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For qubits, Monte Carlo estimation of the average fidelity of Clifford unitaries is efficient: it requires a number
of experiments that is independent of the number n of qubits and classical computational resources that scale only
polynomially in n. Here, we identify the requirements for efficient Monte Carlo estimation and the corresponding
properties of the measurement operator basis when replacing two-level qubits by p-level qudits. Our analysis
illuminates the intimate connection between mutually unbiased measurements and the existence of unitaries that
can be characterized efficiently. It allows us to propose a “hierarchy” of generalizations of the standard Pauli
basis from qubits to qudits according to the associated scaling of resources required in Monte Carlo estimation
of the average fidelity.
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I. INTRODUCTION

The capability to verify whether a quantum operation has
been properly implemented is an important building block for
quantum technologies [1]. It requires evaluation of suitable
performance measures such as the average fidelity or the worst
case fidelity. In general, evaluating either measure scales very
unfavorably in system size due to the exponential scaling of the
Hilbert space dimension d with the number n of information
carriers. Stochastic sampling techniques have recently allowed
for impressive progress at reducing the resources required
for determining the average gate fidelity for qubits [2–7].
For example, Monte Carlo estimation can be employed to
determine the average n-qubit gate fidelity Fav [2,3]. To this
end, Fav is expressed either in terms of the entanglement
fidelity [2,3] or as a sum over d(d + 1) state fidelities in
d-dimensional Hilbert space where the d(d + 1) states form a
so-called state 2-design [8,9]. The latter represents the optimal
strategy in terms of the average number of experiments that
need to be performed, the number of settings from which
an experiment is drawn in the Monte Carlo procedure, and
the associated computational complexity [9]. The effort for
estimating the average gate fidelity can be further reduced
when determining bounds instead of Fav itself [9]. The bounds
are given by two classical fidelities in Hilbert space each made
up of d-state fidelities [10].

These statements hold for both general unitaries and Clif-
ford gates. However, for Clifford gates, the three approaches
differ merely in the number of experimental settings; the
average number of experiments is independent of system
size [2,3,9]. As a consequence, estimating the average fidelity
of a Clifford gate is a task that can be performed efficiently,
i.e., with an effort that scales at most polynomially with the
number of qubits.

Clifford gates represent an important subset of quantum
gates: they facilitate fault-tolerant computation [11] and
yield a universal set when augmented by the proper local
phase gate [12]. They can be used to prepare entangled
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states and perform quantum teleportation even though their
computing power is not stronger than classical [13]. The
striking observation that the experimental effort for Clifford
gate characterization does not scale exponentially with the
number of qubits is due to the property of Clifford gates to
map stabilizer states into stabilizer states. This property is also
exploited by another efficient method for determining the av-
erage gate fidelity, termed randomized benchmarking [6,7,14].

The Clifford gate property translates, for Monte Carlo
estimation of the average fidelity, into a relevance distribution
which is uniform and known a priori [2,3]. A uniform
relevance distribution does not require sampling; and the
average number of experiments becomes independent of
system size. It turns out, however, that the uniformity of the
relevance distribution is tied to the Pauli operators having
eigenvalues ±1. It therefore applies to qubits but not to Hilbert
spaces of prime power dimensions d = pn with p other than
two. This raises the question of whether and how the Clifford
property of mapping stabilizer states into stabilizer states can
be exploited to efficiently estimate the average gate fidelity for
qudits (p > 2).

Qudits in general and qutrits (p = 3) in particular occur
naturally in many quantum systems: They can be encoded in
anharmonic ladders of, e.g., superconducting circuits [15,16],
in orbital angular momentum modes of photons [17,18], or in
the polarization of biphotons [19,20]. Compared to qubits as
quantum information carriers, they offer advantages in terms
of increased security and higher channel capacity in quantum
communication and better efficiency in quantum information
(see, e.g., Refs. [17–19]). Since device characterization is
one of the prerequisites for any quantum information and
communication architecture, it would represent a severe
disadvantage of qudits if the average fidelity of qudit Clifford
gates could not be determined efficiently.

Here, we demonstrate that Monte Carlo estimation of
the average fidelity can be made efficient for Clifford gates
of qudits by suitable choice of the operator basis for the
measurements. Based on intuition obtained for the qubit case,
we show that the measurement basis needs to allow for a
partitioning into d + 1 commuting sets of operators to ensure
existence of a nontrivial class of unitaries that map stabilizer
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states into stabilizer states and yield a uniform relevance
distribution. For qudits (p > 2), only unitary, non-Hermitian
operators give rise to such a maximal partitioning. Two routes
can be followed to obtain a practical characterization protocol
from this observation: One can either construct Hermitian
operators by suitable superposition of the basis unitaries or
utilize the concept of quantum circuits to simulate Hermitian
measurements. We discuss both options. In general, we show
that one can define a hierarchy of operator bases according to
their scaling of resources in the Monte Carlo characterization
of Clifford gates.

The paper is organized as follows: We start with a review of
Monte Carlo estimation of the average fidelity for qubits [2,3]
in Sec. II. In particular, we explain the role of operator bases
of Hilbert space for evaluating the relevance distribution for
qubits and we show how the scaling in resources is obtained
from it. We construct the operator basis for qudits in Sec. III,
starting from the condition of a maximal partitioning and
imposing further constraints on the operators to ensure efficient
characterization for a maximal number of unitaries. We present
the relevance distributions resulting from these bases and
discuss the corresponding Monte Carlo procedures in Sec. IV.
Section V concludes.

II. MONTE CARLO ESTIMATION OF THE AVERAGE
FIDELITY FOR QUBIT CLIFFORD GATES

We first provide an overview over the general ideas
underlying the Monte Carlo approach [2,3]. To this end,
we first recall, in Sec. II A, how the average fidelity can be
rewritten in a way that is adapted to Monte Carlo sampling.
We then review, in Sec. II B, how the Monte Carlo estimation
of the average fidelity is carried out and discuss the quantities
that determine which resources are required. Subsequently,
we explain in Sec. II C, following Ref. [2], why for a Clifford
gate the required resources do not scale exponentially with the
number of qubits.

A. Recasting Fav in terms of measurements

We consider a system of n qubits with a Hilbert space
of dimension d = 2n. The associated Liouville space, of
dimension d2, can be spanned by a complete, orthonormal
and, throughout this section, Hermitian operator basis Wk with
Tr[WiWk] = dδi,k ∀ i,k = 1, . . . ,d2. From a physical perspec-
tive, the operator basis represents the set of measurements that
will have to be performed. The goal is to estimate the average
fidelity Fav of a quantum device that is supposed to execute
the gate U ∈ U(d). In other words, determining Fav verifies
how well the actual evolution of the system, represented by the
dynamical mapD, matches the target U [1]. Three approaches,
or protocols, to the Monte Carlo estimation of the average
fidelity have been discussed so far: two are based on an
exact representation of Fav either in terms of the entanglement
fidelity [2,3] or in terms of 2-designs [9]. The third approach
is based on finding bounds to the average fidelity using two
classical fidelities [9]. Given U and D, the average fidelity is
expressed as [21,22]

Fav =
∫

dψ Tr[U |ψ〉〈ψ |U †D(|ψ〉〈ψ |)], (1)

where the integral is over the uniform Haar measure on state
space. Equation (1) compares the output of the two evolutions,
i.e., the states obtained by applying U and D, for any input
state ψ . The two approaches based on an exact representation
of Fav correspond to two different ways of solving the integral
in Eq. (1).

The first approach (protocol I) circumvents the average in
Eq. (1) by solving the integral in terms of the entanglement
fidelity Fe [21,22]:

Fav = dFe + 1

d + 1
. (2)

It is defined as [2,22,23]

Fe = 1

d2
Tr[U†D], (3)

where U denotes the unitary dynamical map corresponding
to the desired gate U . Differently from Eq. (1), Fe recasts
Fav as a single fidelity between superoperators, i.e., it directly
compares the dynamical maps rather than their action on a
given set of states.1 This is most easily seen by expanding the
trace in Eq. (3) in an operator basis Wk [2]:

Fe = 1

d4

∑
k,k′

Tr[WkUWk′U †]Tr[WkD(Wk′)]. (4)

The corresponding measurements are performed on inputs that
have passed the device. Both inputs and measurements are
subjected to Monte Carlo sampling [2]. Formally, the set of
inputs I consists of all T = d2 (rescaled) operators Wk′/d

that constitute the orthonormal basis. The obstacle that, in
an experiment, one cannot prepare input operators is circum-
vented by sampling, additionally, over each input operator’s
eigenstates [2]. In other words, when using the entanglement
fidelity, one lifts the problem from a d2-dimensional to a
d4-dimensional space in order to avoid the averaging implied
by Eq. (1). In practical terms, Monte Carlo estimation of the
average fidelity consists in randomly selecting pairs of input
states and measurements that will be performed on the output
obtained after sending the input through the quantum device.
Summing up all measurement outcomes with the appropriate
weights, given by the so-called relevance distribution (for
details, see Sec. II B), yields the average fidelity.

The second approach (protocol II) to the estimation of Fav

avoids the formal use of input operators, or, equivalently, the
necessity of a higher-dimensional space, by evaluating Fav

using a state 2-design [8,9]. A state 2-design is a finite set of
states which allows us to recast integrals over Hilbert space of
the kind (1) as finite sums [26]. In other words, it represents a
special set of states that allows us to sample certain integrals,
namely, those having the structure of Eq. (1), without loss of
information. A commonly used 2-design is made up of all
states of d + 1 mutually unbiased bases (MUB) (see Ref. [26]
and references therein). The fact that the set M of MUB

1An equivalent way to understand Fe uses the channel-state
isomorphism [24,25]. It allows us to represent a dynamical map as a
state on an extended, d4-dimensional Liouville space. Fe can then be
regarded as a single state fidelity on this higher-dimensional space [3].

032317-2



EFFICIENT MONTE CARLO CHARACTERIZATION OF . . . PHYSICAL REVIEW A 90, 032317 (2014)

comprises a 2-design, and most likely the one containing
the lowest number of states, is related to M representing an
optimal measurement basis, in the sense that it maximizes
the information conveyed by a single measurement while
minimizing its statistical error [27]. While avoiding the formal
use of input operators, protocol II still compares the output
of the ideal and the actual evolution. The difference with
respect to Eq. (1) is that the average is taken not over any input
state, but over a special set of input states which captures the
relevant information. In particular, the set of inputs I consists
of T = d(d + 1) regular Hilbert space states, which make up
d + 1 MUB, and the average fidelity is expressed as

Fav = 1

d(d + 1)

d(d+1)∑
j=1

Tr
[
ρ ideal

j ρactual
j

]

= 1

d2(d + 1)

d(d+1)∑
j=1

d2∑
k=1

Tr
[
ρ ideal

j Wk

]
Tr
[
ρactual

j Wk

]
, (5)

where ρ ideal
j = U |�j 〉〈�j |U † and ρactual

j = D(|�j 〉〈�j |). The
similarity between Eqs. (4) and (5) becomes apparent once
one realizes that UWk′U † and D(Wk′) in Eq. (4) play the same
role as ρ ideal

j and ρactual
j in Eq. (5).

Finally, the third approach (protocol III) determines bounds
on Fav rather than the average gate fidelity itself using two
classical fidelities [9]. Each classical fidelity is expressed as
a sum over T = d input states, analogously to Eq. (5), with
the states belonging to two MUB. The difference between the
third and the second approaches is that here only a subset of
input states from the “special set” is used. The reduced number
of input states represents an experimental advantage but, due
to the loss of information entailed by such a reduction, only
bounds to Fav can be estimated instead of its exact value.

To summarize, all three approaches estimate Fav by
comparing the action of the actual evolution, i.e., the dynamical
map, to that of the desired transformation on a given set of
inputs. The crucial difference consists in the choice of the
set of inputs. Indeed, the different sets of inputs for the three
protocols result in different numbers of required experimental
settings, average numbers of actual measurements, and classi-
cal computational resources [9].

B. Relevance distribution

The idea underlying the Monte Carlo approach is to recast
the problem of estimating the average fidelity into that of
estimating the expectation value of a random variable. As
discussed above, three protocols compare expectation values
for measurement operators for the actual and the desired
evolution for a set of inputs. That is, given a certain input
Ii from the set I , and an operator basis {Wk}, Fav can be
expressed as

F j
av = 1

N

T∑
i=1

d2∑
k=1

Tr[WkU(Ii)]Tr[WkD(Ii)], (6)

where j indicates the specific protocol (I, entanglement
fidelity; II, state 2-design; or III, classical fidelities), the indices
i ∈ [1,T ] and k ∈ [1,d2] run over the set of inputs and the set of
measurements and N ensures proper normalization: N = d2

for the protocols I and III whereas N = d2(d + 1) for protocol
II. In order to unify notation for all three approaches, F

j
av

represents Fe rather than Fav in the case of the entanglement
fidelity protocol.

