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Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important
information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the
underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular
distributions. To this end, we combine Krotov’s method for optimal control theory with the time-dependent
configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and
angular distributions. The optimization target can account for specific desired properties in the photoelectron
angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen
and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and
lower hemispheres, in order to realize directed electron emission in the XUV regime.
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I. INTRODUCTION

Photoelectron spectroscopy is a powerful tool for studying
photoionization in atoms, molecules, and solids [1–6]. With the
advent of new light sources, photoelectron spectroscopy using
intense, short pulses has become available, revealing important
information about electron dynamics and time-dependent
phenomena [7–10]. In particular, it allows for characterizing
the light-matter interaction of increasingly complex systems
[1,3,5]. Photoelectron spectra (PES) and photoelectron angular
distributions (PAD) contain fingerprints not only of the
interaction of the electrons with the electromagnetic fields
but also of their interaction and their correlations with each
other [11]. PAD in particular can be used to uncover electron
interactions and correlations [12,13].

Tailoring the pulsed electric field in its amplitude, phase, or
polarization allows us to control the coupled electron-nuclear
dynamics, with corresponding signatures in the photoelectron
spectrum [14–18]. While it is natural to ask how the electron
dynamics is reflected in the experimental observables—PES
and PAD [14–18], it may also be interesting to see whether
one can control or manipulate directly these observables
by tailoring the excitation pulse. Moreover, one may be
interested in certain features such as directed electron emission
without analyzing all the details of the time evolution. This is
particularly true for complex systems where it may not be
easy to trace the full dynamics all the way to the spectrum.
The question that we ask here is how to find an external field
that steers the dynamics such that the resulting photoelectron
distribution fulfills certain prescribed properties. Importantly,
the final state of the dynamics does not need to be known. The
desired features may be reflected in the angle-integrated PES,
the energy-integrated PAD, or both.

To answer this question, we employ optimal control theory
(OCT), using Krotov’s monotonically convergent method [19]
and adapting it to the specific task of realizing photoelectron
distributions with prescribed features. The photoelectron
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distributions are calculated within the time-dependent config-
uration interaction singles scheme (TDCIS) [20], employing
the splitting method for extracting the spectral components
from the outgoing wave packet [21,22]. While OCT has been
utilized to study the quantum control of electron dynamics
before, in the framework of TDCIS [23] as well as the mul-
ticonfigurational time-dependent Hartree-Fock (MCTDHF)
method [24] or time-dependent density functional theory
(TDDFT) [25,26], the PES and PAD have not been tackled
as control targets before. In fact, most previous studies did
not even account for the presence of the ionization continuum.
A proper representation of the ionization continuum becomes
unavoidable [27–31], however, when investigating the inter-
action with XUV light where a single photon is sufficient to
ionize [32], and it is indispensable for the full description of
photoionization experiments.

To demonstrate the versatility of our approach, we apply
it to two different control problems: (i) We prescribe the full
three-dimensional photoelectron distribution and search for
a field that produces, at least approximately, a given angle-
integrated PES and energy-integrated PAD. Such a detailed
control objective is rather demanding and corresponds to a
difficult control problem. (ii) We seek to maximize the relative
number of photoelectrons emitted into the upper as opposed to
the lower hemisphere, assuming that the polarization axis of
the light pulse runs through the poles of the two hemispheres.
This implies a condition on the PAD alone, leaving complete
freedom to the energy dependence. The corresponding control
objective leaves considerable freedom to the optimization
algorithm and the control problem becomes much simpler.
Maximizing the relative number of photoelectrons emitted into
the upper as opposed to the lower hemisphere corresponds
to a maximization of the PAD’s asymmetry. Asymmetric
photoelectron distributions arising in strong-field ionization
were studied previously for near-infrared few-cycle pulses
where the effect was attributed to the carrier envelope phase
[33,34]. Here we pose the question whether it is possible to
achieve asymmetry in the PAD for multiphoton ionization
in the XUV regime and we seek to determine the shaped
pulse that steers the electrons into one hemisphere. To ensure
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experimental feasibility of the optimized pulses, we introduce
spectral as well as amplitude constraints. We test our control
toolbox for hydrogen and argon atoms, corresponding to
a single channel and three active channels, respectively.
These comparatively simple examples allow for a complete
discussion of our optimization approach, while keeping the
numerical effort at an acceptable level.

The remainder of this paper is organized as follows.
Section II briefly reviews the methodology for describing
the electron dynamics, with Sec. II A devoted to the TDCIS
method, and Sec. II B presenting the wave function splitting
approach. Optimal control theory for photoelectron distri-
butions is developed in Sec. III. Specifically, we introduce
the optimization functionals to prescribe a certain PES plus
PAD and to generate directed photoelectron emission in
Sec. III A. The corresponding optimization algorithms are
presented in Sec. III B, emphasizing the combination of OCT
with the wave-function splitting method. For the additional
functionality of restricting the spectral bandwidth of the field
in the optimization, the reader is referred to Appendix A. Our
numerical results are presented in Sec. IV to VI, demonstrating,
for hydrogen, the prescription of the PES and PAD in Sec. IV
and the minimization of photoelectron emission into the lower
hemisphere in Sec. V. Maximization of the relative number of
photoelectrons emitted into the upper hemisphere is discussed
for both hydrogen and argon in Sec. VI. Finally, Sec. VII
concludes.

II. THEORY

In the following, we briefly review, following Refs. [20,21],
the theoretical framework for describing the electron dynamics
and the interaction with strong electric fields.

A. First-principles calculation of the N-particle
wave function: TDCIS

Our method for calculating the outgoing electron wave
packet is based on the TDCIS scheme [20,35]. The time-
dependent Schrödinger equation of the full N -electron system,

i
∂

∂t
|�(t)〉 = Ĥ (t)|�(t)〉, (1)

is solved numerically using the Lanczos-Arnoldi propagator
[36,37]. To this end, the N -electron wave function is expanded
in the one-particle–one-hole basis:

|�(t)〉 = α0(t)|�0〉 +
∑
i,a

αa
i (t)

∣∣�a
i

〉
, (2)

where the index i denotes an initially occupied orbital, a stands
for a virtual orbital to which the particle can be excited, and
|�0〉 symbolizes the Hartree-Fock ground state. The full time-
dependent Hamiltonian has the form

Ĥ (t) = Ĥ0 + Ĥ1 + p̂ · A(t), (3)

where Ĥ0 = T̂ + V̂nuc + V̂MF − EHF contains the kinetic en-
ergy T̂ , the nuclear potential V̂nuc, the potential at the
mean-field level V̂MF, and the Hartree-Fock energy EHF.
Ĥ1 = 1

|r12| − V̂MF describes the Coulomb interactions beyond
the mean-field level, and p̂ · A(t) is the light-matter interaction

within the velocity form in the dipole approximation, assuming
linear polarization.

The TDCIS approach is a multichannel method, i.e., all
ionization channels that lead to a single excitation of the
system are included in the calculation. Since only states with
total spin S = 0 are considered, only spin singlets occur and
we denote the occupied orbitals by |φi〉. As introduced in
Ref. [38], for each ionization channel all single excitations
from the occupied orbital |φi〉 may be collected in one “channel
wave function”:

|ϕi(t)〉 =
∑

a

αa
i (t)|φa〉, (4)

where the summation runs over all virtual orbitals, labeled with
a, which is a multi-index [20]. These channel wave functions
allow us to calculate all quantities in a channel-resolved
manner [21,22]. In the actual implementation, the orbitals in
Eq. (4) are expressed as a product of radial and angular parts
[20,21],

φa(r) = u
na

�a
(r)

r
Y �a

ma
(ϑr,ϕr ), (5)

where Y l
m denote the spherical harmonics and un

l (r) is the
radial part of the wave function which is represented on a
pseudospectral spatial grid [20].

B. The wave-function splitting method

The PES and PAD are calculated using the splitting
method [39] which was implemented within the TDCIS
scheme [21,22]. Briefly, in this propagation approach the wave
function is split into an inner and an outer part using a smooth
radial splitting function,

Ŝ = [1 + e−(r̂−rc)/
]−1, (6)

where the parameter 
 controls how steep the slope of the
function is and rc is the splitting radius. The channel wave
functions (4) are used to calculate the spectral components in
a channel-resolved manner by projecting the outer part onto
Volkov states, |pV 〉 = (2π )−3/2eip·r. To this end, each channel
wave function is split into an inner and an outer part at every
splitting time tj ,

|ϕi(tj )〉 = |ϕi,in(tj )〉 + |ϕi,out(tj )〉, (7a)

where

|ϕi,in(tj )〉 = (1 − Ŝ)|ϕi(tj )〉 (7b)

and

|ϕi,out(tj )〉 = Ŝ|ϕi(tj )〉. (7c)

At each splitting time, the inner part, |ϕi,in(tj )〉, is repre-
sented in the CIS basis and further propagated with the full
Hamiltonian (3), whereas the outer part is stored and propa-
gated analytically to large times with the Volkov Hamiltonian,

ĤV (τ ) = 1
2 [p̂ + A(τ )]2. (8)

In this way, the outer part of the wave function can be analyzed
separately in order to obtain information on the photoelectron.
Furthermore, since the outgoing part of the wave function is
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absorbed efficiently at the splitting times, large box sizes are
avoided in the inner region.

