cf. Eq. (16). They are also known
in the literature as “even cat states” since their decomposition
in the Fock-state basis contains only even-number states. We
target α = 1 + i, which is sufficient for a proof-of-principle
discussion. Realizing larger values of |α|, in fact, requires a
significantly larger numerical effort since the Hilbert space
of the cavity has to be truncated at much larger Fock-state
number n. Unlike for the previous classes of states, efficient
preparation for the considered time scale requires a pulse that
directly drives the resonator. This condition can intuitively be
understood since a cavity pump efficiently generates coherent
states of the oscillator. For the results reported in this section,
the dynamics employs both a pulse driving the resonator, η̃(t),
and a pulse which couples to the atomic transition, �̃(t).

Figure 7 displays the resulting pulses obtained using OCT
taking the initial state |e,0〉 and the interaction time τ = 20 μs.
The final infidelity here amounts to 6 × 10−4. We observe that
the preparation of the even cat state with α = 1 + i requires
complex pulses, for both atom [Fig. 7(a)] and cavity [Fig. 7(b)].
Moreover, the amplitude of the atom pump pulse is about
one order of magnitude larger than the vacuum Rabi splitting
(which scales with g) and than the amplitude of the cavity
pump pulse. This suggests that the field �̃(t) dresses the
atomic levels, whereas the cavity pulse drives selectively the
resonances of the dressed atom. This intuition is corroborated
by the spectrum of the pulse driving the cavity, shown in
Fig. 7(d), where two prominent peaks appear at the transition
frequencies between the dressed states. Further information
is extracted from the mean photon number in Fig. 7(e) and
corresponding variance. They show a steady increase, as would
correspond to a displacement of a harmonic oscillator whose
amplitude increases with time until the target value is reached.
The atomic dynamics, Fig. 7(f), exhibits oscillations on the
time scale of a few microseconds. This is consistent with
the picture of the atom pulse dressing the atomic transition.
These features thus suggest that the system undergoes a
conditional dynamics, such that the cavity pulse drives the two
resonances of the dressed atom. This dynamics is reminiscent
of proposals for the preparation of Schrödinger cat states based
on projective measurements [56], in which even or odd cat
states are prepared by means of a conditional dynamics, which
realizes a displacement of the oscillator whose sign depends
on the internal state of the dressed atom. Differing from these
proposals, the preparation presented here is deterministic and
thus does not rely on a final projective measurement.

We now analyze the efficiency of preparing an even cat state
with α = 1 + i for an interaction time of τ = 10 ms using
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FIG. 7. (Color online) Preparation of the even cat state with
α = 1 + i in τ = 20 μs using OCT: Temporal dependence of the
optimized pulses driving the atom (a) and the cavity (c). The solid
and dash-dotted lines correspond to the amplitude and the phase
of the fields, respectively (the dashed line shows the guess-pulse
amplitude amplified by a factor of 10, which is a Gaussian pulse
with E0 = 10 kHz and σ = 2.5 μs for the atom and with E0 =
1 kHz and σ = 2.5 μs for the cavity. Subplots (b) and (d) display
the corresponding spectra. The other subplots show the temporal
dependence of (e) mean intracavity-photon number 〈n〉 and standard
deviation �n and (f) population of the atomic states ρgg (solid line)
and ρee (dashed line). The initial state is |e,0〉; the other parameters
are given in the text.