Each trace in Eq. (6) represents the expectation value of
the kth measurement after the ith input has passed the device.
It can be expressed in terms of the characteristic functions
of the corresponding desired evolution and dynamical map,
respectively,

χ
j

U (i,k) = Tr[WkUIiU
†], (7a)

χ
j

D(i,k) = Tr[WkD(Ii)]. (7b)

Multiplying and dividing each term of Eq. (6) by χ
j

U (i,k), we
can define a random variable X which takes values Xik and
has a relevance (probability) distribution P (i,k),

Xik = χ
j

D(i,k)

χ
j

U (i,k)
, (8a)

P j (i,k) = 1

N
[
χ

j

U (i,k)
]2

. (8b)

This allows for rewriting Eq. (6) as an expectation value of
a random variable

F j
av =

T∑
i=1

d2∑
k=1

P j (i,k)Xi,k. (9)

However, when evaluating F
j
av as expectation value of the

random variable X taking values Xi,k with known probability
P j (i,k), one is faced with the problem that the Xi,k cannot
be accessed directly. As can be seen from Eqs. (8a) and (7b),
they depend on another random variable, the expectation value
Tr[WkD(Ii)] of Wk . Due to the statistical nature of quantum
measurements as well as random errors in the experiment, it
will be necessary to make repeated measurements to determine
Xik . We assume for a moment that the Xik have been
determined with sufficient accuracy (and explain below what
this assumption entails). Provided the Xik are known, Monte
Carlo sampling estimates the expectation value F

j
av of the

random variable X by a finite number of realizations

F j
av = lim

L→∞
FL with FL = 1

L

L∑
l=1

Xκl
. (10)

Here, κl is the index corresponding to the lth input-output pair,
i.e., κl = (il,kl). It can take on T d2 values. The sample size
L is chosen to guarantee that the probability for FL to differ
from F

j
av by more than ε is less than δ. The key point of the

Monte Carlo approach is that while the size of the event space
scales with the system size d, L depends only on the desired
accuracy ε and confidence level δ and is independent of d.

The number of actual experiments that will have to be
performed on average, will, however, depend on the system
size, i.e., scale exponentially with the number of qubits,
for general unitaries. This is due to the Xκl

being known
only approximately and can be seen as follows: The finite
accuracy of the Xκl

gives rise to an approximation of FL,
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F̃L = 1
L

∑L
κl=1 X̃κl

, where the tilde indicates approximate
values. Therefore, in addition to ensuring that FL approximates
F

j
av with an error of at most ε, one also must guarantee that

F̃L approximates FL with the desired accuracy. This implies
repeated measurements for a given element κl (l = 1, . . . ,L)
of the Monte Carlo sample. Denoting the number of respective
measurements by Nl , the total number of experiments is given
by Nexpt =∑L

l=1 Nl . It can be shown [2,3] that choosing

Nl = 1

εL
[
χ

j

U (κl)
]2 ln

(
4

δ

)
(11)

guarantees the approximations of FL by F̃L and of F
j
av by FL

to hold with the desired confidence level. The total number
of measurements 〈Nexpt〉 that needs to be carried out on
average is given by summing over Nl which is inversely
proportional to the weight of the setting κl in the relevance
distribution [cf. Eqs. (11) and (8b)]. Computing χ

j

U (i,k)
for a general unitary amounts to manipulating exponentially
large matrices an exponential number of times. This requires
classical computational resources, as does the sampling step
in which one randomly draws L times an event from the
T d2-dimensional space of events. The latter is denoted by
Csampl. The sampling step is, for a general unitary, also not
efficient since the dimension d of the state space scales
exponentially in the number of qubits. Note that while the
sampling procedure will select only some of the settings, the
ability to implement all of them is nevertheless required.

The scaling of resources required to estimate the average
fidelity is thus strictly connected to the specific features
of the relevance distribution, or more specifically, of the
characteristic function χ

j

U (i,k) of the target unitary U in the
chosen measurement basis Wk . If that basis allows many
χ

j

U (i,k) to vanish and those that do not vanish to decrease
at most polynomially with the number of qubits, then the
estimation procedure is efficient.

C. Special case of Clifford qubit gates

Clifford gates acting on n qubits are special in that they
yield a relevance distribution which has many zeros and all
nonzero values are identical. This in turn implies that the
characterization of Clifford operations is efficient, i.e., the
average number of experiments is independent of the number
of qubits n and the classical computational effort scales only
polynomially in n. In order to see why this is the case, we
briefly review the definitions of the Pauli group and the Clifford
group as well as the action of the Clifford group on Pauli
measurements and their eigenstates. Pauli observables, i.e.,
tensor products of single-qubit Pauli operators, represent the
natural measurements in the logical basis and thus constitute
the standard measurement basis for n qubits.

The set of Pauli measurements P̄ acting on n qubits is
defined as P̄ = {P̄i =⊗n

k=1 σik }d
2

i=1 where each σik represents
a single-qubit Pauli operator acting on the kth qubit, i.e., ik ∈
{0,x,y,z}. The operators in P̄ generate the Pauli group P =
{Pk = iaωbP̄j ; 0 < k � 4d2} with a,b = 0,1, j = 1, . . . ,d2,
ω = exp(iπ ) and matrix multiplication being the group op-
eration. It is useful to introduce sets WA of d pairwise

commuting Pauli measurements. For example, Wz comprises
the d different tensor products made up of identities and σz’s.

The action of any transformation UC belonging to the
Clifford group is to map an element Pi of P into another
element Pk of P . In other words, the Clifford group is the
normalizer N (P) of the Pauli group in U(d) since it leaves P
invariant under conjugation. This implies for the orthonormal
basis of Pauli measurements P̄ that each element of P̄ is
mapped into another element from this set up to a phase factor,
i.e., up to a permutation of eigenvalues [28]

UCP̄kU
†
C = ωaP̄i ; a = 0,1. (12)

Clifford operations can also be defined in terms of their
action on stabilizer states, i.e., in terms of their action on
the joint eigenbasis of a set WA [3,28]. One needs to fix a
particular eigenbasis because each Pauli measurement acting
on more than one qubit is degenerate, and it is thus not
possible to characterize the action of a Clifford operation
on a generic eigenbasis of a generic Pauli operator. Indeed,
a Clifford operation maps joint eigenstates of the set WA

into joint eigenstates of the set WA′ , with either A = A′
or A 	= A′ [28,29]. In general, one can partition the set of
Pauli measurements P̄ into d + 1 commuting sets WA, i.e., P̄
exhibits the so-called maximally partitioning property [30].
Each partitioning defines a unique choice of d + 1 joint
eigenbases which are mutually unbiased with respect to each
other [30,31]. The maximally partitioning property ensures
that, if a state |ψA

i 〉 is a joint eigenvector of the operators in
WA, its expectation value vanishes for all Pauli measurements
outside of WA.2 This can be seen as follows: If the operator
basis is maximally partitioning, all operators outside of WA

can be expressed in terms of an eigenbasis which is mutually
unbiased with respect to {|ψA

i 〉}. We recall that two complete
and orthonormal bases A, A′ on a d-dimensional Hilbert space
are mutually unbiased if and only if∣∣〈ψA

i

∣∣ψA′
j

〉∣∣ = 1/
√

d (13)

for all |ψA
i 〉 ∈ A, |ψA′

i 〉 ∈ A′ [27]. For a generic Pauli
measurement belonging to the commuting set WA′ , P̄k =∑

l λ
k
l |ψA′

l 〉〈ψA′
l |, the expectation value is given by

Tr
[
P̄k

∣∣ψA
i

〉〈
ψA

i

∣∣] =
d∑

j,l=1

λk
l

∣∣〈ψA
i

∣∣ψA′
l

〉∣∣2.
If WA 	= WB , then |〈ψA

i |ψA′
j 〉|2 = 1/d and

Tr
[
P̄k

∣∣ψA
i

〉〈
ψA

i

∣∣] = 1

d

d∑
l=1

λk
l = 0

since Pauli measurements are traceless. Therefore,

Tr
[
P̄k

∣∣ψA
i

〉〈
ψA

i

∣∣] =
{

ωa if P̄k ∈ WA,

0 otherwise.
(14)

Equation (14) is a consequence of the fact that measurements
associated to MUB span orthogonal subspaces [27].

2The maximally partitioning property also allows for an explicit
construction of the d + 1 MUB.
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In the context of Monte Carlo estimation of the average
gate fidelity for a Clifford gate, Eq. (14) gives rise to a uniform
relevance distribution. In order to elucidate this, we distinguish
whether the set of inputs I is made up of states (belonging to
MUB) as in the case of protocols II and III [9] or operators for
protocol I [2,3]. In the former case, applying Eq. (14) to each
state |ψA

i 〉〈ψA
i | ∈ I yields for the characteristic function [cf.

Eq. (7a)]

χ
j

UC
(i,k) = Tr

[
P̄kUC

∣∣ψA
i

〉〈
ψA

i

∣∣U †
C

] = Tr
[
P̄k

∣∣ψA′
m

〉〈
ψA′

m

∣∣]
=
{

ωa if P̄k ∈ WA′ ,

0 otherwise,
(15)

where |ψA′
m 〉 is the mth element of the joint eigenbasis of the

commuting set WA′ . Inserting this into Eq. (8b) leads to

P
j

UC
(i,k) = 1

N , (16)

i.e., the relevance distribution is uniform. It contains N = T d

nonzero elements since for each of the T input states there
are only d nonvanishing measurements. Sampling then simply
amounts to randomly drawing an index i ∈ [1,T ] to select
the input state and, after calculating the output state from the
action of the Clifford operation on the input state, to randomly
draw an index k ∈ [1,d] to select the output measurement
from the commuting set corresponding to the output state.
Uniformity of the relevance distribution implies that the
sampling is independent of system size Csampl ∝ O(1). Due
to the Gottesman-Knill theorem for Clifford circuits [13],
the overall classical computational resources to calculate the
output state scale polynomially in n.

If the set I of inputs is made up of operators, i.e., in the
case of the protocol I based on the entanglement fidelity, one
can directly use the definition of the Clifford group as the
normalizer of the Pauli group [Eq. (12)] to obtain

χ
j

UC
(i,k) = 1

d
Tr[P̄k UC(P̄i)] = 1

d
Tr[P̄kUCP̄iU

†
C]

= ωa

d
Tr[P̄kPk′ ] = ±δkk′ . (17)

Together with Eq. (8b), this leads to

P
j

UC
(i,k) = 1

N (18)

with N = d2. For each input operator, there is only one output
which leads to a nonzero outcome. Sampling amounts to
randomly drawing an index k ∈ [1,d2] and finding i such
that ±P̄i = UCP̄kU

†
C . The latter can be done efficiently on

a classical computer due to the Gottesman-Knill theorem [13].
Once the pair of input-operator–output-measurement has been
selected, a second sampling step is required to randomly
draw an eigenstate of the input operator P̄k . This step is
computationally efficient since the spectrum of each operator
corresponds to a uniform distribution. As a result, the sampling
complexity Csampl is independent of system size and the
classical computational resources scale polynomially in n also
for input operators [3].

The number of nonzero elements of the relevance distri-
bution for a Clifford gate is either T d = N , for protocols II

and III based on input states, or d2 = N for the entanglement
fidelity protocol, as opposed to T d2 for a generic unitary,
independent of the protocol. This implies efficient scaling
of the average number of experiments 〈Nexpt〉 that have to
be carried out for Clifford gates. In general, 〈Nexpt〉 can be
estimated by averaging over the number Nl of repetitions for
each setting with the weights in the averaging given by the
probability distribution P j (il,kl) [2,3,9]. For a generic unitary,
this yields

〈Nexpt〉 =
T∑

il=1

d2∑
kl=1

P j (il,kl)Nl

= 1

N

T∑
il=1

d2∑
kl=1

[χj (il,kl)]
2 4

[χj (il,kl)]2Lε2
ln

(
2

δ

)

∝ 1

N T d2 =
{

O(d2) for operator inputs (I),

O(d) for state inputs (II, III).
(19)

The scaling is obtained from observing that κl = (il,kl) can
take T d2 values whereas N = d2 for operator inputs and N =
T d for state inputs and T = d2 for operator inputs. For Clifford
gates, due to Eq. (15), respectively, Eq. (17), this reduces to

〈Nexpt〉 ∝ 1

N N = O(1). (20)

The fact that the number of experiments that need to be carried
out is independent of system size implies that estimating the
average gate fidelity is maximally efficient.

III. OPERATOR BASES FOR QUDITS

The discussion in the previous section suggests that the
existence of a class of unitaries for which Fav can be estimated
with maximal efficiency is due to two fundamental ingredients:
(i) existence of a nontrivial class of unitaries (UC = {Uj 	= 1})
which map the operator basis into itself, up to a phase
factor; (ii) uniformity of the associated relevance distribution.
Condition (i) implies that the relevance distribution associated
to this class of unitaries contains a reduced number N of
nonzero elements which leads to 〈Nexpt〉 ∝ O(1). Condition
(ii) ensures that also the sampling step is efficient since the
coefficients of the relevance distribution are known a priori
with no need of explicit calculation. Both these features are
intimately related to the properties of the Pauli measurement
basis.