The spectral coefficient ϕi(p,T ; tj ) for a given channel i,
originating from splitting time tj and evaluated at the final
time t = T , is obtained as a function of the momentum vector
p [21],

ϕi,out(p,T ; tj ) =
∫

d3p′〈p V |ÛV (T ,tj )|p ′V 〉〈p ′V |ϕi,out(tj )〉

= 2

π
e−iϑV (p)

∑
a

(−i)la βa
i (tj )Y la

ma
(�p)

×
∫ ∞

0
dr ru

na

la
(r)jla (pr), (9)

where ϑV (p) denotes the Volkov phase, given by

ϑV (p) = 1

2

∫ T

tj

dτ [p + A(τ )]2, (10)

the sum runs over the virtual orbitals, βa
i (tj ) is the overlap of

the outer part with the virtual orbital,

βa
i (tj ) = 〈φa|ϕi,out(tj )〉, (11)

and jl(x) is the lth Bessel function. ÛV (t2,t1) =
exp [−i

∫ t2
t1

ĤV (τ )dτ ] is the evolution operator associated with
the Volkov Hamiltonian (8) and T is a sufficiently long time so
all parts of the wave function that are of interest have reached
the outer region and are included in the PES. The contributions
from all splitting times must be added up coherently to form
the total spectral coefficient for the channel i,

ϕ̃i,out(p,T ) =
∑
tj

ϕi,out(p,T ; tj ). (12)

Finally, incoherent summation over all possible ionization
channels yields the total spectrum [21],

d2σ (p)

dp d�
= |ϕ̃out(p,T )|2 =

∑
i

|ϕ̃i,out(p,T )|2. (13)

The energy-integrated PAD is given by integrating over energy
or, equivalently, momentum,

dσ

d�
=

∫ ∞

0

d2σ (p)

dpd�
p2dp. (14a)

Analogously, the angle-integrated PES is obtained upon
integration over the solid angle,

dσ

dE
= p

∫ 2π

0

∫ π

0

d2σ (p)

dpd�
sin θdθdφ (14b)

with p = √
2E. The optimizations considered below are based

on these measurable quantities.

III. OPTIMAL CONTROL THEORY

A. Optimization problem

Our goal is to find a vector potential, or control, A(t), that
steers the system from the ground state |�(t = 0)〉 = |�0〉,
defined in Eq. (2), to an unknown final state |�(T )〉 whose
PES and/or PAD display certain desired features. Such an

optimization target is expressed mathematically as a final time
functional JT [ϕ̃out,ϕ̃

†
out] [19]. We consider two different final

time optimization functionals in the following.
As a first example, we seek to prescribe the angle-integrated

PES and energy-integrated PAD together. The corresponding
final time cost functional is defined as

J
(1)
T [ϕ̃out(T ),ϕ̃†

out(T )] = λ1

∫
[σ̃ (p,T ) − σ̃0(p)]2 d3p, (15)

where σ̃ (p,T ) = d2σ (p)/dp d� denotes the actual photoelec-
tron distribution, cf. Eq. (13), σ̃0(p) stands for the target
distribution, and λ1 is a weight that stresses the importance
of J

(1)
T [ϕ̃out,ϕ̃

†
out] compared to additional terms in the total

optimization functional. The goal is thus to minimize the
squared Euclidean distance between the actual and the desired
photoelectron distributions.

Alternatively, we would like to control the difference in
the number of electrons emitted into the lower and upper
hemispheres. This can be expressed via the following final-
time functional:

J
(2)
T [ϕ̃out(T ),ϕ̃†

out(T )]

= λ
(−)
2

∫ π

π/2
sin θ dθ

∫ +∞

0
|ϕ̃out(p,T )|2p2 dp

+ λ
(+)
2

∫ π/2

0
sin θ dθ

∫ +∞

0
|ϕ̃out(p,T )|2p2 dp

+ λtot
2

∫ π

0
sin θ dθ

∫ +∞

0
|ϕ̃out(p,T )|2p2 dp, (16)

where the first and second terms correspond to the probability
of the photoelectron being emitted into the lower and upper
hemispheres, whereas the third term is the total ionization
probability; λ

(−)
2 , λ

(+)
2 , and λtot

2 are weights. The factor of
2π resulting from integration over the azimuthal angle has
been absorbed into the weights. Directed emission can be
achieved in several ways—one can suppress the emission of
the photoelectron into the lower hemisphere, without imposing
any specific constraint on the number of electrons emitted
into the upper hemisphere. This is achieved by choosing
λ

(+)
2 = λtot

2 = 0 and λ
(−)
2 > 0. Alternatively, one can maximize

the difference in the number of electrons emitted into the
upper and lower hemispheres. To this end, the relative weights
need to be chosen such that λ

(−)
2 > 0 and λ

(+)
2 < 0. If λtot

2 = 0,
the optimization seeks to increase the absolute difference in
the number of electrons emitted into the upper and lower
hemispheres. Close to an optimum, this may result in a strong
increase in the overall ionization probability, accompanied
by a very small increase in the difference, since only the
complete functional is required to converge monotonically, and
not each of its parts. This undesired behavior can be avoided
by maximizing the relative instead of the absolute difference
of electrons emitted into the upper and lower hemispheres.
It requires λtot

2 > 0, i.e., minimization of the total ionization
probability in addition to maximizing the difference. Note
that λtot

2 could also be absorbed into the weights for the
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hemispheres,

J
(2)
T [ϕ̃out(T ),ϕ̃†

out(T )]

= +λ
(−)
eff

∫ π

π/2
sin θ dθ

∫ +∞

0
|ϕ̃out(p,T )|2p2 dp

+ λ
(+)
eff

∫ π/2

0
sin θ dθ

∫ +∞

0
|ϕ̃out(p,T )|2p2 dp, (17)

where λ
(+)
eff = −|λ(+)

2 | + |λtot
2 | and λ

(−)
eff = |λ(−)

2 | + |λtot
2 | are

effective weights. Since λ
(+)
eff < 0 and λ

(−)
eff > 0 in order to max-

imize (minimize) emission into the upper (lower) hemisphere,
the weights need to fulfill the condition |λ(+)

2 | > |λtot
2 |.

The complete functional to be minimized,

J = JT [ϕ̃out(T ),ϕ̃†
out(T )] + C[A] , (18)

also includes constraints C[A] to ensure that the control
remains finite or has a limited spectral bandwidth. The
constraints may be written for the electric field E(t) associated
with the vector potential A(t), even though the minimization
problem is expressed in terms of A(t) and the dynamics is
generated by Ĥ [A], cf. Eq. (3). The relation between the vector
potential A(t) and the electric field E(t) is given by

A(t) = −
∫ t

t0

E(τ ) dτ, (19)

with A(to) = 0. Without loss of generality, we can write

C[A] = Ca[A] + Cω[A] + Ce[A], (20)

where the independent terms in the right-hand side of Eq. (20)
are defined below.

The first property that the optimized electric field must
fulfill is that its integral over time vanishes, i.e.,∫ T

t0

E(t) dt = 0, (21)

which implies, according to Eq. (19), A(T ) = A(t0) = 0.
Therefore, we choose initial guess fields with A(T ) = A(t0) =
0 and utilize

Ca[A] = λa

∫
s−1(t)[A(t) − Aref(t)]

2 dt (22)

with s(T ) = 0 to ensure that Eq. (21) is fulfilled. In Eq. (22),
Aref(t) and s(t) refer to a reference vector potential and a shape
function, respectively, and λa � 0 is a weight that stresses
the importance of Ca[A] compared to all other terms in the
complete functional, Eq. (18). The shape function, s(t), can be
used to guarantee that the control is smoothly switched on and
off at the initial and final times.

A second important property of the optimized field is a
limited spectral bandwidth. Typically, optimization without
spectral constraints leads to pulses with unnecessarily broad
spectra which would be very hard or impossible to produce
experimentally. To restrict the bandwidth of the electric field,
E(t), we construct a constraint Cω[A] in frequency domain,

Cω[A] = λω

∫
γ̃ (ω)|Ẽ(ω)|2 dω

= λω

∫
γ̃ (ω)ω2|Ã(ω)|2 dω, (23)

with Ẽ(ω) being the Fourier transform of the field,

Ẽ(ω) =
∫

E(t) e−iωt dt. (24)

Constraints of the form of Eq. (23) were previously discussed
in Refs. [40,41]: The kernel γ̃ (w) plays a role similarly
to the inverse shape function s−1(t) in Eq. (22), that is, it
takes large values at all undesired frequencies. Additionally,
we assume that the symmetry requirement γ̃ (ω) = γ̃ (−ω) is
fulfilled; see Appendix A for details.

Finally, in view of experimental feasibility, we would also
like to limit the amplitude of the electric field to reasonable
values. To this end, we construct a constraint that penalizes
changes in the first time derivative of A(t). In fact, since
E(t) = −Ȧ(t), large values in the derivative of the vector
potential translate into large amplitudes of the corresponding
electric field E(t). To avoid this, we adopt here a modified
regularization condition [42] for A(t), defining

Ce[A] = λe

∫
s−1(t)|E(t)|2 dt

= λe

∫
s−1(t)|Ȧ(t)|2 dt. (25)

Ce[A] plays the role of a penalty functional [42], ensuring
the regularity of A(t), and, as a consequence, penalizing large
values on the electric field amplitude E(t). The choice of the
same s−1(t) in both Eq. (22) and Eq. (25) will simplify the
optimization algorithm as shown below.