OCT. The atom and cavity pulses turn out to be complex.
Differing from the previous case, however, their amplitudes
are now comparable, and three orders of magnitude smaller
than the atom pulse in Fig. 7(a). Figure 8 displays the spectra
of atom and cavity pulse for a final infidelity of 8 × 10−5. The

0 25 50 75 100 125 150
frequency (kHz)

0
0.2
0.4
0.6
0.8

1

0 25 50 75 100 125 150
frequency (kHz)

0
0.2
0.4
0.6
0.8

1(a) (b)

FIG. 8. (Color online) Preparation of the even cat state with α =
1 + i in τ = 10 ms using OCT: the positive-frequency spectra of the
pulse driving the atom (a) and the cavity (b). The amplitude is in
arbitrary units. The initial state is |e,0〉; the other parameters are
given in the text.

spectra show well-defined resonances at the dressed states of
the Jaynes-Cumming dynamics, where the number of states
addressed by the fields is now significantly larger. This is
consistent with the fact that the ideal cat state corresponds to
an infinite sum over the Fock number states. A striking feature
is the relative weight between the spectral lines of the atom and
the cavity pulse: The latter has a few predominant contributions
at low frequencies, corresponding to the lowest dressed states
of the ladder. These features seem to suggest that the cavity
pump drives selectively and coherently the individual dressed
state such that the resulting superposition delivers the target
state (16).

Interestingly, the number of OCT iterations required to
reach a certain fidelity is independent of the operation time for
cat states. This is strikingly different from the preparation of
Fock states and Fock-state superpositions where time appears
to be a resource for control. We attribute this difference to the
fact that an infinite sum over Fock states is required for an
ideal cat state which cannot perfectly be achieved in either one
of the interaction times employed in our optimizations.

IV. ACCOUNTING FOR EXPERIMENTAL
UNCERTAINTIES AND NOISE

The discussion so far has been concerned with the prepa-
ration of high-fidelity quantum states for precisely known
interaction times: The pulses which we have determined lead
to efficient dynamics as long as the initial and final times of
the interaction are well defined. Moreover, we have assumed
the parameters of Hamiltonian (5a) to be precisely known.

In this section we investigate the efficiency of the state
preparation when taking parameter fluctuations and other
sources of uncertainty into account during the optimization.
For this purpose we consider the specific situation of the ex-
periment of Raimond, Haroche, Brune and co-workers [21,22].
We systematically include in our optimization procedure the
following experimental features that might compromise our
control protocols: (i) The position-dependent coupling of the
atom with the cavity mode. In particular, the parameter g in
Hamiltonian (2) is replaced by the position-dependent function
g → g(x,y,z), where x is the propagation direction of the atom
with constant velocity v, x = vt , and y,z are the transverse
axes. The functional form reads

g(x,y,z) = g0e
−[(x−x0)2+(y−y0)2]/σ 2

cos(2π (z − z0)/λ), (23)

where x0 and y0 refer to the cavity center in the transverse plane
and z0 to the closest antinode, λ = 5.87 mm is the cavity-mode
wavelength, σ = 6 mm is the mode waist at the cavity center,
and g0 = 2π × 50 kHz. We further account for the fact that
(ii) the atom can be localized only up to a precision of 1 mm
in each direction. This gives rise to a fluctuation in the value of
g as well as to fluctuations of the initial and final times of the
interaction. In addition, due to the geometric properties of the
present cavity-QED setup, (iii) a transverse pulse �(t) can also
directly couple to the cavity mode. Roughly, a π pulse on the
atom pumps about 20 photons into the cavity mode. Moreover,
(iv) temporal fluctuations of the cavity mode frequency occur
which can vary up to ±5 kHz in a day. Finally, (v) technical
problems in the generation of the pulses, such as digitalization

023824-8



ARBITRARY-QUANTUM-STATE PREPARATION OF A . . . PHYSICAL REVIEW A 90, 023824 (2014)

and finite-time response of the pulse generator, need to be
considered.

In our analysis of the optimized solutions’ performance
we choose the interaction time to be τ = σ/v ∼ 100 μs
when taking these effects into account. This corresponds to a
minimal velocity of the atoms of about v ∼ 60 m/s. We set the
threshold for efficient state preparation by requiring infidelities
of the order of 10−2. This corresponds to the present state of
the art of the experimental quantum-state discrimination [44].

