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Photoionization with attosecond pulses populates hole states in the photoion. Superpositions of hole states
represent ideal candidates for time-dependent spectroscopy, for example via pump-probe studies. The challenge
consists in identifying pulses that create coherent superpositions of hole states while satisfying practical
constraints. Here, we employ quantum optimal control to maximize the degree of coherence between these
hole states. To this end, we introduce a derivative-free optimization method with sequential parametrization
update (SPA optimization). We demonstrate the versatility and computational efficiency of SPA optimization
for photoionization in argon by maximizing the coherence between the 3s and 3p0 hole states using shaped
attosecond pulses. We show that it is possible to maximize the hole coherence while simultaneously prescribing
the ratio of the final hole state populations.
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I. INTRODUCTION

Quantum optimal control theory is a versatile tool for
identifying external fields that steer the dynamics of a
quantum system in a desired way [1]. Applications range
from enhancing the signal-to-noise ratio in nuclear magnetic
imaging to high-fidelity operations in quantum information
science [1]. Besides the actual implementation of a desired
task, unravelling the underlying control mechanism often
serves a better understanding of the quantum system. This
is referred to as quantum control spectroscopy.

Photoionization is a prime tool for studying electron
dynamics and electron correlations and as such it is a promis-
ing candidate for quantum control spectroscopy. Compared
to other fields of application, quantum optimal control of
photoionization is faced with two challenges. First, optimiza-
tion algorithms have to be combined with time-dependent
electronic structure methods. To date, this has been achieved
for the time-dependent configuration interaction singles (TD-
CIS) method [2–4], the multiconfigurational time-dependent
Hartree-Fock (MCTDHF) method [5], and time-dependent
density functional theory (TDDFT) [6,7]. Second, the optimal
control toolbox needs to be adapted to typical observables
in photoionization processes. This includes, notably, photo-
electron spectra and angular distributions. We have recently
shown how a complete 3D photoelectron spectrum or certain
properties thereof can be targeted with quantum optimal
control [4].

In the present work, we shift the focus from controlling the
photoelectron to controlling the photoion. This is motivated
by the progress in the observation of hole dynamics in the
photoion [8–11] which is initiated by the photoionization.
A coherent superposition of hole states may be created
through one-photon ionization by a pulse with sufficiently
large bandwidth [12] or through multiphoton processes [9,10].
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Such a superposition is the starting point for time-dependent
spectroscopy of electron dynamics, for example via pump-
probe studies to investigate hole alignment [8] or interchannel
coupling [11]. As with any coherent spectroscopy, the degree
of coherence of the state that will be transiently probed is a cru-
cial resource [13]. However, the transient interaction between
the photoion and the photoelectron introduces decoherence of
the hole states even in one-photon ionization with attosecond
pulses [12]. In optical tunnel ionization, the observed degree
of coherence is also limited, so far to about 85 percent [10].
In that regime, even the shortest ionizing pulses do not allow
one to realize perfect coherence among the hole states [14].
Moreover, only outer-valence hole states are accessible and it
is very hard to vary the population ratio of the hole states.

The challenge is thus to identify suitable pulses that
create a desired superposition of hole states with predefined
population ratio, satisfying practical constraints. This is the
control problem that we consider here for the example of a
superposition of the 3s and 3p0 hole states in the argon atom.
Note that the 3s hole state in argon would be inaccessible in
tunnel ionization. A necessary requirement for hole coherence
is ionization into photoelectron states with the same angular
momentum and energy. Because of the dipole selection rules,
creating coherence between a pair of hole states through
one-photon ionization may not be possible even if the spectral
bandwidth of the ionizing pulse exceeds the energy separation
of the two hole states. For multiphoton processes, it may
be possible to generate hole coherence by ionization from
occupied orbitals of opposite parity. The use of quantum
optimal control theory allows for exploring both regimes and,
moreover, for tackling the question of what the maximum
degree of hole coherence is.

To this end, we employ a gradient-free optimization
approach. It consists in choosing a suitable parametrization
of the ionizing field and optimizing the parameters of the
corresponding expansion. Importantly, we increase the number
of optimization parameters sequentially as the optimization
proceeds. This sequential parametrization update, or SPA
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optimization, is key for ensuring sufficient flexibility in the
representation of the field while avoiding the slow convergence
that plagues gradient-free optimization for large numbers of
optimization parameters.

To actually carry out gradient-free optimization, numerous
methods exist in the mathematics literature. However, quantum
optimal control studies have so far focused mainly on the
Nelder-Mead or downhill simplex method [15,16]. The stan-
dard Nelder-Mead approach may, however, fail to converge to
an extremum, even for strictly convex functions [17], leading
to poor optimization results. Here, we compare this option for
gradient-free optimization to the principal axis method, due to
Brent [18], and find the latter to be clearly superior both in
terms of convergence speed and final value of the degree of
coherence.