B. Krotov’s method combined with wave function splitting

Krotov’s method for quantum optimal control provides
a recipe to construct monotonically convergent optimization
algorithms, depending on the target functional and additional
constraints, the type of equation of motion, and the power of the
control in the light-matter interaction [19]. The optimization
algorithm consists of a set of coupled equations for the update
of the control, the forward propagation of the state, and the
backward propagation of the so-called costate. This set of
equations needs to be solved iteratively. The final-time target
functional (or, more precisely, its functional derivative with
respect to the propagated state, evaluated at the final time,
which reflects the extremum condition on the optimization
functional [43]) determines the “initial” condition, at final
time, for the backward propagation of the costate [19].
Additional constraints which depend on the control such as
those in Eq. (20) show up in the update equation for the control
[19,41]. The challenge when combining Krotov’s method
with the wave-function splitting approach is due to the fact
that splitting in the forward propagation of the state implies
“glueing” in the backward propagation of the costate. Here we
present an extension of the optimization algorithm obtained
with Krotov’s method that takes the splitting procedure into
account.
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Evaluating the prescription given in Refs. [19,41], we find
for the update equation, with k labeling the iteration step,

A(k+1)(t) = A(k)(t) + I (k+1)(t)

− λ̃ω

λa

s(t)A(k+1) � h(t) + λe

λa

Ä(k+1)(t), (26a)

with λ̃ω = √
2πλω. A(k+1) � h(t) denotes the convolution of

A(k+1) and h(t),

A(k+1) � h(t) =
∫

A(k+1)(τ ) h(t − τ ) dτ (26b)

with h(t) the inverse Fourier transform of h̃(ω) = ω2γ̃ (ω). The
second term in Eq. (26a) is given by

I (k+1)(t) = s(t)

λa

Im

{〈
χ (k)(t)

∣∣∣∣∣∂Ĥ

∂A

∣∣∣∣∣�(k+1)(t)

〉}

= s(t)

λa

Im{〈χ (k)(t)|p̂|�(k+1)(t)〉}, (26c)

where |�(k+1)(t)〉 and |χ (k)(t)〉 denote the forward propagated
state and backward propagated costate at iterations k + 1 and k,
respectively. The derivation of Eq. (26) is detailed in Appendix
A. In order to evaluate Eq. (26), the costate obtained at the
previous iteration, |χ (k)(t)〉, using the old control, A(k)(t), must
be known. Its equation of motion is found to be [19]

i
∂

∂t
|χ (t)〉 = Ĥ (t)|χ (t)〉 . (27a)

Just as |�(t)〉 is decomposed into channels wave functions, cf.
Eqs. (2) and (4), so is the costate. The “initial” condition at the
final time T is written separately for each channel,

|χ̃i,out(T )〉 = −∂JT [ϕ̃i,out(T ),ϕ̃†
i,out(T )]

∂〈ϕ̃i,out(T )| . (27b)

Evaluation of Eq. (27b) requires knowledge of the outer part
of each channel wave function, |ϕ̃i,out(T )〉, which is obtained by
forward propagation of the initial state, including the splitting
procedure. In what follows, Û (t ′,τ ; A(t)) denotes the evolution
operator that propagates a given state from time t = τ to
t = t ′ under the control A(t). We distinguish the time evolution
operators for the inner part, ÛF (t ′,τ ; A(t)), generated by the
full Hamiltonian, Eq. (3), and for the outer part, ÛV (t ′,τ ; A(t)),
generated by the Volkov Hamiltonian, Eq. (8). For every
channel, the total wave function is given by∣∣ϕ(k+1)

i (t)
〉 = ∣∣ϕ(k+1)

i,in (t)
〉 + ∣∣ϕ̃(k+1)

i,out (t)
〉
, (28)

which is valid for arbitrary times t � t1 with t1 the first splitting
time. The second term in Eq. (28) reads

∣∣ϕ̃(k+1)
i,out (t)

〉 =
�t/t1�∑
j=1

∣∣ϕ(k+1)
i,out (t ; tj )

〉

=
�t/t1�∑
j=1

ÛV (t,tj ; A(k+1))
∣∣ϕ(k+1)

i,out (tj )
〉

(29)

with �x� = max{m ∈ Z,m � x}. Equation (29) accounts for
the fact that for t � t2, all outer parts |ϕ(k+1)

i,out (t ; tj )〉 that origi-
nate at splitting times tj � t must be summed up coherently.

Propagation of all |ϕ(k+1)
i,out (t ; tj )〉 and continued splitting of

|ϕ(k+1)
i,in (t)〉 eventually yields the state at final time, |ϕ(k+1)

i (T )〉.
Its outer part is given by

∣∣ϕ̃(k+1)
i,out (T )

〉 =
N∑

j=1

∣∣ϕ(k+1)
i,out (T ; tj )

〉
, (30)

where N denotes the number of splitting times utilized during
propagation, and the last splitting time tN is chosen such that
tN � T . The best compromise between size of the spatial grid,
time step, and duration between two consecutive splitting times
is discussed in Ref. [21].

Equation (27b) can now be evaluated: Since our final time
functionals all involve the product ϕ̃out(p,T ) · ϕ̃∗

out(p,T ) =
σ̃ (p,T ), Eq. (27b) can be written, at the kth iteration of the
optimization, as

χ̃
(k)
i,out(p,T ) = μ(p) ϕ̃

(k)
i,out(p,T ), (31a)

where μ(p) is a function that depends on the target functional
under consideration. It becomes

μ
(k)
1 (p) = −2λ1[σ̃ (k)(p,T ) − σ̃0(p)] (31b)

for J
(1)
T given in Eq. (15) and

μ2(p) = λ−
2 1ϑ− (θ ) + λ+

2 1ϑ+(θ ) (31c)

for J
(2)
T given in Eq. (16).

The intervals ϑ− = [π/2,π ] and ϑ+ = [0,π/2] denote the
lower and upper hemispheres, respectively, and 1ϑ± (θ ) is the
characteristic function on a given interval,

1ϑ±(θ ) =
{

1 if θ ∈ ϑ±
0 if θ /∈ ϑ±

with θ ∈ [0,π ] the polar angle with respect to the polarization
axis. According to Eqs. (1) and (27a), or, more precisely, since
we do not consider intermediate-time constraints that depend
on the state of the system [19], |�(t)〉 and its costate |χ (t)〉 obey
the same equation of motion. For that reason, it is convenient
to define inner and outer parts of |χ (t)〉, analogously to the
forward propagated state,∣∣χ (k)

i (t)
〉 = ∣∣χ (k)

i,in(t)
〉 + ∣∣χ̃ (k)

i,out(t)
〉

(32a)

with

∣∣χ̃ (k)
i,out(T )

〉 =
N∑

j=1

∣∣χ (k)
i,out(T ; tj )

〉
. (32b)

Equation (32b) implies that also |χ̃ (k)
i,out(T )〉 is obtained by

coherently summing up the contributions from all splitting
times.

Conversely, the outer part of the costate originating at the
splitting time tj and evaluated at the same time is given by

χ
(k)
i,out(p,tj ; tj ) = μ(p)ϕ(k)

i,out(p,tj ; tj ). (33)

The next step is to construct the total costate at an arbitrary
time t , |χ (k)

i (t)〉, required in Eq. (26), from all |χ (k)
i,out(tj ; tj )〉

using Eq. (33). This is achieved by backward propagation
and “glueing” inner and outer parts, as opposite to “splitting”
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during the forward propagation. However, when reconstruct-
ing the costate by backward propagation, care should be
taken to not to perform the “glue” procedure twice or more,
at a given splitting time. The backward propagation of the
costate is explicitly explained in what follows: Since at
the final time, T , the total costate is given by a coherent
superposition of all outer parts originating at the splitting
times, tj , cf. Eq. (32b), it suffices to store all |ϕ(k)

i,out(tj ; tj )〉
and apply Eq. (33) to evaluate |χ (k)

i,out(tj ; tj )〉. We recall that

|χ (k)
i,out(tj ; tj )〉, respectively |φ(k)

i,out(tj ; tj )〉, denote the outer part
born exclusively at t = tj and evaluated at the same splitting
time. Once all outer parts of the costate are evaluated at every
splitting time using Eq. (33), |χ (k)

i (t)〉 is obtained for all times
t by backward propagation and “glueing,” with the additional
care of not “glueing” twice or more. In detail, |χ (k)

i,out(tN ; tN )〉
is propagated backwards from tN to tN−1 using the full CIS
Hamiltonian, Ĥ , cf. Eq. (3). The resulting wave function at
t = tN−1 is |χ (k)

i,in(tN−1)〉. The outer part born exclusively at
the splitting time t = tN−1 is obtained using Eq. (33), and
the “composite” wave function |χ (k)

i (tN−1)〉 is obtained by
“glueing” |χ (k)

i,in(tN−1)〉 and |χ (k)
i,out(tN−1; tN−1)〉,∣∣χ (k)

i (tN−1)
〉 = ∣∣χ (k)

i,in(tN−1)
〉 + ∣∣χ (k)

i,out(tN−1; tN−1)
〉
.