Specifically, they are connected to the fact that the set of
the standard Pauli measurements can be partitioned into d + 1
commuting sets. This can be seen as follows: As shown in the
previous section, condition (ii) follows from Eq. (14) which
in turn results from the standard Pauli measurements being
associated to MUB that span orthogonal subspaces, i.e., from
the Pauli measurements allowing for a maximal partitioning.
It seems highly likely that the maximally partitioning property
is also a necessary condition for (i), i.e., the existence of target
unitaries which map the measurement basis into itself, up to
a phase factor. The close connection between the maximally
partitioning property and the existence of UC can be inferred
from the fact that Clifford operations can be defined as those
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unitaries that map stabilizer states into stabilizer states. That
is, ensuring the existence of UC corresponds to ensuring
the existence of generalized stabilizer states. These are the
common eigenstates of d pairwise commuting measurement
operators that have a nonvanishing expectation value only on
this set of operators. In other words, the generalized stabilizer
states are mutually unbiased joint eigenstates. The maximally
partitioning property by itself is, however, not sufficient to
ensure efficient characterization. Additionally, the spectra of
the measurement operators must obey certain constraints. The
dependence of the relevance distribution on the spectrum of
the basis operators is apparent from Eqs. (15) and (17).

In order to determine whether there exist qudit operations
that can be efficiently characterized, we thus need to find
a suitable generalization of the Pauli measurements. Since
Clifford gates are defined in terms of the measurement basis
[cf. Eq. (12)], this implies also identification of the class of
unitaries UC that correspond to the specific choice of mea-
surement basis. Unfortunately, it is not possible to generalize
all properties of the standard Pauli measurements for qubits to
higher dimensions. Most notably, for d > 2 and d 	= 2m with m

a positive integer, unitarity and Hermiticity cannot be enforced
at the same time on an orthonormal and complete operator
basis. Hence, when replacing qubits by qudits, it is crucial
to understand what are the properties of the standard Pauli
measurements that the generalized operator basis must retain
for efficient estimation of the average fidelity. Moreover, it is
important to determine how different features of the operator
basis affect the scaling of resources of the Monte Carlo
procedure. For the latter, we distinguish between the average
number 〈Nexpt〉 of experiments and the classical computational
resources Csampl needed for the sampling. 〈Nexpt〉 becomes
independent of system size if the relevance distribution has the
minimal number of nonzero elements [cf. Eq. (20)]. Efficient
sampling in the standard MC approach requires in addition
that the relevance distribution is uniform.

To identify the generalized measurement operators and the
associated unitaries that leave it invariant under conjugation,
we start from what we argue to be the fundamental requirement
for efficient characterization: existence of d + 1 MUB. Since
they are the joint eigenbases of the measurement operators
in the commuting sets of the maximally partitioning basis,
the unitaries that map the operator basis onto itself should
also map the set of d + 1 MUB into itself. We utilize this
property to determine candidates for the class of unitaries that
can be characterized efficiently in Sec. III A. In particular, for
single qudits, we show that any mapping between two bases in
the set of MUB leaves the set invariant.3 For multiple qudits,
we prove an analogous statement for a subset of those unitary
transformations.

In Sec. III B, we discuss the construction of an operator
basis out of the d + 1 MUB and the difficulty of guaranteeing
the maximal partitioning property for the operator basis. We
therefore distinguish between the single-qudit and multiple-
qudit cases and impose the conditions for 〈Nexpt〉 ∝ O(1) at

3The mapping is modulo a global phase on the individual basis
elements. However, since this global phase does not affect our results,
we skip it for the sake of brevity.

the single-qudit level in Sec. III C. This ensures the average
number of experiments to be independent of system size
for those Uj ∈ UC that are given by tensor products of
single-qudit unitaries. The conditions allow for both unitary
and Hermitian operator bases. In order forUC to also comprise
entangling operations, we need to impose the conditions for
〈Nexpt〉 ∝ O(1) at the level of multiple qudits in Sec. III D.
These conditions also allow for both unitary and Hermitian
operator bases. However, it is not clear if a Hermitian
basis satisfying these constraints will correspond to local
measurements, whereby we mean those measurements that
can be expressed as tensor products of single-qudit operators.
Most likely this is not the case. We continue with the conditions
for efficient sampling in Sec. III E and show that in order to
ensure a uniform relevance distribution, the spectrum of the
measurement operators must be made up of roots of unity
and zero. This together with the requirement for the operator
basis to be orthonormal and traceless rules out Hermitian
operators. In contrast, a unitary operator basis not only allows
for efficient sampling but also maximizes the setUC and can be
constructed in terms of local measurements. Clearly, the notion
of unitary, non-Hermitian measurements is nonstandard. We
therefore discuss the experimental implementation of such
measurements in Sec. III F.

A. Unitary transformations between two MUB

We denote the set of d + 1 MUB by M. Since, on a
d-dimensional Hilbert space, d + 1 MUB are guaranteed to
exist only if d is equal to a prime number or a power of a prime
number [27], we restrict our investigation to p-level systems
with p > 2 and prime (qupits). We examine the properties
of unitary transformations that map two bases in M into each
other. In particular, any such transformation is a mapping from
M into itself. More formally, see the following:

Proposition 1. Consider a single-qupit basis Aj ∈ M,
j ∈ [1,d + 1], with elements |ψj

k 〉, k ∈ [1,d]. Any unitary
transformation between the elements of Aj and Aj ′ ∈ M,

U =
d∑

k=1

∣∣ψj ′
k

〉〈
ψ

j

k

∣∣, (21)

is a map from M into itself.
We prove Proposition 1 in Appendix A 1. Although we

believe that Proposition 1 can be fully generalized to the multi-
qupit case, we limit ourselves here to generalize, along the lines
of Ref. [27], the only portion of the statement which we will
need in the rest of the paper.

To this end, we define the canonical basis as the basis
in terms of which the elements of all the bases in M
are expressed. Clearly, the choice of the canonical basis
is arbitrary. Equipped with this definition we can state the
following.

Proposition 2. Consider the set M on a d-dimensional
Hilbert space (with d = pn and n > 1). Then, any unitary
transformation of the form of Eq. (21) between the elements
of two noncanonical bases Aj and Aj ′ ∈ M is a map from M
into itself.

We prove Proposition 2 in Appendix A 2. Moreover, we
show in Appendices A 1 and A 2 that the unitaries defined by
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Eq. (21) can be decomposed into a transformation U 0
jj ′ , which

maps the kth element of basis Aj into the kth element of Aj ′ ,
and a permutation of the elements of the two bases. The set
of transformations U 0

jj ′ will be hereafter denoted as U0 and it
can be proven that they form a group. The unitaries defined
by Eq. (21) and their n-qupit generalization (n > 1) are the
candidates for UC , hence, for efficient characterization, once
an operator basis is constructed from the MUB.

B. Maximally partitioning operator basis

Given a set M of d + 1 MUB, an operator basis can be
constructed in terms of projectors onto the states of the MUB.
This operator basis is, by construction, maximally partitioning.
We recall the formal definition of a maximally partitioning
operator basis [30,31]:

Definition. An orthonormal and complete operator basis B
on a d-dimensional Hilbert space is maximally partitioning
if there exists a (d + 1)-dimensional set M = {Aj }d+1

j=1 of

mutually unbiased bases Aj = {|ψj

k 〉}dk=1 such that every
operator in B can be expressed as

B
j

i =
d∑

k=1

λ
j

i,k

∣∣ψj

k

〉〈
ψ

j

k

∣∣. (22)

In Eq. (22), λj is a d × d matrix whose rows are orthogonal.
Each entry λ

j

ik corresponds to the kth eigenvalue of the ith
operator in B sharing the eigenbasis {|ψj 〉}, i.e., belonging to
the commuting set Wj . In particular, since the first row of each
λj corresponds to the spectrum of the identity,

∑d
k=1 λ

j

i,k = 0
for each j ∈ [1,d + 1] and i ∈ [2,d].

The identity needs to be included in the operator basis since
it is left invariant by any unitary transformation and is diagonal
in each of the bases in M. Orthogonality of the rows of λj

guarantees orthonormality of the operators within the same
commuting set. The condition

∑d
k=1 λ

j

i,k = 0 ensures that all
operators are orthogonal to the identity as well as that operators
in different commuting sets are orthogonal.

In practical device characterization, the measurement oper-
ators should be tensor products of single-qupit operators. Then,
the measurements are local in the sense that each operator can
be measured in a separable eigenbasis. The construction of an
operator basis from the MUB which obeys the tensor product
structure is far from straightforward. The proof of Ref. [27]
ensures existence of the set of MUB, and hence of a maximally
partitioning n-qupit operator basis (n > 1), but does not
provide a prescription on how to actually construct this basis
in terms of single-qupit operators. For unitary operators, such
a prescription is found in Ref. [31]: Making explicit use of
unitarity of the operator basis, the maximally partitioning
property is shown to be preserved under the tensor product.
The maximally partitioning basis for multiple qupits is then
obtained by tensor products of the single-qupit unitary basis
operators [31,32]. A weaker version of this result holds also
for other maximally partitioning bases, for example, Hermitian
ones: Given the spectral decomposition (22), the λj matrices
for multiple qupits can be constructed as tensor products of the
λj matrices for n = 1 since orthonormality and completeness
of the operator basis are preserved under tensor product.

However, this does not ensure that the maximally partitioning
operator basis itself can be constructed as tensor products of
the single-qupit operators. In general, that is, without making
any assumption on the spectra of basis operators, one obtains
only p + 1 out of the pn + 1 bases in M by tensor products.
This is not enough to ensure a maximal partitioning for the
resulting operator basis. While it seems reasonable to expect
that the maximally partitioning property is preserved only for
unitary operators, it remains an open question as to whether
this holds also for a Hermitian operator basis and, if so, under
which spectral conditions.

We therefore distinguish between imposing the maximally
partitioning property at the single- and at the multi-qupit
levels. If only the single-qupit operator basis needs to give
rise to a maximal partitioning, the multi-qupit operator basis
which is constructed by tensor products from the single-qupit
basis is not guaranteed to inherit this property. This implies
that only unitaries that are themselves tensor products, i.e.,
nonentangling operations, yield 〈Nexpt〉 ∝ O(1).

C. Ensuring 〈Nexpt〉 ∝ O(1) at the single-qupit level

The average number of experiments required to characterize
a unitary transformation 〈Nexpt〉 becomes independent of
system size if the relevance distribution has a reduced number
N of nonzero elements. We now determine the corresponding
conditions on the operator basis B. To differentiate between
single and multiple qupits, we will indicate explicitly the
dependence of the operator basis on the number n of qupits,
as well as that of the group of unitaries which leaves it
invariant. The conditions at the single-qupit level are given
by the following theorem.

Theorem 1. For any number of qupits n, a nontrivial class
of unitaries UC(n), for which 〈Nexpt〉 ∝ O(1), exists if

(1) the operator basis for a single qupit B(1) is maximally
partitioning;

(2) all single-qupit λj ’s in the decomposition (22) are
equal.

We prove this theorem in Appendix A 3. The idea under-
lying the proof is the following: Conditions 1 and 2 ensure
that the single-qupit operator basis B(1) is left invariant
by the group of transformations U0(1) = {U 0

jj ′(1)}, with j ,
j ′ corresponding to two noncanonical bases. Consider the
multi-qupit operator basis B(n) that is obtained from tensor
products of the elements of B(1). By construction, it is left
invariant by the set of transformations Ũ

0
(n), obtained from

tensor products of the elements of U0(1). The transformations
in Ũ

0
(n) obey a relation analogous to Eq. (17) and thus yield an

average number of experiments that are independent of system
size for protocol I based on the entanglement fidelity.

By construction, the operators in B(n) admit the existence
of a set Msep(n) of p + 1 separable mutually unbiased joint
eigenbases. These are obtained from tensor products of the
elements of the single-qupit set of MUB, M(1). The set
Msep(n) is mapped into itself by the transformations in Ũ

0
(n),

and the states belonging to it obey a relation analogous to
Eq. (14). Hence, if the characterization protocol does not
require more than p + 1 MUBs, the relevance distribution
of the transformations in Ũ(n) has N nonzero elements and
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〈Nexpt〉 ∝ O(1). This is the case for protocol III based on
the two classical fidelities but not for the 2-design protocol
(protocol II). Since the latter requires d + 1 MUB, it can not
be used in combination with an operator basis that only ensures
existence of p + 1 MUB.

Conditions 1 and 2 thus ensure the existence of a group
of unitaries Ũ

0
(n) that lead to 〈Nexpt〉 ∝ O(1) for protocol

I sampling over the eigenstates of input operators [2,3] and
for protocol III based on the two classical fidelities [9]. The
group of transformations Ũ

0
(n) represents only a subgroup of

the group U0(n) since the latter must also contain entangling
operations, i.e., operations which cannot be obtained as tensor
products of single-qupit unitaries. This follows from the proof
of Ref. [32] showing that, for n > 1, bases with a different
entanglement structure coexist within the same set of MUB
M(n). Therefore, the group U0(n) includes transformations
mapping two bases with a different entanglement content into
each other, i.e., entangling operations.