Our optimization strategy accounts for these effects by
optimizing an ensemble of trajectories whose dynamics are
governed by Hamiltonians with different system parameters,
but which experience the same control fields [57–59]. Effects
(i) and (ii) are implemented by varying the position-dependent
coupling g(x,y,z). Specifically, g(x,y,z) is evaluated for three
values of x, y, and z, namely, x = x0,x0 ± 0.5 mm, and
analogously for y and z. Effect (iii) is simulated by the
additional Hamiltonian term

H ′′(t) = �ξ
�(t)

2
(e−i[φl (t)+ωl t]a† + H.c.), (24)

where ξ is a geometric coefficient deduced from the experi-
ment, which can take a value between 1 and 4. We consider the
worst case and fix the coefficient to take the mean value ξ = 4,
with a variation of ±10%. Such a precision in determining ξ

could be accessible in an accurate auxiliary measurement using
a direct counting of the photon number in the cavity [60]. The
variation in the cavity frequency, effect (iv), is accounted for by
varying the corresponding parameter in Eq. (5a): specifically,
we consider the three values ωf = ωf,0,ωf,0 ± 2π × 5 kHz.
Optimization then consists in propagating the same initial
state with different Hamiltonians, in order to identify the
control fields which yield the best average fidelity. A different
approach is required for simulating the effect of digitalization
and finite-time response, effect (v). The effect of digitalization
is accounted for by fixing the time-step size for changes in
the field to 100 ns. Additionally, we model the imprecision
and the response of the pulse generator by adding white
noise to the atom pulse, with a maximal amplitude of 2π ×
1 kHz. Two realizations of the random noise are considered
during the optimization. The resulting ensemble comprises
324 system copies when all effects are taken into account. The
average fidelity is determined by integrating over the complete
parameter ranges.

We first check how much these effects deteriorate the
fidelities when not taken into account during the optimization.
We consider the target state in Eq. (22), and determine the
infidelity for the initial state (|g〉 − i|e〉) ⊗ |0〉/√2. While the
infidelity for the preparation of the target state under ideal
conditions is 1.0 × 10−4, with the same optimized pulse the
infidelity is increased to 9.97 × 10−1 when the experimental
imperfections are accounted for. It is thus imperative to include
the imperfections in the optimization if one is to provide pulses
that will be meaningful in experiment.

When all experimental uncertainties and noise sources are
accounted for, using ensemble OCT, the optimized pulses
show an improvement by an order of magnitude, leading to an
infidelity of about 1.6 × 10−1. More importantly, optimization
in the presence of noise and imperfections also allows us to
identify whether this infidelity is caused by several factors

TABLE I. Classification of noise impact: (i),(ii) uncertainty in
atom-cavity coupling g, (iii) undesired cavity excitation due to
atom pulse, (iv) uncertainty of cavity mode frequency, and (v)
amplitude noise due to digitalization and finite time response of pulse
generator. Average optimization fidelity refers to the final value of
Jτ evaluated for the system copies in the optimization ensemble,
whereas integrated average fidelity corresponds to an integral over
the parameter range. The single contributions are to be compared to
an average optimization infidelity of 1.7 × 10−1 (for an ensemble of
324 system copies) and an average integrated fidelity of 1.6 × 10−1

when all noise sources are accounted for simultaneously.