The procedure is now repeated: the composite costate
|χ (k)

i (tN−1)〉 is propagated backwards from t = tN−1 to t =
tN−2 using the full CIS Hamiltonian, resulting in |χ (k)

i,in(tN−2)〉,
and “glueing” yields the composite wave function at t = tN−2,∣∣χ (k)

i (tN−2)
〉 = ∣∣χ (k)

i,in(tN−2)
〉 + ∣∣χ (k)

i,out(tN−2; tN−2)
〉
,

with |χ (k)
i,out(tN−2,tN−2)〉 given by Eq. (33), and so on and so

forth for all splitting times tj , until t = t0, where t0 refers to
the initial time. During the backward propagation, as described
above, the resulting costate is stored in CIS basis. It gives by
construction, at an arbitrary time t , the first term in Eq. (32a).
The second term in Eq. (32a) involving the outer parts “born” at
the splitting times t = tj and evaluated at t > tj is merely given
by forward propagating analytically all |χi,out(tj ; tj )〉 using
the Volkov Hamiltonian and summing them up coherently
according to Eq. (29). This allows us to calculate the “total”
costate wave function at an arbitrary time t , analogously
to |ϕi(t)〉. Finally, Eqs. (32a) and (28) allow for evaluating
Krotov’s update equation for the control, Eq. (26), where the
iteration label just indicates whether the guess, A(0)(t), the old,
A(k)(t), or the new control, A(k+1)(t), enter the propagation
of |χi(t)〉 and |ϕi(t)〉, respectively. A difficulty in solving the
update equation for the control is given by the fact that Eq. (26)
is implicit in A(k+1)(t). Strategies to overcome this obstacle
depend on the additional constraints.

C. Additional constraints

Implicitness of Eq. (26) in A(k+1)(t) for λω = λe = 0 can
easily be circumvented by a zeroth-order solution, employing
two shifted time grids, one for the states, which are evaluated
at n
t , and another one for the control, which is evaluated at
(n + 1/2)
t [43]. However, for λω �= 0, Eq. (26) corresponds
to a second-order Fredholm equation with inhomogeneity
I (k+1)(t) [41]. Numerical solution is possible using, for

example, the method of degenerate kernels [41]. To this end,
the inhomogeneity I (k+1)(t), which depends on |ϕ(k+1)(t)〉
and thus on A(k+1)(t), is first approximated to zeroth order
by solving Eq. (26) with λω = 0, that is, without frequency
constraints, and the resulting approximation I

(k+1)
0 (t) is then

used to solve the Fredholm equation. While an iterative proce-
dure to improve the approximation of I (k+1)(t) is conceivable,
the zeroth-order approximation was found to be sufficient in
Refs. [40,41]. Here we adopt a slightly different procedure,
in the sense that the Fredholm equation is not solved in
time domain but in frequency domain. This allows us to
treat the cases λω �= 0 and λe �= 0 on the same footing. It
is made possible by assuming that s(t) in Eqs. (22) and
(25) rises and falls off very quickly at the beginning and
end of the optimization time interval. This judicious choice
of s(t) together with the fact that the Fourier transform of a
convolution of two functions in time domain, as encountered in
Eq. (26), is the product of the functions in frequency domain,
allows to approximate∣∣∣∣
∫

s(t)�(k+1)(t) e−iωtdt − S0

∫
�(k+1)(t) e−iωtdt

∣∣∣∣ � ε, (34)

where ε is a small, positive number and �(k+1)(t) is defined as

�(k+1)(t) = A(k+1) � h(t). (35)

A possible choice for s(t) to fulfill the condition (34) is

s(t) = e−β((t−tc)/2σ )2n

, (36)

where σ refers to the duration of the pulse centered at t = tc. If
Eq. (34) is satisfied, we can easily take the Fourier transform
of both sides of Eq. (26a) to get

Ã(k+1)(ω) = Ã(k)(ω) + Ĩ (k+1)(ω)

1 + λ̃ω

λa

ω2γ̃ (ω) + λe

λa

ω2

(37a)

with A(k+1)(t) = ∫
Ã(k+1)(ω) e+iωt dω/

√
2π . Note that

Eq. (37a) becomes exact if s(t) is constant. Approximating
Ĩ (k+1)(ω) by its zeroth-order solution analogously to Ref. [41],
Eq. (37a) can be expressed as

Ã(k+1)(ω) = G̃(ω) Ã(k+1)
0 (ω), (37b)

where Ã(k+1)
0 (ω) is the zeroth-order solution of the updated

control, found by solving Eq. (26) with λω = λe = 0,

Ã(k+1)
0 (ω) = Ã(k)(ω) + Ĩ

(k+1)
0 (ω), (37c)

and G̃(ω) is a transfer function given by

G̃(ω) =
[

1 + λω

λa

ω2γ̃ (ω) + λe

λa

ω2

]−1

. (37d)

D. Summary of the algorithm

The complete implementation of the optimization within
the time-splitting framework of the TDCIS method is summa-
rized as follows:

(1) Choose an initial guess for the vector potential,
A(k=0)(t).
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(2) Forward propagation of the state:
(a) Propagate |�(k=0)(t = 0)〉, cf. Eq. (2), from t = 0

until the first splitting time, t = t1, in the CIS basis. We label
the projection of the propagated state onto the channel wave
functions defined in Eq. (4) by i = 1,2, . . . , while i = 0 is
reserved for the projection onto the Hartree-Fock ground
state.

(b) At t = t1, apply the splitting function defined in
Eq. (6) to obtain |ϕ(k)

i,in(t1)〉 and |ϕ(k)
i,out(t1; t1)〉. Store the

outer part in the CIS representation, before transforming
|ϕ(k)

i,out(t1; t1)〉 to the Volkov representation.

(c) Propagate |ϕ(k)
i,in(t1)〉 using Ĥ and |ϕ(k)

i,out(t1; t1)〉 using
ĤV from t = t1 to the next splitting time, t = t2.

(d) At t = t2, apply the splitting function to |ϕ(k)
i,in(t2)〉,

again store the resulting outer part in CIS representation,
and transform |ϕ(k)

i,out(t2; t2)〉 to the Volkov representation.

(e) Propagate |ϕ(k)
i,in(t2)〉 using Ĥ and |ϕ̃(k)

i,out(t2)〉 =
|ϕ(k)

i,out(t2; t1)〉 + |ϕ(k)
i,out(t2; t2)〉 using ĤV from t = t2 to the

next splitting time t = t3.
(f) Repeat steps (2d) and (2e) for all remaining splitting

times tj up to tN .
(g) Propagate for each channel wave function,

|ϕ̃(k)
i,out(tN )〉 = ∑tN

tj =t1
|ϕ(k)

i,out(tN ; tj )〉 from the last splitting

time, t = tN , to the final time, t = T , to obtain |ϕ̃(k)
i,out(T )〉

and evaluate the target functional JT .
(h) Calculate χ

(k)
i,out(p,T ) according to Eq. (31a).

(3) Backward propagation of the costate:
(a) Calculate μ(p,T ) according to Eq. (31b) or (31c).
(b) Calculate |χ (k)

i,out(tN ; tN )〉 from Eq. (33) and prop-
agate it backwards using Ĥ from t = tN to the previous
splitting time tN−1. The resulting state is |χ (k)

i,in(tN−1)〉.
(c) At t = tN−1, calculate |χ (k)

i,out(tN−1; tN−1)〉 from

Eq. (33) and “glue” to obtain |χ (k)
i (tN−1)〉 = |χ (k)

k,in(tN−1)〉 +
|χ (k)

i,out(tN−1; tN−1)〉. This procedure is performed in the CIS
basis for each channel wave function.

(d) Propagate |χ (k)
i (tN−1)〉 from t = tN−1 to tN−2 using

Ĥ to obtain |χ (k)
i,in(tN−2)〉.

(e) Repeat steps (3c) and (3d) for all remaining splitting
times and propagate backward up to t = 0. During the
backward propagation, the resulting wave function is stored
in the CIS basis. As previously detailed, this procedure
allows for performing the “glueing” procedure only once
at every splitting time. It gives rise to the first term in
Eq. (32a). The second term involving the evaluation of the
outer part (coherent summation) at any arbitrary time t is
obtained upon application Eq. (29) to each of the individual
contribution |χi,out(tj ; tj )〉 for all splitting times.
(4) Forward propagation and update of control:

(1) Determine the zeroth-order approximation of the
new control at times (n + 1/2)
t , A(k+1)

0 (n + 1/2
t), from
Eq. (26), using the states at times n
t , i.e., the costate
obtained in step (3), |χ (k)

i (n
t)〉 and |ϕ(k+1)
i (n
t)〉 obtained

with the control A(k+1)((n − 1/2)
t).
(2) If λω �= 0 or λe �= 0, then solve Eq. (37b) to obtain

Ã(k+1)(ω), using the approximated A(k+1)
0 (t), and Fourier

transform Ã(k+1)(ω) to time domain.

(5) Increase k by 1 and repeat steps (3) and (4) until
convergence of JT is reached.