Theorem 1 is compatible with both real and complex spectra
of the measurement operators, i.e., with both unitary and
Hermitian operator bases. However, for qutrits (p = 3), the
Gell-Mann basis, i.e., the basis of the standard generators
of SU(3), does not fulfill the conditions of Theorem 1 since
the eigenvectors of the Gell-Mann operators are not mutually
unbiased. This also implies that such a basis cannot be used
with protocols II and III based on input states [9] for any
unitary.

The conditions in Theorem 1 define a minimal underlying
regular structure of the operator basis. We assume that in
absence of such a regular structure it is not possible to find
any transformation, besides the identity, that maps the full
operator basis into itself. Conditions 1 and 2 then endow a
generic operator basis with the most general regular structure it
can have that allows for a relevance distribution with a reduced
number of elements in at least some protocol, for at least some
unitaries.

D. Ensuring 〈Nexpt〉 ∝ O(1) at the level of n qupits

In order to achieve a number of experiments that are
independent of system size for any number of qupits and
independent of the protocol, the operator basis needs to allow
for a maximal partitioning for every n. This is expressed by
the following theorem.

Theorem 2. A nontrivial class of unitaries UC for which the
scaling of 〈Nexpt〉 is O(1), independent of the characterization
protocol, exists if

(1) the operator basis B(n) is maximally partitioning;
(2) all λj ’s in the decomposition (22) are equal.

This class of unitaries includes entangling operations.
Theorem 2 can be proven in exactly the same way as

Theorem 1 for single qupits in Appendix A 3, simply by
substituting the single-qupit operators in Eqs. (A23) and (A24)
by multi-qupit operators and using Proposition 2. Assuming
the operator basis to be maximally partitioning for every n

ensures that one can construct the full set M(n) of MUB out
of the joint eigenbases of the operators in B(n). This implies
that U0(n) ⊆ UC(n) for all protocols. The set U0(n) includes
entangling operations since the MUB in M(n) have different
entanglement content [32].

Theorem 2 is compatible with both real and complex
spectra of the measurement operators. However, it might not
be possible to obtain a Hermitian basis from tensor products of
the single-qupit bases which allows for a maximal partitioning.
In that case, the Hermitian operators would not correspond to
local measurements. For an operator basis that gives rise to
a maximal partitioning and is constructed in terms of tensor
products of single-qupit operators, condition 2 of Theorem 2
translates into the requirement that all single-qupit operators
have the same spectrum.

So far, we have identified a set of conditions that guarantee
the average number of experiments in Monte Carlo estimation
of Favg to be independent of system size, 〈Nexpt〉 ∝ O(1), for
certain unitaries. This corresponds to a first step towards effi-
cient Monte Carlo characterization. The additional condition
of a uniform relevance distribution, that ensures the classical
computational resources to scale at most polynomially in n, re-
quires additional constraints on the spectra of the measurement
operators.

E. Ensuring efficient sampling: Uniform relevance distribution

Efficient sampling requires a uniform relevance distribution
which together with tracelessness and orthonormality of the
operator basis imply the measurement operators to have the
same spectrum, up to a phase factor, with the modulus square
of each eigenvalue being equal to 1. For Hermitian operators,
uniformity of the relevance distribution combined with the
constraint of tracelessness imply that the spectrum of each
basis operator must be the same and made up of an equal
number of +1 and −1 and at least one zero. However, for
p > 2, such a spectrum is incompatible with orthonormality
of the operator basis. It is easy to check that already for a single
qutrit (p = 3), this choice of eigenvalues does not allow to
construct a (p × p) matrix λ with orthogonal rows. This holds
also for prime numbers p > 3. As a consequence, enforcing
the operator basis to be Hermitian rules out the possibility of
obtaining a uniform relevance distribution and thus efficient
sampling for any target unitary (except identity).

In contrast, for unitary measurement bases, tracelessness
and unitarity imply that the spectrum of each single-qupit
operator is p-nary, i.e., made up of the p distinct pth
roots of unity. Consequently, the spectra of all multi-qupit
measurement operators are identical since each pth root of
the identity simply appears with multiplicity pn−1. Such a
spectrum is also compatible with orthonormality. Indeed, using
p distinct pth roots of unity, one can construct, for each of
the p + 1 bases in M(1), a set of exactly p − 1 pairwise
orthogonal traceless operators, i.e., a maximally partitioning
single-qupit basis [33]. Since the maximal partitioning is
preserved under tensor product [31], a p-nary spectrum is
also compatible with a multiple-qupit operator basis that
gives rise to a maximal partitioning. As a consequence,
a maximally partitioning unitary basis is compatible with
a uniform relevance distribution. It requires, however, a
generalization of the relevance distribution given in Eq. (8b)
to include complex expectation values

P j (i,k) = 1

N
∣∣χj

U (i,k)
∣∣2; χ

j

U (i,k) ∈ C. (23)
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More formally, the conditions on the spectrum can be ex-
pressed as follows.

Theorem 3. A nontrivial set of unitaries UC that can be
characterized efficiently both in terms of the average number
of experiments and the classical computational resources for
any number of qupits exists if the single-qupit operator basis
is maximally partitioning and unitary.

This theorem can be proven straightforwardly from the
previous discussion: Since the maximally partitioning unitary
basis satisfies conditions 1 and 2 of Theorem 2, then the set of
transformations UC which allows for efficient characterization
contains at least U0

δ(n) and therefore is nontrivial. Moreover,
due to the unitary spectrum of the basis operators, the
operations in U0

δ(n) satisfy Eq. (14) with ω = exp(2iπ/p) and
a ∈ [0,p − 1]. This leads to a generalized uniform relevance
distribution [Eq. (23)] in all protocols. We show in Sec. IV
that such a generalized uniform relevance distribution yields
Csampl ∝ O(1).

For a maximally partitioning unitary operator basis, the set
of unitaries which leave the basis invariant up to a phase factor
is larger than U0

δ(n). This can be inferred from the fact that
the operator basis is left invariant, up to a phase factor, also
by arbitrary cyclic permutations and those permutations which
map basis operators belonging to the same commuting set into
each other [33]. Most likely, the set of unitaries given by U0

δ(n)
extended by those permutations is also maximal. However,
whether this is indeed the case and whether the set coincides
with the full group U

δ (n) of transformations which leaves the
set M(n) of MUB invariant remains an open question.

F. A unitary operator basis versus actual measurements:
Generalized Pauli basis

A maximally partioning unitary operator basis is the so-
called generalized Pauli basis [11,30,31]. This basis generates
a group under matrix multiplication, the generalized Pauli
group. The group of transformations UC(n) leaving the
operator basis invariant up to a phase factor can be identified
with the normalizer of the generalized Pauli group, i.e., with the
generalized Clifford group [11]. To construct the generalized
Pauli basis, one generalizes the standard Pauli σz and σx

operators [11,30,31]

Z(1) = ωn|n〉〈n|,
(24)

X(1) = |n + 1〉〈n|,
where addition is modulo p, n ∈ [0,p−1], and ω =
exp (2iπ/p). The generalized Pauli operator basis for a single
qupit is obtained as [34]

Xa(1)Zb(1), a,b = 0, . . . ,p − 1. (25)

For example, by setting Y (1) = X(1)Z(1) and
V (1) = X(1)Z(1)2 the full operator basis for a single
qutrit reads as P̄(1) = {I (1),X(1),Y (1),Z(1),V (1),
X2(1),Y 2(1),Z2(1),V 2(1)}. Each operator from the set
commutes only with itself, its square (corresponding to both
its Hermitian conjugate and its inverse) and the identity, i.e.,
with the operators obtained from a special set of permutations
identified in Ref. [33]. This defines for qutrits a unique
partitioning into d + 1 = 4 sets of commuting operators. The

generalized Pauli basis [Eq. (25)] gives rise to the definition
of the generalized single-qupit Pauli group as [11,35]

P(1) = {ωiXa(1)Zb(1), a,b,i ∈ [0,p − 1]} . (26)

In analogy to the qubit case, the Pauli measurements on
n qupits are given by tensor products of the single-qupit
operators [Eq. (25)] which are also the generators of the n-qupit
Pauli group.

To summarize, by enforcing unitarity on the λ matrix in
Eq. (22), we can obtain an operator basis which generalizes
all the fundamental properties of the standard Pauli operators
aside from Hermiticity. That is, an orthonormal basis of unitary
operators with a maximal partitioning into d + 1 commuting
subsets which is preserved under tensor product. The p-nary
spectrum of the basis is preserved as the number of particles
increases, and the operator basis generates a group under ma-
trix multiplication. Since we can define a generalized Clifford
group and obtain a uniform relevance distribution, the fun-
damental requirements for achieving efficient characterization
for certain unitaries are met. There are two caveats, however:
(i) The Monte Carlo procedure needs to be generalized for
measurement operators with complex eigenvalues. This is
done in Appendix B. (ii) Observables have to be Hermitian, so
we need to clarify how a unitary, non-Hermitian measurement
basis can be connected to measurable observables. There are
two options: one can construct Hermitian counterparts of
unitary basis operators or utilize the concept of a quantum
circuit to simulate a Hermitian measurement.

A Hermitian counterpart can be constructed from the
unitary orthonormal set of generalized Pauli operators P̄(1) =
{Uk(1)}p2

k=1 by noting that for each Uk(1) ∈ P̄(1) also U+
k (1) =

[Uk(1)]p−1 ∈ P̄(1) is contained in P̄(1). Consequently, a
Hermitian orthonormal basis is obtained via the transforma-
tion [35]

H (1) = [U (1) − U (1)†]/
√

2i,

H̄ (1) = [U (1) + U (1)†]/
√

2. (27)

The operators of kind H have spectrum Im(ωa) with a ∈
[0,p − 1], whereas those of kind H̄ have spectrum Re(ωa)
with a ∈ [0,p − 1]. Since [H (1),U (1)] = [H̄ (1),U (1)] = 0,
the partitioning structure of the generalized Pauli basis, and
hence the corresponding structure of MUB, is preserved by
the transformation (27). However, since Hermiticity is not
enforced at the level of the λ matrix, the Hermitian counterpart
of the generalized Pauli basis does not inherit the tensor
product structure

H (n) =
(

n⊗
i=1

Ui(1) −
n⊗

i=1

U
†
i (1)

)/√
2i

	=
n⊗

i=1

H (Ui). (28)

On the one hand this implies that the spectrum of the Hermitian
operators remains invariant with respect to the number of
qupits, on the other the operator basis includes nonlocal
measurements. It is easily seen that, regardless of the number
of particles n, the action of a Clifford operation C on the
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Hermitian basis is CH (Uk)C† = H (CUkC
†) since C maps Uk

into CUkC
† = ωiUk′ with i ∈ [0,p − 1] and U

†
k in (ωi)∗U †

k′ .
In conclusion, a unitary generalization of the Pauli operators

maintains all relevant properties of the standard Pauli basis.
Despite losing Hermiticity, it can be employed to construct
a Hermitian operator basis which, however, does not obey a
tensor product structure and hence does not correspond to local
measurements. This sets the stage for efficient characterization
of qupit Clifford operations. If one uses the unitary generalized
Pauli basis, despite the fact that the operators are non-
Hermitian, actual measurements can be carried out utilizing the
concept of universal quantum circuits [29]: Any measurement
of a generalized (non-Hermitian) Pauli operator can be
implemented by applying suitable unitary gates to the system
coupled to an auxiliary qudit and performing a projective
measurement on the auxiliary qudit in the standard basis.
The idea of mapping complex spectra to real measurement
results by an appropriate experimental protocol has first
been discussed for polarization-path qudits with d = 4 [36].
Alternatively to unitary generalized Pauli measurements, the
Hermitized version of the basis [Eq. (27)] can be adopted. It
includes, however, nonlocal measurements.

IV. EFFICIENT CHARACTERIZATION
OF QUDIT OPERATIONS

A. Modifications of the Monte Carlo approach allowing
for efficient characterization of qudit operations

When replacing qubits by qupits, only unitary, maximally
partitioning operator bases such as the generalized Pauli basis
and their Hermitized versions allow for efficient character-
ization both in terms of 〈Nexpt〉 ∝ O(1) and Csampl ∝ O(1).
If a unitary operator basis is chosen, a uniform relevance
distribution can be obtained, yielding efficient sampling, by
employing a complex generalization of the standard Monte
Carlo approach [2,3,9]. It is presented in Appendix B.