Average Size of Average
optimization optimization integrated

Noise effect infidelity ensemble infidelity

(i),(ii) 5.0 × 10−3 27 4.6 × 10−3

(iii) 2.2 × 10−2 2 1.3 × 10−2

(iv) 2.1 × 10−4 3 1.6 × 10−4

(v) 6.2 × 10−5 2 1.2 × 10−4

simultaneously or whether it is mainly due to a single source.
This is analyzed in Table I which reports the individual
contributions of each noise effect to the total infidelity of
1.6 × 10−1. The optimizations were taken to be converged
when Jτ changed by 10−6 or less. The fact that the largest
infidelity of a single noise effect in Table I is about one order
of magnitude smaller than the infidelity when accounting for
all effects simultaneously, 1.3 × 10−2 for effect (iii) compared
to 1.6 × 10−1, suggests that there is an interplay between two
or more of the noise effects that increases the difficulty of the
optimization problem substantially. The largest impact on the
fidelity, as clearly revealed by inspection of Table I, is due to
undesired excitation of the cavity by the atom pump pulse.
Indeed, we have tested that efficient preparation of Fock-state
superpositions is achieved by pulses which drive the atom
from the side, while large pulses on the cavity field tend to
decrease the efficiency over short times. Additionally, in this
specific situation, the cavity pulse is proportional to the pulse
of the atom, and its effect thus cannot simply be suppressed
by better optimization of the atom pulse. We have verified
that the fidelity is partially improved by taking a larger value
of the vacuum Rabi frequency, g0 = 2π × 100 kHz, even for
shorter time scales and τ = 50 μs. More could be achieved by
applying a pulse on the cavity field whose role is to suppress
the detrimental effect of Eq. (24). A simpler possibility would
be to reduce the parasitic coupling, for instance by proper
engineering of the microwave field map.

In the current work, we have not considered systematic
errors in the control parameters �(t) and η(t). They may be
due to our imperfect knowledge of the real field amplitudes
coupled to the atom and the cavity. In contrast to noise,
systematic errors may have cumulative effects and lead to
faster deterioration of the fidelity of state preparation. Taking
them into account in OCT might give preference to solutions
featuring adiabatic passage elements instead of resonant
population transfers. In this case it is expected that efficient
optimization will depend on the control parameter �(t). We
plan to continue the study of this subject in more detail.
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V. CONCLUSIONS

We have employed optimal control theory to identify
dynamics that lead to efficient quantum-state preparation
of a harmonic oscillator, using a single atom as ancillary
quantum system. The pulses which were optimized pump
either the atomic transition or the cavity field, or both. The
temporal shapes of their amplitudes and phases have been
determined by optimization using Krotov’s method. We have
focused on the efficient preparation of three classes of quantum
states which have previously been discussed in the literature.
This choice has enabled us to compare our results to the
dynamics constructed from a physical understanding based on
the quantum optical master equations. Our optimized pulses
for the preparation of Fock states, Fock-state superpositions,
and Schrödinger cat states yield errors below 10−4, provided
that all parameters of the Hamiltonian are precisely known.
Optimal control theory has also allowed us to determine
the minimum interaction time required for the quantum-state
preparation. As expected, it is determined by the atom-
cavity interaction strength and the type of state, scaling for
example linearly with n for a superposition of the type
(|0〉 + |n〉)/√2.

We have furthermore evaluated the efficiency of optimal-
control-theory-based protocols for prospective applications by
taking into account the specific experimental conditions of
the setup used by Raimond, Haroche, Brune and co-workers.
Our analysis shows that it is crucial to include parameter
uncertainties and fluctuations in the model. When the noise
sources are accounted for during the optimization, optimal
control theory can counteract their detrimental influence. This
typically improves the error by at least one order of magnitude.
Even more importantly, optimal control theory also allows
for identifying the noise source with the largest detrimental

impact. When experimental imperfections are properly taken
into account, optimal control theory can provide an efficient
route to quantum-state preparation of arbitrary states. The
identified protocols solely rely on deterministic dynamics
and are indeed efficient over realistic time scales and for
state-of-the-art experimental conditions.

Our protocols can be straightforwardly applied to other
physical systems with similar features, for instance, for
quantum-state preparation in circuit QED, of the quantized
motion of a trapped atom or ion, and of the quantized vibra-
tions of a micromechanical resonator. The robustness against
parameter fluctuations has to be calibrated to the specific
experiments, but the perspectives are similarly promising to
the ones found for microwave cavity QED.

We finally observe that the dynamics implemented here
require an efficient determination of the initial state, which has
to be uniquely defined. One could also relax this condition and
consider implementations which merge optimal control theory
with concepts like quantum reservoir engineering [61–64] to
realize robust quantum-state preparation [65].
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