At this point, we stress that the parameters chosen for
the momentum grid require particular attention for the op-
timization algorithm to work. This is due to the transformation
from the CIS representation to the Volkov basis (CIS–to–p

transformation) at each splitting time, as discussed in Sec. II B.
During the backward propagation, correspondingly, the inverse
transformation is required, i.e., the p-to-CIS transformation.
The CIS-to-p transformation of the outer part is evaluated
using Eq. (9); the inverse of this transformation is straight-
forwardly derived. Since the dynamics is reversible, forward
propagation (involving wave function splitting and the CIS-to-
p transformation) needs to give identical results to backward
propagation (involving wave function “glueing” and the p-to-
CIS transformation). This can and needs to be used to check
the numerical accuracy of the CIS-to-p transformation and its
inverse: Since the inverse transformation involves integration
over p, a significant error is introduced if the sampling of the
momentum grid is insufficient. Consequently, transforming
the outer part from the CIS representation to the Volkov basis
and then back may not yield exactly the same wave function.
While for each p-to-CIS transformation the error may be
relatively small, it accumulates as the optimization proceeds
iteratively according to Eq. (26). It results in optimized pulses
with nonphysical and undesirable “jumps” at those splitting
times where the accuracy of the p-to-CIS transformation is
insufficient and destroys the monotonic convergence of the
optimization algorithm. The jumps disappear when the number
of the momentum grid points is increased and pmax is adjusted.

Therefore, a naive solution to this problem would be to
considerably enlarge the number of momentum grid points.
However, this will significantly increase the numerical effort
of the optimization, i.e., evaluation of the inner product
in the right-hand side of Eq. (26c). The inner product
not only involves calculation of the overlap of the inner
part in the CIS representation and the outer part in the
Volkov basis but also requires evaluation of the mixed terms,
〈χ (k)

i,in(t)|p̂z|ϕ(k+1)
i,out (t)〉 and 〈χ (k)

i,out(t)|p̂z|ϕ(k+1)
i,in (t)〉, and thus one

CIS-to-p transformation and integration over two—perhaps
even three—degrees of freedom at every time t for each
channel i and in every iteration step k + 1. Therefore, finding
the best balance between efficiency and accuracy in the
p-to-CIS transformation is essential for the proper functioning
and feasibility of the optimization calculations. Also, reducing
the total size of the radial coordinate while simultaneously
increasing the number of splitting times translates into a
more important number of evaluations of the inner product
defined in Eq. (26c) in momentum representation. Below, we
state explicitly the momentum grid parameters utilized in our
simulations which allowed for a good compromise between
efficiency and accuracy.

IV. APPLICATION I: PRESCRIBING THE COMPLETE
PHOTOELECTRON DISTRIBUTION

We consider, as a first example, the optimization of
the complete photoelectron distribution, cf. Eq. (15), for a
hydrogen atom. The wave packet is represented, according
to Eq. (2), in terms of the ground state |�0〉 and excitations
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FIG. 1. Optimal control of the complete photoelectron distri-
bution for a hydrogen atom: (a) angle-integrated PES and (b)
energy-integrated PAD. As the optimization proceeds iteratively, the
actual photoelectron distribution approaches the desired one (black
solid line) in both its energy dependence and angular distribution.
The photoelectron distribution obtained with the guess field (green
dashed lines) is far from the desired distribution.

|�a〉. The calculations employed a pseudospectral grid with
density parameter ζ = 0.50 [20], a spatial extension of 200 a.u.
and 800 grid points. All optimization calculations employed a
linearly polarized electric field along the z axis. This translates
into a rotational symmetry of the photoelectron distribution
along the z axis. Therefore, only wave functions of the form
�out = �out(p,θ ) need to be considered. For the calculation of
the spectral components, the outer parts of the wave functions
were projected onto the Volkov basis, defined on a spherical
grid in momentum representation p. For our calculations, we
adopted an evenly spaced grid in p as well as in the polar
coordinate θ . The size of the radial component of the spherical
momentum grid was set to Emax = 6 a.u., sampled at 301
points. The same number of points was utilized for the polar
coordinate. The splitting radius was set to rc = 50 a.u., and
the total number of splitting times is N = 3 with a smoothing
parameter 
 = 5.0 a.u. [21]. The splitting procedure was
applied every 30 a.u. of time. Finally, a total integration time
of 120 a.u. with a time step of 0.05 a.u. was utilized for the
time propagation.

We consider first the minimization of the functional
J

(1)
T [ϕ̃out(T ),ϕ̃†

out(T )] defined in Eq. (15). The goal is to
find a vector potential Az,opt(t) such that the photoelectron
distribution resulting from the electron dynamics generated by
Az,opt(t) coincides with σ0(p) at every point p, cf. Eq. (15).
For visualization convenience, we plot the angle-integrated
PES and energy-integrated PAD, cf. Eq. (14), associated to
“target” photoelectron distribution σ0(p), as shown by the
solid-black lines in Figs. 1(a) and 1(b), respectively. To
simplify the optimization, neither frequency restriction nor
amplitude constraint on Ez(t) is imposed, i.e., λω = λe = 0.
The initial guess for the vector potential is chosen in such
a way that the fidelity with respect to the target σ0(p) is
poor, see the green dashed lines in Fig. 1. Despite the
bad initial guess, the optimization quickly approaches the
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FIG. 2. Optimization of the full photoelectron distribution:
(a) Guess field E(0)

z (t) chosen to start the optimization shown in Fig. 1
and (b) optimized electric field obtained after about 700 iterations.
(c) The final time cost functional J

(1)
T decreases monotonically, as

expected for Krotov’s method.

desired photoelectron distribution, converging monotonically,
as expected for Krotov’s method and demonstrated in Fig. 2(c):
After about 700 iterations, the target distribution is realized
with an error of 2%. The reason for such a large number of
iterations can be understood by considering that the optimized
photoelectron distribution must coincide (point-by-point) with
a two-dimensional target object. This represents a nontrivial
optimization problem. The optimized electric field is shown
in Fig. 2(b): Compared to the initial guess, cf. Fig. 2(a), the
amplitude of the optimized field is somewhat increased, and
a high-frequency oscillation has been added. The monotonic
convergence towards the target distribution in terms of angle-
integrated PES and energy-integrated PAD is illustrated in
Fig. 1. We can appreciate that the algorithm first tends to
match all points with higher values, starting with the peak
near 15 eV, while adjusting the remainder of the spectrum,
with lower values, later in the optimization. The slow-down of
convergence, observed in Fig. 2(c) after about 200 iterations,
is typical for optimization methods that rely on gradient
information alone: As the optimum is approached, the gradient
vanishes [44]. Such a slow-down of convergence can only
be avoided by incorporating information from higher order
derivatives in the optimization. This is rather nontrivial in the
framework of Krotov’s method [44,45] and beyond the scope
of our current study.

V. APPLICATION II: MINIMIZING THE PROBABILITY
OF EMISSION INTO THE UPPER HEMISPHERE

As a second application of our control toolbox, we are
interested in minimizing the probability of emission into the
upper hemisphere without imposing any specific constraint on
the number of electrons emitted into the lower hemisphere.
The final time cost functional is given by Eq. (16) with λ+

2 >

0 and λ−
2 = 0. We consider again a hydrogen atom and a
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FIG. 3. Minimizing, for a hydrogen atom, photoelectron emission
into the upper hemisphere: As the optimization proceeds iteratively,
the probability of emission into the upper hemisphere decreases
monotonically up to almost complete extinction.

linearly polarized electric field along the z axis, using the
same numerical parameters as in Sec. IV.

In contrast to the example discussed in Sec. IV, no particular
expression for the target PES and PAD needs to be imposed—
we only require the probability of emission into the upper
hemisphere to be minimized regardless of the actual shape of
angle-integrated PES and energy-integrated PAD. We employ
the optimization prescription described in Sec. III B using
Eq. (31c) in the final time condition for the adjoint state. As the
optimization proceeds iteratively, the energy-integrated PAD
becomes more and more asymmetric, see Fig. 3, minimizing
emission into the upper hemisphere, as desired. The guess
and optimized pulses are shown in Figs. 4(a) and 4(b). As
illustrated by the solid green line in Fig. 3, the guess field was
chosen such that it leads to a symmetric probability of emission
for the two hemispheres. Again, monotonic convergence of the
final time cost functional is achieved, cf. Fig. 4(c). At the end
of the iteration procedure, the probability of emission into
the upper hemisphere vanishes completely. As for the lower
hemisphere, the emission probability initially remains almost
invariant as the algorithm proceeds iteratively, see Fig. 3,
while the probability of emission into the upper hemisphere
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FIG. 4. Minimization of the probability of emission into the upper
hemisphere for hydrogen: Guess (a) and optimized (b) electric field
for the optimization shown in Fig. 3. Also for this target functional,
Eq. (16), monotonic convergence of the optimization algorithm is
achieved (c).

decreases very fast, and monotonically, as expected. However,
for a large number of iterations, the probability of emission
into the lower hemisphere starts to decrease as well. After
about 150 iterations it reaches an emission probability of
2.3 × 10−4, which is two orders of magnitude smaller than for
the guess pulse. Although our goal is only for the probability of
emission into the upper hemisphere to be minimized, without
specific constraints on the probability of emission into the
lower hemisphere, the current results are completely consistent
in terms of the optimization problem. More precisely, the
optimization does exactly what the functional J

(2)
T , Eq. (16)

with λ+
2 > 0 and λ−

2 = 0, targets. In fact, since the target
functional depends on the upper hemisphere alone, then,
by construction, the algorithm calculates the corrections to
the field according to Eq. (26), regardless of how these
changes affect the probability of emission into the lower
hemisphere. To keep the probability of emission into the
lower hemisphere constant or to maximize it, an additional
optimization functional is required. This is investigated in
the following section and defines the motivation for the
maximization of the anisotropy of emission discussed in the
following lines.