For a Hermitized basis, the standard Monte Carlo approach
needs to be modified at the level of the sampling step. With
the standard sampling procedure, efficient sampling cannot be
achieved since the relevance distribution of Clifford unitaries
in the Hermitized basis is no longer uniform due to the loss of
the tensor product structure. We denote the Hermitized basis by
H = {H̃i}d2

i=1 where the H̃i comprise both Hi and its Hermitian
partner H̄i . For Clifford operations, the relevance distribution
in the Hermitized basis takes on the values

P j (i,k) = {Re2(ωa),Im2(ωa); a ∈ [0,p − 1]}. (29)

For each input operator H̃i there are two possible output
operators H̃k , H̃k̄ leading to nonvanishing expectation values.
The following relation holds:

P j (i,k) + P j (i,k̄) = 1. (30)

It allows for uniform sampling over pairs k, k̄, i.e., one
draws uniformly at random an index i ∈ [1,d2], selecting
the input operator from the set H. Using a generalization
of the Gottesman-Knill theorem [29], one can efficiently
compute CH̃iC

† where C is the Clifford operation that shall be
certified. One thus obtains the indices k, k̄ corresponding to the
measurements with nonvanishing expectation values and the

TABLE I. Relevance distribution for the additional binary sam-
pling required for the Hermitized version of the unitary operator basis.
The symbols H and H̄ denote, respectively, the sets of operators of
the kind H and H̄ .

H̃i ∈ H H̃i ∈ H̄

H̃k ∈ H Re2(ωa) Im2(ωa)
H̃k̄ ∈ H̄ Im2(ωa) Re2(ωa)

phase factor ωa needed to determine the corresponding value of
the relevance distribution. At this point, a second sampling step
according to Table I is necessary to select a single measurement
out of H̃k and H̃k̄ . Such a two-stage sampling is independent
of system size. Thus, also for a Hermitized basis, the sampling
complexity is Cclass ∝ O(1) and the classical computational
resources scale polynomially in n.

B. Hierarchy of operator bases

Our discussion in Sec. III does not only provide efficient
Monte Carlo protocols for the characterization of qudit
operations, it also allows us to classify all operator bases
according to which properties of the standard Pauli basis for
qubits they retain. The hierarchy is summarized in Table II.

At the bottom of the hierarchy, we find operator bases that
only retain Hermiticity, such as the Gell-Mann basis for qutrits.
Following Theorem 1, these bases do not allow for efficient
Monte Carlo characterization for any unitary. Moreover, they
cannot be used in combination with the input-state-based
protocols that yield a reduction of resources for general
unitaries [9]. This follows from the fact that these bases do
not allow for the existence of mutually unbiased eigenbases.

The next step in the hierarchy is occupied by Hermitian
bases that obey the conditions of Theorem 1. These bases
allow for the existence of a set of nonentangling unitaries
that can be characterized with 〈Nexpt〉 ∝ O(1) in the protocol
based on the entanglement fidelity and the one using two
classical fidelities. In other words, Theorem 1 ensures that
the operator basis admits the existence of nonentangled
generalized stabilizer states. This explains why the protocol
based on a state 2-design which includes entangled stabilizer
states cannot be applied. However, the unitaries for which
〈Nexpt〉 ∝ O(1) cannot be characterized efficiently since in
general their relevance distribution is not known a priori.
Therefore, Monte Carlo characterization with such operator
bases still requires classical computational resources that scale
exponentially in the number of qudits.

Next, we have Hermitian operator bases which obey the
conditions of Theorem 2. These bases enlarge the class of
unitaries for which 〈Nexpt〉 ∝ O(1) to comprise also entangling
operations. They also ensure that this scaling is achieved in all
protocols. In other words, enforcing the maximally partitioning
property and the condition that all λ must be equal for every
n guarantees the existence of both separable and entangled
stabilizer states. However, most likely, a Hermitian basis
for multiple qudits which is maximally partitioning includes
nonlocal measurements. This would imply that there is no
local Hermitian measurement basis allowing us to achieve
〈Nexpt〉 ∝ O(1) in all protocols. Moreover, even if such a basis
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TABLE II. Resources required for characterizing of operations in UC . The protocols refer to 1: protocol based on the entanglement
fidelity [2,3]; 2: protocol employing two classical fidelities [9]; 3: protocol based on a state 2-design [9]. The operator bases are labeled as
follows: A: Hermitian bases, such as the Gell-Mann basis for qutrits; B: Hermitian bases constructed as tensor products of a single-qupit basis
that give rise to a maximal partitioning with all λj in Eq. (22) being equal; C: Hermitian bases that give rise to a maximal partitioning and have
equal λj for all n; D: unitary bases that give rise to maximal partitioning and have equal λj for all n, such as the generalized Pauli basis; E:
Hermitized version of D.

Operator basis 〈Nexpt〉 Csampl Local measurements Protocols

A O(d2) O(n2d4) Yes 1
B O(1) As for general unitariesa Yes 1,2
C O(1) As for general unitariesb Most likely not 1,2,3
D O(1) O(1) Yes 1,2,3
E O(1) O(1) No 1,2,3

aThe scaling for general unitaries depends on the protocol (cf. Ref. [9]).
bIf a Hermitian basis comprises nonlocal measurements, then the sampling complexity for general unitaries is increased since the relevance
distribution can no longer be computed using conditional probabilities (cf. Ref. [3]).

existed, it would not allow for efficient characterization of any
unitary in terms of the sampling complexity since the relevance
distribution would not be known a priori.

Finally, on top of the hierarchy, we find unitary bases that
give rise to a maximal partitioning. These bases retain all the
relevant properties of the standard Pauli basis for qubits besides
Hermiticity. They allow for efficient characterization in all
protocols, provided one generalizes the Monte Carlo procedure
to operators with complex eigenvalues. The corresponding
class of unitaries comprises not only the elements of U0

δ(n),
mapping elements of two bases into each other, but also certain,
if not all, permutations. Efficient Monte Carlo characterization
is also achieved by a Hermitized version of such a unitary basis
by modifying the sampling to consist of two stages as explained
above. The Hermitized version, however, comprises nonlocal
measurements. For generic unitaries, Monte Carlo charac-
terization using Hermitized operator bases requires more
computational resources compared to the unitary counterpart.
This is due to the loss of the tensor product structure because
of which the method of the conditional probabilities [3] can
not be applied.

V. CONCLUSIONS

We have shown that there exists a class of unitary
operations for multilevel information carriers for which in
principle the average fidelity can be estimated efficiently,
i.e., with an effort that scales at most polynomially in the
number of qudits. However, if the class of unitaries is to
comprise entangling operations, the operator basis that must
be chosen to allow for efficient characterization is either
unitary non-Hermitian or Hermitian but comprising nonlocal
measurements.

Unitary non-Hermitian measurements can be realized via
quantum circuits [29,36]. The corresponding Monte Carlo
sampling procedure that is required to carry out the charac-
terization needs to be adapted to complex eigenvalues in the
relevance distribution. We have shown that this is straight-
forward. Employing nonlocal Hermitian measurements that
are constructed out of the unitary operator basis also requires
a small modification of the standard Monte Carlo procedure
in that a two-stage sampling becomes necessary to achieve

a sampling complexity that is independent of system size.
Which of the two approaches, unitary circuit measurements
or nonlocal Hermitian measurements, is more practical in an
actual experiment remains to be seen.

The crucial feature of operator bases to allow for efficient
device characterization is that they give rise to a maximal
partitioning of the operators into commuting sets. Fulfilling
this condition at the level of single-qupit operators guarantees
the existence of a class of unitary transformations that can
be characterized with reduced resources in the Monte Carlo
protocols based on the entanglement fidelity [2,3] and two
classical fidelities [9]. In that case, a Hermitian basis of local
measurements can be utilized. However, in order to achieve
efficient characterization for a larger set of unitaries including
entangling operations, the maximally partitioning property
needs to be fulfilled at the level of the multi-qudit operators.
While it is automatically satisfied by a unitary basis built as
tensor product of single-qupit operators that give rise to a
maximal partitioning, the same does not appear to be true for
Hermitian bases. For the latter, nonlocal measurements seem
unavoidable for efficient characterization of qudit operations.

Our work highlights the intimate relation between the
existence of unitaries that can be characterized efficiently and
the existence of mutually unbiased bases. In fact, for prime
Hilbert space dimensions, that is, at the single-qupit level,
one can determine a maximal number of such unitaries in a
constructive proof [33]. Moreover, our results suggest that the
conditions presented in Theorems 1–3 are not only sufficient
for efficient characterization but also necessary. One might
argue that necessity of the maximally partitioning property is
questioned by recent results on generalized Pauli bases [29].
Indeed, a generalized Pauli basis, and hence a generalized
Clifford group, can be constructed assuming only an arbitrary
tensor product decomposition of the Hilbert space, without the
necessity of prime subspace dimensions [29]. Since existence
of a maximal number of mutually unbiased bases and hence
existence of a maximal partitioning is only guaranteed for
prime dimensions, such a generalized Clifford group would not
be in correspondence with an underlying maximal partitioning
structure already at the level of single-qudit operators. We
believe, however, that this apparent contradiction can be
resolved by considering the tensor product structure assumed
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in Ref. [29]. Indeed, the properties of a unitary operator basis
that is obtained in terms of tensor products over an arbitrary
decomposition of the Hilbert space should be equivalent to the
properties of the same unitary basis obtained as tensor products
over the irreducible decomposition given by the prime fac-
torization. In the irreducible decomposition, each single-qupit
generalized Pauli basis gives rise to a maximal partitioning and
thus allows for the existence of stabilizer states. This would
be consistent with an extension of our theorems in terms of
necessary conditions for efficient characterization. A rigorous
proof of the fact that necessity of the maximal partitioning is
consistent with the results of Ref. [29] is beyond the scope of
our current work.
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APPENDIX A: PROOFS

1. Proof of Proposition 1

The general form of a unitary transformation between two
bases Aj ,Aj ′ ∈ M is given by Eq. (21). This expression is
general since no ordering of the elements within each basis is
specified. In order to prove that, on a single-qupit Hilbert space,
any basis transformation is a map from M into itself, we write
the explicit form of the complete set of MUB M on a prime
dimension Hilbert space d = p with p odd. The canonical
basis needs to be treated separately. Therefore, we write M as
the union of the canonical basis Ã0, Ã0 = {|i〉}i=0,...,p−1, and
all other MUB Aj , j = 0, . . . ,d − 1, Aj = {|ψj

i 〉}i=0,...,p−1

with4

∣∣ψj

i

〉 = 1√
p

p−1∑
k=0

(ωi)p−k(ω−j )sk |k〉, (A1)

where sk =∑p−1
l=k l [27,31] and ω = exp(2iπ/p).

We consider a change of basis Ujj ′ between Aj and Aj ′ ,
i.e.,

Ujj ′ =
∑

k

∣∣ψj

k

〉〈
ψ

j ′
k

∣∣, (A2)

which, using Eq. (A1), can be rewritten as

Ujj ′ = 1

p

∑
klm

ωk(m−l)ω−jsl+j ′sm |l〉〈m|

=
∑

l

ω−(j−j ′)sl |l〉〈l|, (A3)

where ω = exp(2iπ/p) and we have used the fact that∑
k ωk(m−l) = pδml . From Eq. (A3) one can already see that

the action of Ujj ′ on an element of the canonical basis amounts
to multiplication by a phase factor depending on both the shift

4While, to the best of our knowledge, it has not yet been proven that
all sets of MUB obey the form of Eq. (A1) or an equivalent one, we
believe that our proof works no matter how the MUB are constructed.

(j − j ′) and the element of the canonical basis itself. We now
apply Ujj ′ to the ith element of the basis Aα and obtain ∀ α,i

Ujj ′
∣∣ψα

i

〉 = 1√
p

∑
l

(ωi)d−lω−(α+(j−j ′))sl |l〉

= ∣∣ψα+(j−j ′)
i

〉
. (A4)

Equations (A3) and (A4) therefore prove that any change
of basis between two noncanonical bases in M is a map
from M into itself and that the parameter characterizing
the transformation is the shift δ = j − j ′ in the index of the
noncanonical bases.

We now prove that the same is true also for a change of
basis Uj between Ã0 and Aj , i.e., for

Uj =
∑

k

∣∣ψj

k

〉〈k|. (A5)

First of all, we show that Uj maps A0 onto Ã0 modulo a phase
on the individual vectors. This can be seen by rewriting Uj ,
using again Eq. (A1),

Uj = 1√
p

∑
kl

(ωk)d−l(ω−j )sl |l〉〈k|

=
∑

l

ω−jsl |l〉
[

1√
p

∑
k

ω−kl〈k|
]

.

Note that〈
ψ

j

i

∣∣ = 1√
p

∑
k

(ω−i)d−k(ωj )sk 〈k| = 1√
p

∑
k

ωikωjsk 〈k|,

such that 〈
ψ0

−i

∣∣ = 1√
p

∑
k

ω−ik〈k|,

where we have used ω∗ = ω−1. Hence,

Uj =
∑

l

ω−jsl |l〉〈ψ0
−l

∣∣. (A6)

In order to complete the proof of Proposition 1, we show that
Uj maps Ab 	=0 onto Aβ for suitably chosen β, modulo a phase
on the individual vectors. To this end, we consider the action
of Uj on |ψb

i 〉:

U
∣∣ψb

i

〉 = 1√
p

∑
k

(ωi)d−k(ω−b)sk
∣∣ψj

k

〉

= 1√
p

∑
k

ω−ikω−bsk
∣∣ψj

k

〉
. (A7)

Each basis in M can be regarded as the eigenbasis of an
operator X,Z,XZβ [31], with β ∈ [1,d − 1], where X and Z

are the higher-dimensional generalizations of the the standard
Pauli σz and σx operators [11,30,31]

Z = ωk|k〉〈k|,
(A8)

X = |k + 1〉〈k|,
with k ∈ [0,d − 1]. In order to prove that the state U |ψb

i 〉
in Eq. (A7) belongs to M, we need to show that it is

032317-12



EFFICIENT MONTE CARLO CHARACTERIZATION OF . . . PHYSICAL REVIEW A 90, 032317 (2014)

an eigenvector to XZβ for some β dependent on b. This
then implies that the set {U |ψb

i 〉}i=0,...,p−1 corresponds to
Aβ modulo a phase on the individual vectors. Using the
relation [31]

XZβ
∣∣ψb

k

〉 = ωb+k−β
∣∣ψb

b+k−β

〉
, (A9)

we write

XZβ
[
U
∣∣ψb

i

〉] = 1√
p

∑
k

ω−ikω−bskXZβ
∣∣ψj

k

〉

= 1√
p

∑
k

ω−ikω−bskωj+k−β
∣∣ψj

j+k−β

〉
.

Shifting the summation index k → k + (j − β) yields

XZβ
[
U
∣∣ψb

i

〉] = 1√
p

∑
k

ω−i[k−(j−β)]ω−bsk−(j−β)

×ωk
∣∣ψj

k−(j−β)

〉
= ωi(j−β)

√
p

∑
k

ω−(i−1)kω−bsk−(j−β)
∣∣ψj

k

〉
.

We note that

sk−(j−β) =
d−1∑

l=k−(j−β)

l =
d−1∑
l=k

l +
k−(j−β+1)∑

l=k

l

= sk +
k−(j−β+q)∑

l=k

l.

Moreover,
∑n

l=1 l = n(n+1)
2 and

∑n−1
l=1 l = n(n−1)

2 such that∑n−1
l=m l =∑n−1

l=1 l −∑m−1
l=1 l = n(n−1)

2 − m(m−1)
2 and

k−(j−β+1)∑
l=k

l = (k + β − j )(k + β − j − 1)

2
− k(k − 1)

2

= 2k(β − j ) − k − (β − j ) + (β − j )2

2
+ k

2

= k(β − j ) + (β − j )2 − (β − j )

2
≡ k(β − j ) + cβj ,

where cβj is some constant. Hence,

XZβ
[
U
∣∣ψb

i

〉] = ωi(j−β)ω−bcβj

√
p

∑
k

ω−(i−1)kω−bk(β−j )ω−bsk
∣∣ψj

k

〉

= ωi(j−β)ω−bcβj

√
d

∑
k

ω−[i−1+b(β−j )]kω−bsk
∣∣ψj

k

〉
= ωi(j−β)ω−bcβj

[
U
∣∣ψb

i−1+b(β−j )

〉]
. (A10)

In Eq. (A1), due to the fact that the phases of the vectors are
all roots of unity, the integral indices have induced upon them
an algebra modulo p. This implies that if

b(β − j ) − 1 = p , (A11)

then

XZβ
[
U
∣∣ψb

i

〉] = ωi(j−β)ω−bcβj
[
U
∣∣ψb

i

〉]
,

which is what we need to show. So, we only need to find
solutions for β in Eq. (A11) for any b 	= 0. Equation (A11) is
equivalent to

b(β − j ) = p + 1.

Since j is fixed, this is analogous to finding solutions for β ′
with

bβ ′ = p + 1.

Since everything is modulo p, we can subtract p on the right
side only,

bβ ′ = 1.

This equation has a unique solution by the linear congruence
theorem which states that

bx = a

has a solution x for fixed a and b in modulo d algebra if a is
divisible by the greatest common divisor of b and d. But, since
p is prime, the greatest common divisor of b and d is 1, and
obviously j = 1 is divisible by 1. This completes the proof of
Proposition 1.

If a precise ordering of the elements within each basis
is chosen, the transformation Ujj ′ in Eq. (A3) can be
rewritten as

Ujj ′ =
∑

k

∣∣ψj

π(k)

〉〈
ψ

j ′
k

∣∣, (A12)

where π (k) denotes the action of an arbitrary permutation 

on the kth basis index. This yields a decomposition of Ujj ′ in
terms of a transformation

U 0
jj ′ =

∑
k

∣∣ψj

k

〉〈
ψ

j ′
k

∣∣ (A13)

between the kth element of basis j and the kth element of
basis j ′ and a permutation  of the elements of any of the two
bases, that is,

U 0
jj ′ =

∑
k′k

∣∣ψj

π(k)

〉〈
ψ

j

k

∣∣ψj

k

〉〈
ψ

j ′
k

∣∣ = Ujj ′ . (A14)

The same is true for the transformations of the kind Uj in
Eq. (A5). Additionally, one can also prove that the unitaries
defined by Eq. (21) form a group under matrix multiplication.

2. Proof of Proposition 2

Proving Proposition 2 amounts to showing that the analogs
of Eqs. (A3) and (A4) hold in the multi-qupit case. The initial
observation is that, due to the fact that p is prime, in Eq. (A1)
the integral indices not only have induced upon them an algebra
modulo p, but it has also the structure of a finite field Fp. This
serves as building block for the construction of the finite field
Fpn with pn elements and generalization of Eq. (A1) to the
multi-qupit case. Indeed, by letting the indices take values in
Fpn , we can use the same notation as in the previous section
and write the set M as the union of the multi-qupit canonical
basis Ã0 = {|i〉} and bases Aj whose generic elements can be
expressed as [27]∣∣ψj

i

〉 = 1√
pn

∑
k∈Fpn

ωTr(jk2+ik)|k〉 , j,i ∈ Fpn . (A15)
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The above expression contains the trace over elements of
Fpn . Hence, to define such an operation, we need the explicit
construction of Fpn , also denoted as the extension field of Fp.
The construction of an extension field is very similar to that of
complex numbers [27]. In the case of complex numbers, one
introduces the number i as solution of an equation, i2 = −1,
which has no roots in the real numbers. The complex numbers
are then the set of linear combinations of i0 and i1 with real
coefficients. Analogously, to build Fpn one finds an n-degree
polynomial, with coefficients in Fp, which is insoluble in Fp.
Denoting by θ a root of the polynomial, Fpn is the set of linear
combinations of the first (n − 1) powers of θ with coefficients
in Fp. The extension field is unique since one can prove that,
no matter what is the choice of the polynomial, there exists
a unique field with pn elements [27]. The extension field can
also be interpreted as an n-dimensional vector space over Fp

with the powers of θ (or any of their linearly independent
combinations) forming a basis for the vector space.

Equipped with these tools we can define the trace in
Eq. (A15):

Tr(α) =
n−1∑
i=1

αi. (A16)

The following relevant properties hold:
(1) Tr(α) ∈ Fp for all α ∈ Fpn ;
(2) Tr(α) is linear in Fpn where scalars are elements of Fp;
(3) all linear transformations from Fpn to Fp are of the

form α → Tr(βα) for all β ∈ Fpn .
A generic mapping Ujj ′ between two noncanonical multi-qupit
bases Aj and Aj ′ thus becomes

Ujj ′ =
∑

k

∣∣ψj

k

〉〈
ψ

j ′
k

∣∣
=

∑
klm∈Fpn

ωTr(j l2+kl)−Tr(j ′m2+km)|l〉〈m|

=
∑

klm∈Fpn

ωTr(j l2−j ′m2)+Tr[k(l−m)]|l〉〈m|, (A17)

where we have used linearity of the trace in the last equality.
In analogy to the previous section, we need to calculate∑

k∈Fpn

ωTr[k(l−m)] (A18)

to prove Proposition 2. We can rewrite the trace in the exponent
of Eq. (A18),

Tr[k(m − l)] = Tr

(∑
n

knfn(m − l)

)

=
∑

n

knTr[fn(m − l)]

=
∑

n

knc
n
ml,

where kn,c
n
ml ∈ Fp and {fi}ni=1 is a basis on Fpn . Hence,

Eq. (A18) becomes∑
k∈Fpn

ωTr[k(l−m)] =
∑

k∈Fpn

∏
n

ωknc
n
ml . (A19)

One can perform the sum over the k’s independently [27].
Exchanging the sum with the product then yields∑

k∈Fpn

∏
n

ωknc
n
ml =

∏
n

∑
kn∈Fp

ωknc
n
ml = pn

∏
n

δ
(
cn
ml

)
, (A20)

where the notation δ(cn
ml) signifies that the above expression

is nonvanishing only if each cn
ml is equal to zero. For this to

be true regardless of the choice of the vector basis on Fpn and
of the canonical basis elements m and l, we need to impose
that the argument of the trace vanishes for each n. This is only
true if (m − l) = 0, i.e., if the two vectors on Fpn are equal.
Inserting Eq. (A20) into Eq. (A17) leads to

Ujj ′ =
∑
l∈Fpn

ωTr[(j−j ′)l2]|l〉〈l| , (A21)

which is the multi-qupit analog of Eq. (A3). It shows that
the canonical basis is mapped into itself, up to an element-
dependent phase factor, under Ujj ′ for any j,j ′ ∈ Fpn . If we
apply Ujj ′ to the ith element of basis Aα with α ∈ Fpn , we
obtain, using linearity of the trace and orthonormality of the
canonical basis,

Ujj ′
∣∣ψα

i

〉 = ∑
l∈Fpn

ωTr[(α+j−j ′)l2+il]|l〉

= ∣∣ψα+(j−j ′)
i

〉
. (A22)

This concludes the proof. Analogously to the previous section,
by fixing the ordering of the elements within each basis, we
can decompose the transformations Ujj ′ in terms of a change
of basis U 0

jj ′ and a permutation.

3. Proof of Theorem 1

Let us apply a generic single-qupit unitary U 0
jj ′ (1)

[Eq. (A13)] to a generic element Bα of the single-qupit
operator basis. Equation (A3) implies that, if α is the index
corresponding to the canonical basis Ã0, then the transforma-
tion would map the operator into itself since in this case

U 0
jj ′(1)Bα

i (1)U 0,†
jj ′ (1) =

d∑
k=1

λα
ikω

−δsl
∣∣ψα

k

〉〈
ψα

k

∣∣ωδsl

= Bα
i (1), (A23)

where δ = (j − j ′). If α corresponds to one of the noncanon-
ical bases Aα , we obtain, using Eq. (A4),

U 0
jj ′(1)Bα

i (1)U 0,†
jj ′ (1) =

d∑
k=1

λα
ik

∣∣ψα+δ
k

〉〈
ψα+δ

k

∣∣ = B̃i(1). (A24)

The resulting operator B̃i(1) corresponds, up to a phase factor,
to the element Bα+δ

i (1) of the operator basis if and only if
λα = eiφαλα+δ . Since this must be true for every δ, λα must
be equal to eiφαλ for each α ∈ [1,d + 1]. Furthermore, each
commuting set contains the identity, i.e., the first row of every
λα is made up of ones. Therefore, eiφα = 1 and λα = λ for
each α ∈ [1,d + 1]. Since the set of unitaries U0

jj ′(1) forms
a group U0(1), the condition on all λα to be equal ensures
the existence of a group of transformations which leaves the
single-qupit operator basis invariant, i.e., U0(1) ⊆ UC(1).