VI. APPLICATION III: MAXIMIZING THE DIFFERENCE
IN THE NUMBER OF ELECTRONS EMITTED INTO

UPPER AND LOWER HEMISPHERE

Finally, we maximize the difference in probability for
emission into the upper and the lower hemispheres. To this
end, we construct the final-time cost functional such that it
maximizes emission into the upper hemisphere while simul-
taneously minimizing emission into the lower hemisphere.
This is expressed by the functional (16) where both weights
are nonzero and have different signs, λ

(+)
2 < 0 and λ

(−)
2 > 0.

The signs correspond to maximization and minimization,
respectively. We consider this control problem for two different
atoms—hydrogen as a one-channel case and argon as an
example with three active channels [21]. The latter serves to
underline the appropriateness of our methodology for quantum
control of multichannel problems.

Furthermore, in order to demonstrate the versatility of our
optimal control toolbox in constraining specific properties of
the optimized electric field, we consider the following options:
(i) a spectral constraint, i.e., λω �= 0 in Eq. (23), and (ii) the
constraint to minimize fast changes in the vector potential,
with λe �= 0 in Eq. (25). The latter is equivalent to avoiding
large electric field amplitudes.

A. Hydrogen

We consider a hydrogen atom, interacting with an electric
field linearly polarized along the z axis, using the same numer-
ical parameters as in Sec. IV. The optimization was carried out
with and without restricting the spectral bandwidth of Ez(t).
Figure 5(b) displays the symmetric energy-integrated PAD
obtained with the Gaussian guess field, shown in Fig. 6(b),
for which a central frequency ω0 = 27.2 eV was used. For
the optimization with spectral constraint, the admissible fre-
quency components for Ez(t) are chosen such that |Ez(ω)|2 �
ε for all |ω| � ωmax with ωmax = 5 a.u. ≈ 136.1 eV. This
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FIG. 5. Maximizing, for a hydrogen atom, the difference in
photoelectron emission into the upper and lower hemispheres: (a) The
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probability for emission with angles (π/2 � θ � π ) also grows
somewhat, the overall difference increases. The energy-integrated
PAD obtained with the guess pulse is shown in (b). Note the different
y axis scales in (a) and (b).

requirement translates into the penalty function γ̃ (ω) shown
in Fig. 7(c), for which we have used the form

γ̃ (ω) = γ̃0 [1 − e−(ω/α)2n

], (38)

where the parameters α, n, and γ̃0 must be chosen such
that the term λω γ̂ (ω) in the functional Cω[A] in Eq. (23)
takes very large values in the region of undesired frequencies.
For our first example, α = 25, n = 6, and γ̃0 = 1 allows for
strongly penalizing, and therefore filtering all undesirable
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FIG. 6. Maximization of the anisotropy in the PAD for hydrogen:
The target functional J

(2)
T , for the optimization shown in Fig. 5,

measuring the difference in probability for emission into upper
and lower hemispheres increases monotonically with (λω �= 0) and
without (λω = 0) spectral constraint (a). The guess field (green
line) is shown in (b) together with the shape function s(t) used in
both optimizations. The optimized field obtained with the spectral
constraint is displayed in (c).
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FIG. 7. Hydrogen, maximization of the anisotropy of emission:
Spectrum of the optimized electric field for the optimization shown
in Figs. 5 and 6 with (b) and without (a) spectral constraint. The
corresponding penalty function γ̃ (ω) and transfer function G̃(ω), cf.
Eqs. (23) and (37d), are shown in (c) and (d), respectively.

frequency components above |ω| � ωmax, as it is shown by the
corresponding transfer function G̃(ω), cf. Fig. 7(d). Note that
it is not the weight λω alone that determines how strictly the
spectral constraint is enforced; it is the ratio λω/λa that enters
in the transfer function G̃(ω). This reflects the competition of
the different terms in the functional C[A], Eq. (20).

As in the previous two examples, our optimization approach
leads to monotonic convergence of the target functional,
Eq. (16), with and without spectral constraint. This is il-
lustrated in Fig. 6(a). Even though the spectra of the fields
optimized with and without spectral constraint, completely
differ, cf. Figs. 7(a) and 7(b), the speed of convergence is
roughly the same, and the maximum values for J

(2)
T reached

using both fields are also very similar, cf. Fig. 6(a). This means
that the algorithm finds two distinct solutions. Such a finding
is very encouraging as it implies that the spectral constraint
does not put a large restriction onto the control problem.
In other words, more than one, and probably many, control
solutions exist, and it is just a matter of picking the suitable
one with the help of the additional constraint. It also implies
that most of the frequency components in the spectrum of the
field optimized without spectral constraint are probably not
essential. This is verified by removing the undesired spectral
components in Fig. 7(a), using the same transfer function
utilized for the frequency-constrained optimization shown in
Fig. 7(d). The energy-integrated PAD obtained with such a
filtered optimized pulse remains asymmetric, and the value of
the target functional J

(2)
T is decreased by only about 10% .

The peak amplitude of the optimized field is about one order
of magnitude larger than that of the guess field, cf. Figs. 6(b)
and 6(c). The increase in peak amplitude is connected to the
gain in emission probability for the northern hemisphere by
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FIG. 8. Maximization of the difference of photoelectrons emitted
into the lower and upper hemispheres for hydrogen: Optimized
electric fields with (λω �= 0) and without (λω = 0) frequency re-
striction (a) where the red curve shows the same data as in
Fig. 6(c). Also compared are the energy-integrated PAD (b) and total
emission probability (c) obtained with the frequency-constrained and
unconstrained optimized fields.

almost three orders of magnitude. The optimized pulse thus
ionizes much more efficiently than the guess pulse.

Figure 8(a) compares the electric fields optimized with and
without spectral constraints—a huge difference is observed for
the two fields. While the electric field optimized without spec-
tral constraint presents very sharp and high peaks in amplitude,
beyond experimental feasibility, the frequency-constrained
optimized field is characterized by reasonable amplitudes and
a much smoother shape. The frequency components of the
unconstrained field shown in Fig. 7(a) now become clear. Note
that the difference in amplitude only appears during the first
half of the overall pulse duration, see Fig. 8(a). It is a known
feature of Krotov’s method to favor changes in the field in
an asymmetric fashion; the feature results from the sequential
update of the control, as opposed to a concurrent one [46].

Figure 8(b) shows the energy-integrated PAD obtained upon
propagation with the two fields. One notes that, although
the probability of emission into the lower hemisphere is
larger for the unconstrained than for the constrained field,
the same applies to the probability of emission into the
upper hemisphere. Therefore the difference in the number of
electrons emitted into upper and lower hemispheres is in the
end relatively close, which explains the behavior of the final-
time functional observed in Fig. 6(a). The electron dynamics
generated by the frequency-unconstrained field leads to a
larger total probability of emission into both hemispheres, with
respect to that obtained with the frequency-constrained field,
as shown in Fig. 8(c). More precisely, propagation with the
unconstrained optimized field results in a total probability of
emission of 0.27, i.e., probabilities of 0.23 and 4.3 × 10−2 for
emission into the upper and lower hemispheres, respectively.
In comparison, a total probability of emission of 0.26 is
obtained for the frequency-constrained field, with probabilities
of emission into the upper and lower hemispheres of 0.22 and
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FIG. 9. Maximizing the anisotropy of photoelectron emission for
hydrogen: Partial wave contribution to the angle-integrated PES,
shown in Fig. 5, obtained with the guess (a) and the frequency-
constrained optimized field (b).

3.9 × 10−2, respectively. The fact that the spikes observed in
the unconstrained optimized field do not have any significant
impact on the asymmetry of the PAD can be rationalized by
the short timescale on which the intensity is very high. This
time is too short for the electronic system to respond to the
rapid variations of the field amplitude.

In order to rationalize how anisotropy of electron emission
is achieved by the optimized field, we analyze in Fig. 9
the partial wave decomposition of the angle-integrated PES,
comparing the results obtained with the guess field to those
obtained with the frequency-constrained optimized field.
Inspection of Fig. 9 reveals that, upon optimization, there
is a clear transition from distinct ATI peaks, Fig. 9(a),
to a quasicontinuum energy spectrum, Fig. 9(b). Also, the
optimized field enhances the contribution of states of higher
angular momentum that have the same kinetic energy. In
particular, the peaks for l = 5 are dramatically higher than in
the PES obtained with the guess field. In fact, the symmetric
case, cf. Fig. 9(a), shows an energy distribution of partial
waves characterized by waves of the same parity at the same
energy, whereas the asymmetric case reveals a partial wave
distribution of opposite parity at the same energy, cf. Fig. 9(b).
Figure 9 thus demonstrates that the desired asymmetry in
the energy-integrated PAD is achieved through the mixing
of various partial waves of opposite parity at the same energy.
Interestingly, especially lower frequencies are mixed with a
considerable intensity into the pulse spectrum which leads
to higher-order multiphoton ionization leading to comparable
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FIG. 10. Maximizing the anisotropy of photoelectron emission
for hydrogen: Optimization results obtained when simultaneously
constraining the maximal amplitude and frequency components of
the electric field for the weights |λ(−)

eff | = 2|λ(+)
eff | with |λ(+)

eff | = 1.
Guess and optimized electric fields are shown in panel (a) and
their spectra in panel (b). A perfectly anisotropy of photoelectron
emission is obtained with the optimized field, as demonstrated in the
photoelectron angular distribution shown in panel (c).

final energies in the PES. Thus, more angular momentum states
are mixed.