032317-14



EFFICIENT MONTE CARLO CHARACTERIZATION OF . . . PHYSICAL REVIEW A 90, 032317 (2014)

Now consider the n-qupit operator basis B(n), built out
of tensor products of the operators in B(1). The n-qupit
operators are thus written as Bi(n) =⊗n

l=1 B
jl

il
(1), where

B
jl

il
(1) denotes a generic single-qupit operator acting on the

lth qupit. Existence of the group U(1) implies that B(n) is left
invariant by the set of unitaries Ũ

0 = {Ũ 0
jj ′(n)} that are built

as tensor products of the elements in U0(1). This can be seen
as follows: For every Bi(n) and Ũ 0

jj ′(n) ∈ Ũ
0
, one has

Ũ 0
jj ′ (n)Bi(n)Ũ 0,†

jj ′ (n)

=
(

n⊗
l=1

U 0
jlj

′
l
(1)

)
Bi(n)

(
n⊗

l=1

U 0
jlj

′
l
(1)

)†

=
(

n⊗
l=1

U 0
jlj

′
l
(1)

)
n⊗

l=1

B
jl

il
(1)

(
n⊗

l=1

U
0,†
jlj

′
l
(1)

)

=
n⊗

l=1

(
U 0

jlj
′
l
(1)Bjl

il
(1)U 0,†

jlj
′
l
(1)
)

=
n⊗

l=1

B
j ′
l

i ′l
(1) = Bi ′(n) ∈ B(n) . (A25)

This allows us to conclude that Ũ
0
(n) ⊆ UC(n). The charac-

teristic function of a generic Ũ 0
jj ′ (n) ∈ Ũ

0
(n) is given by

χŨ 0
jj ′ (n)(i,k) = 1

d
Tr
[
Bk(n)Ũ 0

jj ′(n)Bi(n)Ũ 0,†
jj ′ (n)

]
= 1

d
Tr[Bk(n)Bi ′(n)] = δki ′ . (A26)

Therefore, these unitaries will lead to a relevance distribution
with d2 = N nonzero elements in the protocol based on the
entanglement fidelity, i.e., formally using input operators [2,3].
With Eq. (19), one then finds 〈Nexpt〉 ∝ O(1). In addition,

Ũ
0
(n) is itself a group since its elements are tensor products

of the elements of U0(1).
Let us now check the scaling of the transformations in Ũ

0
(n)

for input-state-based protocols. By construction, the operator
basis B(n) admits the existence of p + 1 separable mutually
unbiased joint eigenbases obtained as tensor products of the
elements of the single-qupit bases inM(1). These p + 1 MUB
form a subset Msep(n) of the full set M(n). By construction,
Msep(n) is mapped into itself by the group of transformations

Ũ
0
(n). Now, consider a generic element |ψα

i 〉 of a basis in
Msep(n). By denoting by |ψαl

il
〉 an element of the joint eigen-

basis of the commuting setWαl
of single-qupit operators acting

on the lth qupit, |ψα
i 〉 can be expressed as |ψα

i 〉 = ⊗n
l=1|ψαl

il
〉.

For each state in Msep(n), the characteristic function of a
unitary transformation Ũ 0

jj ′(n) ∈ Ũ
0
(n) is then

Tr
[
Bi(n)Ũ 0

jj ′(n)
∣∣ψα

k

〉〈
ψα

k

∣∣Ũ 0,†
jj ′ (n)

]
= Tr

[
Bi(n)

∣∣ψα′
k

〉〈
ψα′

k

∣∣]
=

n∏
l=1

Tr
[
B

jl

il
(1)
∣∣ψα′

l

kl

〉〈
ψ

α′
l

kl

∣∣]

=
{
Ei(n) if jl =α′

l ∀ l ∈ [1,n],

0 otherwise.
(A27)

Here, Ei(n) =∏n
l=1 λ

α′
l

il ,kl
is the eigenvalue of Bi(n) corre-

sponding to the element |ψα′
i 〉 of the resulting basis inMsep(n).

Provided that the characterization protocol does not require
more than p + 1 MUB, Eq. (A27) implies that the unitaries
in Ũ

0
(n) correspond to a relevance distribution with N = T d

nonzero elements hence yielding 〈Nexpt〉 ∝ O(1). This is the
case of protocol III based on classical fidelities since it requires
input states from two MUB but not of the 2-design protocol
which instead requires the existence of the full set M(n).

In conclusion, we have proven that, if the maximally
partitioning property and the condition that all λj ’s must be
equal are enforced on the single-qupit operator basis, then the
existence for any number of qupit of a nontrivial group of
unitaries leading to 〈Nexpt〉 ∝ O(1), at least in some protocols,
is ensured.

APPENDIX B: COMPLEX MONTE CARLO ESTIMATION

We abbreviate the values of the characteristic functions
[Eq. (7)] by

αik = 1

d
Tr[D(Wi)

†Wk] = χD(i,k),

βik = 1

d
Tr[UW

†
i U †Wk] = χU (i,k).

In general, αik and βik are complex; they are real only if Wk is
Hermitian. The average gate fidelity can be expressed in terms
of αik and βik:

Fav = 1

d2

∑
i,k

αikβ
∗
ik =

∑
i,k

|βik|2
d2

αik

βik

=
∑
i,k

Pr(i,k)
αik

βik

with the real-valued relevance distribution

Pr(i,k) = |βik|2
d2

.

Note that if U0 is a Clifford gate, then for any i there is only
a single k such that βik 	= 0, taking the value 1

d2 . For Monte
Carlo sampling we define now the complex random variable
X on the event space given by the set of tuples (i,k):

X(i,k) = αik

βik

. (B1)

It is easy to see that the expectation value of this random
variable corresponds to Fav:

E(X(i,k)) =
∑
i,k

Pr(i,k)
αik

βik

= Fav. (B2)

The Monte Carlo approach seeks an estimate of Fav with
additive error ε and failure probability δ. In other words, one
wants to find an estimator Y such that the likelihood that this
estimator Y is greater or equal ε away from the fidelity Fav to
be less or equal δ,

Pr[|Y − Fav| � ε] � δ. (B3)
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The complex version of Chebyshev’s inequality [37] states
that, ∀ t > 0 and each complex random variable Z with
expectation value μ, the following relation is fulfilled:

Pr[|Z − μ| � t |μ|] � E(ZZ∗) − E(Z)E(Z∗)

t2|μ|2 . (B4)

Mapping t > 0 onto t |μ| ≡ κ > 0 leads to

Pr[|Z − μ| � κ] � E(ZZ∗) − E(Z)E(Z∗)

κ2
. (B5)

Now, one just needs to find a suitable estimator Y and calculate
its expectation value and variance.

To this end, set the number of draws L from the event space
given by the tuples (i,k) to L = � 1

ε2δ
� where �. . .� means to

round up to the nearest integer. Choosing independently some
events (i1,k1), . . . ,(iL,kL) out of the total event space yields in-
dependent estimates X1 = αi1k1

βi1k1
, . . . ,XL = αiLkL

βiLkL

. Now, define

Y = 1
L

∑L
l=1 Xl . We explain how to estimate Y which in turn

is an approximation to Fav . Note that Y structurally resembles
X. However, the relevance distribution does not appear. This
is due to the fact that each Xl is already chosen with the
corresponding probability. Hence, in the limit of L → ∞:
Y → X.

Consider the choice of (il,kl) with l = 1, . . . ,L chosen as
explained above and il denoting the index of the input operator
of the lth measurement by kl the index of the measured operator
of the lth measurement. For each l, the operator Wkl

will be
measured on the state that is obtained by sending a randomly
drawn eigenstate |φil

a 〉 of Wil with corresponding eigenvalue
λil

a through the device (a is drawn out of the set {1, . . . ,d}).
This is repeated a total number of ml times where

ml =
⌈

4∣∣βilkl

∣∣2Lε2
ln

(
4

δ

)⌉
. (B6)

This choice of ml guarantees that Eq. (B3) is fulfilled as we
show below. Note that each measurement gives an eigenvalue
of the operator Wkl

. We denote these, in general complex,
measurement results by wln with n referring to the nth
repetition of the lth measurement. Each of these measurements
results in an eigenvalue wln ∈ spec(Wk). We assume the
expectation value of a measurement of an operator Wkl

for
a state ρ to be given by〈

Wkl

〉
ρ

= Tr
[
ρ†Wkl

] = Tr
[
ρWkl

]
also for non-Hermitian operators. Let us define now Aln =
(λil

an
)∗wln where λil

an
is the eigenvalue corresponding to the

eigenstate |φil
an

〉 of the operator Wil . Note that

E(Aln) = 1

d

d∑
an=1

(
λil

an

)∗
wln

= 1

d

d∑
an=1

(
λil

an

)∗
Tr
[
D
(∣∣φil

an

〉〈
φil

an

∣∣)†Wkl

]

= 1

d

d∑
an=1

Tr
[(

λil
an

)∗D(∣∣φil
an

〉〈
φil

an

∣∣)†Wkl

]

= 1

d
Tr

⎡
⎢⎣D

⎛
⎝ d∑

an=1

λil
an

∣∣φil
an

〉〈
φil

an

∣∣
⎞
⎠

†

Wkl

⎤
⎥⎦

= 1

d
Tr
[
D
(
Wil

)†
Wkl

] = αilkl
.

An approximation to Xl , denoted by X̃l , can now be intro-
duced:

X̃l = 1

βilkl

1

ml

ml∑
n=1

Aln. (B7)

Since E(Bln) ≡ 〈Aln〉 = αilkl
, it is clear that 1

ml

∑ml

n=1 Aln →
αilkl

.
For the final step in the Monte Carlo estimation, let

Ỹ = 1

L

L∑
l=1

X̃l . (B8)

Just like X̃l is an approximation to Xl , Ỹ is an approximation
to Y or in other words an estimate for Y . The goal is to fulfill
Hoeffding’s inequality, which we prove as

Pr[|Ỹ − Y | � ε] � δ. (B9)

The whole procedure uses the channel a total number of
m =∑L

l=1 ml times. This value in estimation can be bounded
by calculating E(ml) which is the expected number of
experimental repetitions for the given setting (il,kl). In other
words, E(ml) is the number of experiments one has to perform
for a setting (i,k) multiplied by the probability that this setting
is chosen. Denoting by ml(i,k) the number of experiments
for the tuple (i,k), given by Eq. (B6), the expectation value
becomes

E(ml) =
∑
ik

Pr(i,k)ml(i,k)

= 1

d2

∑
ik

|βik|2
⌈

4

|βik|2Lε2
ln

(
4

δ

)⌉
(B10)

� 1 + 4d2

Lε2
ln

(
4

δ

)
,

where 1 accounts for the fact that the smallest integer greater
than the expression in the brackets �. . .� is taken. The total
number of experiments given by the sum of all ml is found
to be

E(m) =
L∑

l=1

E(ml) � L

[
1 + 4d2

Lε2
ln

(
4

δ

)]

� 1 + 1

ε2δ
+ 4d2

ε2
ln

(
4

δ

)
, (B11)

where 1 appears for the same reason as above. Note that
this scales as O(d2). For Clifford gates, there are only d2

nonvanishing entries the sum in Eq. (B10) since for each k

there exists only one l for which βkl 	= 0. This leads to

E(ml) � 1 + 4

Lε2
ln

(
4

δ

)
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and, consequently,

E(m) � 1 + 1

ε2δ
+ 4

ε2
ln

(
4

δ

)
,

resulting in a scaling of O(1).
Finally we prove validity of Eqs. (B3) and (B9). We first

consider Eq. (B3), where the numerator of the right-hand side
of the Chebyshev inequality needs to be estimated for Z = Xl :

E(XlX
∗
l ) − E(Xl)E(X∗

l )

=
∑
ik

Pr(i,k)
|αik|2
|βik|2 −

∣∣∣∣∣
∑
ik

Pr(i,k)
αik

βik

∣∣∣∣∣
2

= 1

d2

∑
ik

|αik|2 − F 2

= 1

d4

∑
ik

〈〈D(Wi)‖Wk〉〉〈〈Wk‖D(Wi)〉〉 − F 2

= 1

d4

∑
ik

|Tr[W †
kD(Wi)]|2 − F 2.

Obviously, 0 � F � 1 =⇒ 0 � F 2 � 1 for all fidelities dis-
cussed in this paper. The same is true for the first term. This
can be seen most easily in terms of the process matrix. For any
operator O, one can write

D(O) =
∑
nm

χnmWmOW †
n .

Clearly, for O = Wi ,

D(Wi) =
∑
nm

χnmWmWiW
†
n .

It follows that

|Tr[W †
kD(Wi)]|2 =

∣∣∣∣∣
∑
nm

χnmTr[W †
k WmWiW

†
n ]

∣∣∣∣∣
2

�
∑
nm

|χnm|2|Tr[W †
k WmWiW

†
n ]|2.

For fixed i and k, the operator W
†
k WmWi is proportional to a

Pauli operator. Consider the expression∑
ik

|Tr[W †
k WmWiW

†
n ]|2.

For fixed m, n, and a certain i there exists exactly one k such
that this is nonzero, namely, if and only if

W
†
k WmWiW

†
n ∼ 1d . (B12)

That is,

Wk ∼ WmWiW
†
n .

Due to orthonormality of the operator basis, there is only
one such k for which this relation can be fulfilled. For Pauli
operators, the proportionality constant has modulus 1, hence,∑

ik

|Tr[W †
k WmWiW

†
n ]|2 = d2d2 = d4.

This results in a trace of d for the d2 tuple (i,k) for which
relation (B12) holds. Consequently,

1

d4

∑
ik

|Tr[W †
kD(Wi)]|2 �

∑
ik

|χik|2.

Due to the Choi-Jamiolkowsky isomorphism, the process
matrix corresponds to a density matrix in the d2-dimensional
Hilbert space H ⊗ H. It can easily be seen that

∑
ik |χik|2

corresponds to the purity of this density matrix which cannot
be greater than 1. Therefore,

1

d4

∑
ik

|Tr[W †
kD(Wi)]|2 � 1.

Hence, [E(XlX
∗
l ) − E(Xl)E(X∗

l )] is the difference between
two numbers in the interval [0,1] and consequently smaller
than 1:

E(XlX
∗
l ) − E(Xl)E(X∗

l ) � 1.