Next, we constrain not only the frequency components
but also the maximal field amplitude, as the maximal field
amplitude of the electric field, shown in Fig. 6(c) is still
important. To this end, we employ Eq. (37) for λe > 0,
which penalizes large changes on the derivative of the vector
potential, cf. Eq. (25), and thus large values of the electric
field amplitude. As can be seen in Fig. 10(a), the resulting
optimized field is one order of magnitude smaller than that
for which no amplitude restriction was imposed, cf. Fig. 6(c),
and of the same order of magnitude as the guess field. Despite
the constraint and as shown in Fig. 10(c), a perfect top-bottom
asymmetry is obtained.

A common feature observed between the amplitude-
unconstrained and constrained cases concerns the low frequen-
cies appearing upon optimization, cf. Fig. 7(b) and Fig. 10(b),
respectively. To quantify the role of the frequency components
for achieving anisotropy, we start by suppressing all frequency
components above 10 eV: The anisotropy of emission is
preserved. On the other hand, removing frequencies below
the XUV re-establish the initial symmetry of emission into
both hemispheres. Therefore, in both cases the top-bottom
asymmetry arises from low-frequency components of the
optimized field and is achieved through the mixing of various
partial waves of opposite parity at the same energy.

B. Argon

We extend now our quantum control multichannel approach
to the study of electron dynamics in argon, interacting with
an electric field linearly polarized along the z direction. We
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FIG. 11. Maximizing, for an argon atom, the difference in
photoelectron emission into the upper and lower hemispheres: Guess
field (a) utilized for the optimization. Optimized fields obtained with
an amplitude constraint are depicted in (b) and (c), respectively.

consider the 3s and 3p orbitals to contribute to the ionization
dynamics and define three ionization channels 3s, 3p with
m = 0, and 3p with m = +1 (the case 3p with m = −1 is
symmetric to m = +1 due to the polarization direction of the
electric field, linearly polarized along to the z axis). In order to
describe the multichannel dynamics, a spatial grid of 100 a.u.
with 450 grid points and a density parameter of ζ = 0.55 was
utilized. The size of the radial component of the spherical
momentum grid was set to Emax = 12 a.u., sampled by 601
evenly spaced points, while the polar component θ ∈ [0,π ]
was discretized using 301 points. A splitting radius of rc = 50
a.u., and a smoothing parameter 
 = 10.0 a.u. were employed,
together with a splitting step of 2.0 a.u. and a total number of
Ns = 2036 splitting times. For time propagation, the time step
was chosen to be 0.01 a.u., for an overall integration time

T ≈ 200 a.u.

Analogously to the results shown for hydrogen in Sec. VI A,
the goal is to maximize the difference in the probability for
electron emission into the upper and lower hemispheres. To
start the optimization, a Gaussian-shaped guess electric field
with central frequency ω = 27.2 eV and maximal amplitude
Emax = 5.14 GV/m was chosen. It is depicted in Fig. 11(a)
and yields a symmetric distribution for the upper and lower
hemispheres, see Fig. 12(a). The total emission probability
amounts to only 1.4 × 10−2.

In order to obtain reasonable pulses which result in a
maximally anisotropic PAD, we utilize Eq. (25) with λe �= 0 to
minimize fast changes in the vector potential and avoid large
peaks of the electric field amplitude.

The optimized pulses for two values of the ratio λe/λa ,
charaterizing the relative weight of minimizing peak values in
the electric field compared to minimizing the integrated vector
potential, are shown in Figs. 11(b) and 11(c), respectively.
As expected, a larger amplitude constraint yields an electric
field with a smaller maximal amplitude. In fact, the maximal
amplitude for λe/λa = 0.01 is one order of magnitude larger
than that of the guess field, whereas for λe/λa = 0.02 it is only
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eff | and |λ(+)
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(b) and (c), respectively. Note the different scales for the probability
of emission.

3 times larger. Figures 12(b) and 12(c) display the energy-
integrated PADs obtained with these fields. A significant top-
bottom asymmetry of emission is achieved in both cases, the
main difference being the total emission probability of 2.7 ×
10−2 for Fig. 12(b) compared to 9.4 × 10−3 for Fig. 12(c).

The spectra of the two optimized fields are examined in
Fig. 13. Despite the difference in amplitude, both optimized
fields are characterized by low-frequency components. Note
that no frequency restriction was imposed. This finding
suggests that the low-frequency components are responsible
for achieving the top-bottom asymmetry. Indeed, removing all
optical and infrared (IR) components results in a complete
loss of the asymmetry. On the other hand, removing frequency
components above 10 eV does not affect the top-bottom
asymmetry achieved by both optimized fields considerably.

These optimization results raise the question whether
frequency components in the optical and IR range are essential
for achieving the top-bottom asymmetry or whether a pure
XUV field can also realize the desired control. To answer this
question, we now penalize all frequency components in the
optical and IR region. The resulting optimized electric field and
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FIG. 14. Top-bottom asymmetry in argon: Frequency and
amplitude-constrained optimized field and its spectrum in (a) and
(b) with the guess field shown for comparison. For obtaining the
XUV field, the ratios λe/λa = 0.02 and λω/λa = 0.02 with a penalty
function γ̃XUV = γ̃ (ω − ω0) + γ̃ (ω + ω0) − 1 + εω with γ̃o = 100,
ω0 = 27.2 eV, n = 4, and α = 15 were utilized, cf. Eq. (38). The
quantity εω = 0.001 has been introduced in order to avoid numerical
instabilities when evaluating the transfer function G̃(ω), cf. Eq. (37d).
The resulting asymmetric photoelectron angular distribution obtained
with the optimized field is shown in panel (c).

its spectrum are depicted in Figs. 14(a) and 14(b), respectively.
This field indeed possesses frequency components only in
the XUV region, cf. Fig. 14(b). Nevertheless, a strongly
asymmetric top-bottom emission is again achieved, cf.
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FIG. 15. Maximizing the anisotropy of photoelectron emission
for argon: Partial wave contribution to the angle-integrated PES,
shown in Fig. 12 obtained with the guess (a) and the amplitude-
constrained optimized field corresponding to the ratio λe/λa = 0.01
in (b).
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FIG. 16. Maximizing the anisotropy of photoelectron emission
for argon: Partial wave contributions to the angle-integrated PES
corresponding to the energy-integrated PAD shown in Fig. 12(c)
obtained amplitude-constrained optimized field for the ratio λe/λa =
0.02 and that corresponding to the PAD shown in Fig. 14(c) obtained
with the optimized XUV pulse in panels (a) and (b), respectively.

Fig. 14(c). Therefore, while optical or IR excitation may signif-
icantly contribute to achieving anisotropy of the photoelectron
emission, fields with frequency components in the XUV alone
may also lead to such an asymmetry.

Finally, we would like to understand the physical mech-
anism from which the anisotropy in the emission into both
hemispheres arises. To this end, we consider the partial wave
decomposition of the angle-integrated PES. Analogously to
our analysis for hydrogen, cf. Sec. VI A, a symmetric PAD,
as obtained with the guess field, is characterized by an
energy distribution of partial waves of the same parity at
the same energy, cf. Fig. 15(a). In contrast, the partial wave
decomposition corresponding to the asymmetric PAD reveals
an energy distribution of partial waves of different parity at
the same energy, cf. Figs. 15(b) and 16(a). For the optimized
fields with significant optical and IR components, many
partial waves, including those with high angular momentum,
contribute to the angle-integrated PES. This suggests that the
top-bottom anisotropy of photoelectron emission is achieved
by absorbing low-energy photons at relatively high intensity
which is accompanied by strong mixing of a number of
partial waves of opposite parity at the same energy. The
same mechanism had previously been found for hydrogen, cf.
Sec. VI A.

As for the optimized XUV electric field yielding an
asymmetric probability for emission, shown in Fig. 14(c), the

same mechanism involving mixing of partial waves of different
parity at the same energy is found, cf. Fig. 16(b). Nevertheless,
a much smaller number of partial waves is involved, cf.
Figs. 16(a) and 16(b). For the XUV pulse [Fig. 14(b)], it
is mainly the components of the continuum wave function
with angular momentum l = 2 and l = 3 that contribute to the
anisotropy of emission.

The reason why partial waves with different parity are
always present for anisotropic photoelectron emission can be
straightforwardly understood. It lies in the fact that the angular
distribution arises from products of spherical harmonics, cf.
Eqs. (14a), (13), and (9), and the product of two spherical
harmonics with the same (opposite) parity is a symmetric
(antisymmetric) function of θ . The optimized pulses take
advantage of this property and realize the desired asymmetry
by driving the dynamics in such a way that it results
in partial wave components which interfere constructively
(destructively) in the upper (lower) hemisphere.

We have also investigated whether channel coupling plays
a role in the generation of the anisotropy. While switching off
the interchannel coupling in the dynamics under the optimized
pulse shown in Fig. 14(a) decreases the resulting anisotropy
slightly, overall it still yields an anisotropic PAD. This shows
that interchannel coupling in argon is not a key factor in
achieving top-bottom asymmetry in photoelectron angular
distributions.

VII. CONCLUSIONS

To summarize, we have developed a quantum optimal
control toolbox to target specific features in photoelectron
spectra and photoelectron angular distributions that result
from the interaction of a closed-shell atom with strong XUV
radiation. To this end, we have combined Krotov’s method for
quantum control [19] with the time-dependent configuration
interaction singles approach to treat the electron dynamics
[20] and the wave-function splitting method to calculate
photoelectron spectra [21,22]. We have presented here the
algorithm and its implementation in detail. While currently
based on the time-dependent configuration interaction singles
approach, it is straightforward to adapt the algorithm to dif-
ferent time-dependent electronic structure methods, provided
they are compatible with wave function splitting to calculate
the photoelectron spectrum. To the best of our knowledge, our
work is the first to directly target photoelectron observables in
quantum optimal control.

We have utilized this toolbox to identify, for the benchmark
systems of hydrogen and argon atoms, photoionization path-
ways which result in asymmetric photoelectron emission. Our
optimization results show that efficient mechanisms for achiev-
ing top-bottom asymmetry exist in both single-channel and
multichannel systems. We have found the channel coupling to
be beneficial, albeit not essential, for achieving asymmetric
photoelectron emission. Since typically the solution to a
quantum control problem is not unique, additional constraints
are useful to ensure certain desired properties of the control
fields, such as limits to peak amplitude and spectral width. We
have demonstrated how such constraints allow us to determine
solutions characterized by low or high photon frequency.
In the low-frequency regime, our control solutions require
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relatively high intensities. Correspondingly, the anisotropy of
the photoelectron emission is realized by strong mixing of
many partial waves. In contrast, for pure XUV pulses, we
have found low to moderate peak amplitudes to be sufficient
for asymmetric photoelectron emission. In both cases, we
have identified the top-bottom asymmetry to originate from
mixing, in the photoelectron wave function, various partial
waves of opposite parity at the same energy. The corresponding
constructive (destructive) interference pattern in the upper
(lower) hemisphere yields the desired asymmetry of photo-
electron emission. Whereas many partial waves contribute
for control fields characterized by low photon energy and
high intensity, interference of two partial waves is found to
be sufficient in the pure XUV regime. In all our examples,
we have found surprisingly simple shapes of the optimized
electric fields. In the case of hydrogen, tailored electric fields
to achieve asymmetric photoelectron emission have been
discussed before and we can compare our results to those
of Refs. [34,47]. Our work differs from these studies in that
we avoid a parametrization of the field and allow for complete
freedom in the change the electric field, whereas Refs. [34,47]
considered only the carrier-envelope phase, intensity, and
duration of the pulse as control knobs. The additional freedom
of quantum optimal control theory is important, in particular
when more complex systems are considered.

The set of applications that we have presented here is far
from being exhaustive, and our current work opens many
perspectives for both photoionization studies and quantum
optimal control theory. On the one hand, we have shown
how to develop optimization functionals that target directly an
experimentally measurable quantity obtained from continuum
wave functions. On the other hand, since our approach is
general, it can straightforwardly be applied to more complex
examples. In this respect it is desirable to lift the restriction
to closed-shell systems. This would pave the way to studying
the role of electron correlation in maximizing certain features
in the photoelectron spectrum. Similarly, allowing for circular
or elliptic polarization of the electric field, one could envi-
sion, for example, maximizing signatures of chirality in the
photoelectron angular distributions. This requires, however,
substantial further development on the level of the time-
dependent electronic structure theory.
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APPENDIX: FREQUENCY AND AMPLITUDE
RESTRICTION

In the following, we present the derivation of Krotov’s
update equation for the control, Eq. (26a), using the approx-
imation for s(t) previously described. This allows for a more
compact expression for Krotov’s equation for the specific
constraints on the field used in this work. It is obtained
following Ref. [19]: We seek to minimize the complete

functional, Eq. (18). In order to evaluate the extremum
condition, we start by evaluating the functional derivative of
the penalty functional with respect to the changes in the control
field A(t) in Eq. (22),

δCa[A]

δA(t)
= 2λas

−1(t)[A(t) − Aref(t)]. (A1)

Next we evaluate the functional derivative of Eq. (23).
Abbreviating ω2γ̃ (ω) by h̃(ω) in Eq. (23), the functional
derivative reads

δCω[A]

δA(t)
= λω

∫
A�(ω)

δÃ(ω)

δA(t)
h̃(ω) dω

+ λω

∫
Ã(ω)

δÃ�(ω)

δA(t)
h̃(ω) dω. (A2)

Using the fact that Ã(ω) is the Fourier transform of A(t),

Ã(ω) =
∫

A(t)e−iωt dt,

the functional derivative becomes

δÃ(ω)

δA(t ′)
= e−iωt ′ ,

such that

δCω[A]

δA(t)
= λω

∫
Ã�(ω)e−iωt h̃(ω) dω

+ λω

∫
Ã(ω)e+iωt h̃(ω) dω .

This can be rewritten as

δCω[A]

δA(t)
= λω

∫
Ã�(−ω)e+iωt h̃(−ω) dω

+ λω

∫
Ã(ω)e+iωt h̃(ω) dω. (A3)

Since the control A(t) is a real function of time, Ã�(−ω) =
Ã(ω). Moreover, by construction h̃(ω) = h̃(−ω). Therefore,
Eq. (A3) becomes

δCω[A]

δA(t)
= 2λω

∫
Ã(ω)e+iωt h̃(ω) dω

= 2λω

∫
Ã(ω)eiωtdω

∫
h(τ )e−iωτ dτ

= 2λω

∫
h(τ )dτ

∫
Ã(ω)e+iω(t−τ )dω

= 2λ̃ω

∫
h(τ )A(t − τ )dτ = 2λ̃ωA � h(t), (A4)

with λ̃ω = √
2πλω, and h(t) = ∫

h̃(ω) exp (+iωt) dω/
√

2π

and where f � g(t) refers to the convolution product of f

and g.
We now calculate the functional derivative of the constraint

penalizing large values of Ȧ(t), Eq. (25). Assuming vanishing
boundary conditions for A(t), we find, upon integration by
parts,

δCe[A]

δA(t)
= −2λes

−1(t)Ä(t). (A5)
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Using Eqs. (A1), (A4), and (A5), the extremum condition with
respect to a variation in the control becomes

0 = λa s−1(t)[A(t) − Aref(t)] − λe s−1(t)Ä(t)

+ λ̃ω A � h(t) − Im

{〈
χ (t)

∣∣∣∣∣∂Ĥ

A

∣∣∣∣∣�(t)

〉}
.

where the last term has been previously introduced in Eq. (26).
It can be straightforwardly derived from variational princi-
ples, i.e., the Euler-Lagrange equation, or in the context of
Pontriagin’s maximum-minimum principle or in the context
of Krotov’s optimization method, cf. Refs. [19,41]. It stresses
the dynamics to which the forward propagated state is subject.
Solving for A(t) gives us the update rule for the optimized
pulse,

A(t) = Aref(t) + s(t)

λa

Im

{〈
χ (t)

∣∣∣∣∣∂Ĥ

A

∣∣∣∣∣�(t)

〉}

− λ̃ω

λa

s(t)A � h(t) + λe

λ a
Ä(t), (A6)

i.e., we retrieve Eq. (26a). Using the property

∫
Ä(t) e−iω t dt = −ω2 Ã(ω),

together with Eq. (36) for s(t), it is straightforward to write
Krotov’s equation in frequency domain. To this end, we merely
take the Fourier transform of Eq. (A6) and utilize the well-
known property that the Fourier transform of a convolution of
two functions in time domain is the product of the functions
in frequency domain. We thus find

Ã(k+1)(ω) ≈ Ã(k)(ω) + Ĩ (k+1)(ω)

− λ̃ω

λa

Ã(k+1)(ω)h̃(ω) − ω2 λe

λa

Ã(k+1)(ω),

(A7)

which yields Eq. (37a).
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Radcliffe, W. B. Li, S. Düsterer, S. Fritzsche, A. Mihelic,
K. G. Papamihail et al., Phys. Rev. Lett. 104, 213001 (2010).

[3] F. Fabre, P. Agostini, G. Petite, and M. Clement, J. Phys. B 14,
L677 (1981).

[4] U. Becker and D. A. Shirley, VUV and Soft X-Ray Photoioniza-
tion, 3rd ed. (Springer, Berlin, 1996).

[5] G. Wu, P. Hockett, and A. Stolow, Phys. Chem. Chem. Phys.
13, 18447 (2011).

[6] C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G.
Muller, P. Agostini, and L. DiMauro, Nat. Phys. 5, 335
(2009).

[7] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[8] H. Wabnitz, L. Bittner, A. R. B. de Castro, R. Dohrmann, P.

Gurtler, T. Laarmann, W. Laasch, J. Schulz, A. Swiderski, K.
von Haeften et al., Nat. Phys. 420, 482 (2002).

[9] P. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
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