It follows for Y = Y = 1
L

∑L
l=1 Xl that

E(YY ∗) − E(Y )E(Y ∗)

= E

[(
1

L

∑
l

Xl

)(
1

L

∑
l′

X∗
l′

)]

−E

(
1

L

∑
l

Xl

)
E

(
1

L

∑
l

X∗
l

)

= 1

L2

∑
ll′

E(XlX
∗
l′ ) − 1

L2

∑
ll′

E(Xl)E(X∗
l′)

= 1

L2

∑
ll′

[E(XlXl′ ) − E(Xl)E(X∗
l′)]

= 1

L2

∑
l

[E(XlXl) − E(Xl)E(X∗
l )]

� L

L2
= 1

L
,

where use has been made of E(XlXl′ ) = E(Xl)E(Xl′) for the
Xl 	= Xl′ which are uncorrelated. Chebyshev’s inequality (B4)
consequently yields

Pr[|Y − F | � κ] � 1

Lκ2
. (B13)

Now, set κ =
√

1
Lδ

and L = 1
ε2δ

to obtain

Pr[|Y − F | � ε] � δ.

To show the validity of Eq. (B9), we use the complex version
of Hoeffding’s inequality [38].

Lemma. Let �a ∈ Rn and {Xi}i=1,...,N be independent zero-
mean complex-valued random variables with ∀ i : |Xi | � ai .
Then, ∀ δ > 0

Pr

(∣∣∣∣∣
N∑

i=1

Xi

∣∣∣∣∣ � δ

)
� 4 exp

(
− δ2

4
∑n

i=1 |ai |2
)

.
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Corollary. Let �a ∈ Rn and {Xi}i=1,...,N be indepen-
dent complex-valued random variables with mean value∑N

i=1〈Xi〉 = 〈X〉 where X =∑N
i=1 Xi and ∀ i : |Xi −

〈Xi〉| � ai . Then, ∀ δ > 0

Pr(|X − 〈X〉| � δ) � 4 exp

(
− δ2

4
∑n

i=1 |ai |2
)

.

Proof. Apply Hoeffding’s inequality to the random vari-
ables Xi − 〈Xi〉.

Specifically this means for δ > 0, n = L and Ỹ =
1
L

∑L
l=1 X̃l with 〈Ỹ 〉 = 1

L

∑L
l=1〈X̃l〉 = 1

L

∑L
l=1 Xl = Y . Note

furthermore that the X̃l are composed as a sum themselves
of independent random variables Aln corresponding to mea-
surement results with modulus smaller than 1 and expectation
value with modulus smaller than 1. As such, we can write

Pr[|Ỹ − Y | � ε] � 4 exp

(
−4ε2

C

)
, (B14)

where

C =
L∑

l=1

1

L
ml|2cl |2, cl = 1

mlβilkl

(B15)

since [Aln − 〈Aln〉], as discussed for Eq. (B7), always takes
values with modulus smaller than 2.

Calculating C leads to

C =
L∑

l=1

4

L2β2
ilkl

ml

=
L∑

l=1

4β2
ilkl

Lε2

4L2β2
ilkl

ln
(

4
δ

)

=
L∑

l=1

ε2

L ln
(

4
δ

) = ε2

ln
(

4
δ

) . (B16)

Plugging this into Hoeffding’s inequality yields

Pr[|Ỹ − Y | � ε] � 4 exp

(
−4ε2

C

)
= 4 exp

[
−4 ln

(
4

δ

)]

� 4 exp

[
ln

(
δ2

16

)]
= δ2

4
� δ. (B17)

Hence, the failure probability is � δ as desired. �
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[18] S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and

A. Zeilinger, New J. Phys. 8, 75 (2006).
[19] T. C. Ralph, K. J. Resch, and A. Gilchrist, Phys. Rev. A 75,

022313 (2007).
[20] B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K.

J. Resch, A. Gilchrist, and A. G. White, Phys. Rev. Lett. 100,
060504 (2008).

[21] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A
60, 1888 (1999).

[22] M. Nielsen, Phys. Lett. A 303, 249 (2002).
[23] B. Schumacher, Phys. Rev. A 54, 2614 (1996).
[24] A. Jamiolkowski, Rep. Math. Phys. 3, 275

(1972).
[25] M.-D. Choi, Lin. Alg. Appl. 10, 285 (1975).
[26] A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. A 80,

032116 (2009).
[27] W. K. Wootters and B. D. Fields, Ann. Phys. (NY) 191, 363

(1989).
[28] D. Gottesman, Phys. Rev. A 57, 127 (1998).
[29] J. Bermejo-Vega and M. Van Den Nest, Quantum Inf. Comput.

14, 0181 (2014).
[30] J. Lawrence, C. Brukner, and A. Zeilinger, Phys. Rev. A 65,

032320 (2002).
[31] S. Bandyopadhayay, P. O. Boykin, and V. V. F. Roychowdhury,

Algorithmica 34, 512 (2002).
[32] J. Lawrence, Phys. Rev. A 84, 022338

(2011).
[33] D. M. Reich, G. Gualdi, and C. P. Koch, J. Phys. A: Math. Theor.

47, 385305 (2014).
[34] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64,

012310 (2001).

032317-18

http://dx.doi.org/10.1103/PhysRevLett.106.230501
http://dx.doi.org/10.1103/PhysRevLett.106.230501
http://dx.doi.org/10.1103/PhysRevLett.106.230501
http://dx.doi.org/10.1103/PhysRevLett.106.230501
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevLett.106.100401
http://dx.doi.org/10.1103/PhysRevLett.106.100401
http://dx.doi.org/10.1103/PhysRevLett.106.100401
http://dx.doi.org/10.1103/PhysRevLett.106.100401
http://dx.doi.org/10.1103/PhysRevLett.107.100502
http://dx.doi.org/10.1103/PhysRevLett.107.100502
http://dx.doi.org/10.1103/PhysRevLett.107.100502
http://dx.doi.org/10.1103/PhysRevLett.107.100502
http://dx.doi.org/10.1103/PhysRevLett.106.180504
http://dx.doi.org/10.1103/PhysRevLett.106.180504
http://dx.doi.org/10.1103/PhysRevLett.106.180504
http://dx.doi.org/10.1103/PhysRevLett.106.180504
http://dx.doi.org/10.1103/PhysRevA.85.042311
http://dx.doi.org/10.1103/PhysRevA.85.042311
http://dx.doi.org/10.1103/PhysRevA.85.042311
http://dx.doi.org/10.1103/PhysRevA.85.042311
http://dx.doi.org/10.1103/PhysRevLett.100.190403
http://dx.doi.org/10.1103/PhysRevLett.100.190403
http://dx.doi.org/10.1103/PhysRevLett.100.190403
http://dx.doi.org/10.1103/PhysRevLett.100.190403
http://dx.doi.org/10.1103/PhysRevLett.111.200401
http://dx.doi.org/10.1103/PhysRevLett.111.200401
http://dx.doi.org/10.1103/PhysRevLett.111.200401
http://dx.doi.org/10.1103/PhysRevLett.111.200401
http://dx.doi.org/10.1103/PhysRevLett.94.160504
http://dx.doi.org/10.1103/PhysRevLett.94.160504
http://dx.doi.org/10.1103/PhysRevLett.94.160504
http://dx.doi.org/10.1103/PhysRevLett.94.160504
http://dx.doi.org/10.1016/S0960-0779(98)00218-5
http://dx.doi.org/10.1016/S0960-0779(98)00218-5
http://dx.doi.org/10.1016/S0960-0779(98)00218-5
http://dx.doi.org/10.1016/S0960-0779(98)00218-5
http://dx.doi.org/10.1016/S0020-0190(00)00084-3
http://dx.doi.org/10.1016/S0020-0190(00)00084-3
http://dx.doi.org/10.1016/S0020-0190(00)00084-3
http://dx.doi.org/10.1016/S0020-0190(00)00084-3
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1126/science.1173440
http://dx.doi.org/10.1126/science.1173440
http://dx.doi.org/10.1126/science.1173440
http://dx.doi.org/10.1126/science.1173440
http://dx.doi.org/10.1103/PhysRevLett.109.210501
http://dx.doi.org/10.1103/PhysRevLett.109.210501
http://dx.doi.org/10.1103/PhysRevLett.109.210501
http://dx.doi.org/10.1103/PhysRevLett.109.210501
http://dx.doi.org/10.1103/PhysRevLett.92.167903
http://dx.doi.org/10.1103/PhysRevLett.92.167903
http://dx.doi.org/10.1103/PhysRevLett.92.167903
http://dx.doi.org/10.1103/PhysRevLett.92.167903
http://dx.doi.org/10.1088/1367-2630/8/5/075
http://dx.doi.org/10.1088/1367-2630/8/5/075
http://dx.doi.org/10.1088/1367-2630/8/5/075
http://dx.doi.org/10.1088/1367-2630/8/5/075
http://dx.doi.org/10.1103/PhysRevA.75.022313
http://dx.doi.org/10.1103/PhysRevA.75.022313
http://dx.doi.org/10.1103/PhysRevA.75.022313
http://dx.doi.org/10.1103/PhysRevA.75.022313
http://dx.doi.org/10.1103/PhysRevLett.100.060504
http://dx.doi.org/10.1103/PhysRevLett.100.060504
http://dx.doi.org/10.1103/PhysRevLett.100.060504
http://dx.doi.org/10.1103/PhysRevLett.100.060504
http://dx.doi.org/10.1103/PhysRevA.60.1888
http://dx.doi.org/10.1103/PhysRevA.60.1888
http://dx.doi.org/10.1103/PhysRevA.60.1888
http://dx.doi.org/10.1103/PhysRevA.60.1888
http://dx.doi.org/10.1016/S0375-9601(02)01272-0
http://dx.doi.org/10.1016/S0375-9601(02)01272-0
http://dx.doi.org/10.1016/S0375-9601(02)01272-0
http://dx.doi.org/10.1016/S0375-9601(02)01272-0
http://dx.doi.org/10.1103/PhysRevA.54.2614
http://dx.doi.org/10.1103/PhysRevA.54.2614
http://dx.doi.org/10.1103/PhysRevA.54.2614
http://dx.doi.org/10.1103/PhysRevA.54.2614
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1103/PhysRevA.80.032116
http://dx.doi.org/10.1103/PhysRevA.80.032116
http://dx.doi.org/10.1103/PhysRevA.80.032116
http://dx.doi.org/10.1103/PhysRevA.80.032116
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1103/PhysRevA.57.127
http://dx.doi.org/10.1103/PhysRevA.57.127
http://dx.doi.org/10.1103/PhysRevA.57.127
http://dx.doi.org/10.1103/PhysRevA.57.127
http://dx.doi.org/10.1103/PhysRevA.65.032320
http://dx.doi.org/10.1103/PhysRevA.65.032320
http://dx.doi.org/10.1103/PhysRevA.65.032320
http://dx.doi.org/10.1103/PhysRevA.65.032320
http://dx.doi.org/10.1007/s00453-002-0980-7
http://dx.doi.org/10.1007/s00453-002-0980-7
http://dx.doi.org/10.1007/s00453-002-0980-7
http://dx.doi.org/10.1007/s00453-002-0980-7
http://dx.doi.org/10.1103/PhysRevA.84.022338
http://dx.doi.org/10.1103/PhysRevA.84.022338
http://dx.doi.org/10.1103/PhysRevA.84.022338
http://dx.doi.org/10.1103/PhysRevA.84.022338
http://dx.doi.org/10.1088/1751-8113/47/38/385305
http://dx.doi.org/10.1088/1751-8113/47/38/385305
http://dx.doi.org/10.1088/1751-8113/47/38/385305
http://dx.doi.org/10.1088/1751-8113/47/38/385305
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310


EFFICIENT MONTE CARLO CHARACTERIZATION OF . . . PHYSICAL REVIEW A 90, 032317 (2014)

[35] J. Lawrence, Phys. Rev. A 70, 012302 (2004).
[36] T. Paterek, Phys. Lett. A 367, 57 (2007).
[37] M. Manjunath, K. Mehlhorn, K. Panagiotou, and H.

Sun, in Proceedings of the 19th Annual European
Symposium on Algorithms (ESA), edited by C.
Demetrescu and M. M. Halldorsson, Vol. 6942 of

Lecture Notes in Computer Science (Springer, Berlin, 2011),
p. 677.

[38] C. T. Li, S. Oymak, and B. Hassibi, Proceedings of the 2012
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Kyoto (IEEE, Piscataway, NJ, 2012),
pp. 3817–3820.

032317-19

http://dx.doi.org/10.1103/PhysRevA.70.012302
http://dx.doi.org/10.1103/PhysRevA.70.012302
http://dx.doi.org/10.1103/PhysRevA.70.012302
http://dx.doi.org/10.1103/PhysRevA.70.012302
http://dx.doi.org/10.1016/j.physleta.2007.05.082
http://dx.doi.org/10.1016/j.physleta.2007.05.082
http://dx.doi.org/10.1016/j.physleta.2007.05.082
http://dx.doi.org/10.1016/j.physleta.2007.05.082