The remainder of the paper is organized as follows. We
present the theoretical framework in Sec. II, starting with
the TDCIS equations in Sec. II A, defining the optimization
problem in Sec. II B, and outlining the optimization method
in Secs. II C and II D. Section III is dedicated to a thorough
numerical study of SPA optimization. Taking as an example the
maximization of coherence between the 3s and 3p0 hole states
in argon, without any constraint on the respective hole popu-
lations, we illustrate the efficiency of the sequential parameter
update, compare the Nelder-Mead to the principal axis method,
and demonstrate a significant speedup of convergence due to
a parameter scan prior to optimization. In Sec. IV we turn to
the maximization of the hole coherence under the additional
constraint of maintaining a certain population ratio for the hole
states and study in depth the underlying control mechanism.
Section V concludes.

II. THEORETICAL FRAMEWORK

A. Electron dynamics using TDCIS

We model the electron dynamics in photoionization by
means of the time-dependent configuration interaction sin-
gles (TDCIS) approach [12,19–21]. TDCIS is a systematic
multichannel theory that goes beyond single active electron
approaches and allows for treating the ionization dynamics
in full spatial dimensionality. The TDCIS N -electron wave
function reads

|�(t)〉 = α0(t)|�0〉 +
∑
i,a

αa
i (t)|�a

i 〉, (1)

where |�0〉 and |�a
i 〉 denote the Hartree-Fock ground state and

the single particle-hole excitation from an initially occupied
orbital, labeled i, to an initially unoccupied orbital a. The
binding energies utilized in the present work are those obtained
from the Hartree-Fock formalism using Koopmans’ theorem
[22,23]. The dynamics is governed by the time-dependent
Hamiltonian,

Ĥ (t) = Ĥ0 + Ĥ1 + E(t)ẑ, (2)

where Ĥ0 is the mean-field Fock operator and Ĥ1 is the residual
Coulomb interaction,

Ĥ1 = V̂C − V̂MF , (3)

with V̂C and V̂MF being the electron-electron interaction
and the mean-field potential, respectively. We adopt here

the Møller–Plesset partitioning, i.e., we add the mean-field
potential to the physical Hamiltonian, in order to obtain
the Fock operator, and subtract it, in order to obtain the
residual Coulomb interaction; cf. Eq. (3). The last term on
the right-hand side of Eq. (2) describes the electric dipole
interaction of the atom with an external electric field, assumed
to be linearly polarized.

The photoion corresponds to a reduced system that is
obtained by integrating out the photoelectron and thus needs
to be described by a density matrix [14]. To study the
hole dynamics, we use the ion density matrix approach of
Refs. [12,19],

ρIDM
i,j (t) = Tra[|�(t)〉〈�(t)|]i,j =

∑
a

〈
�a

i

∣∣�(t)〉〈�(t)
∣∣�a

j

〉
,

(4)

where the trace is carried out over the virtual channels which
are occupied by the photoelectron. In order to avoid numerical
artifacts due to reflection on the edges of the numerical
grid as the TDCIS wave function propagates over time, a
complex absorbing potential (CAP) [24,25] of the form

− iηŴ (r̂) = −iηh(r̂ − rc)(r̂ − rc)2 (5)

is utilized [19,26–28]. In Eq. (5), h(·), r , and rc refer to
the Heavyside distribution, the distance from the origin and
the critical distance at which the CAP starts absorbing,
respectively. The CAP affects all virtual orbitals and thus
also the ion density matrix, which therefore must be corrected
according to [19,28]

ρIDM
i,j (t) = ρ̃IDM

i,j (t) + 2η e(εi−εj )t
∑
a,b

wa,b

∫ t

−∞
dt ′

×αa
i (t ′)α∗b

j (t ′)e(εi−εj )t ′ , (6a)

where the “uncorrected” matrix elements of ion density matrix
ρ̃IDM (t) read [19,28]

ρ̃IDM
i,j (t) =

∑
a

(
�a

i |�(t)〉〈�(t)|�a
j

)
, (6b)

with |�a
j ) = |�a

j 〉 and |�a
j 〉 and (�a

j | referring to the right and

left eigenvectors of F̂ − iηŴ , where F̂ is the Fock operator.
Note that, due to the CAP, (�a

j | and |�a
j 〉 are not orthogonal

[19].
Equation (6a) provides the starting point for defining a

measure of hole coherence: the positive semidefinite quantity

gi,j (t) =
∣∣ρIDM

i,j (t)
∣∣√

ρIDM
i,i (t)ρIDM

j,j (t)
(7)

defines the degree of coherence between the hole states in the
atomic orbitals i and j [12]. For a totally incoherent statistical
mixture gi,j = 0, whereas gi,j = 1 for perfect coherence
between the states i and j .

We will analyze below the impact of the Coulomb interac-
tion on the hole coherence. To this end, we will compare the
“full” (or interchannel) model and the intrachannel approxi-
mation. Within the full model, the photoelectron may couple
to all hole states in the parent ion which mediates a coupling
between different channels. In contrast, within the intrachannel
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approximation, the photoelectron can only interact with the
hole in the orbital from which it originates [12].

Moreover, it will be useful to quantify how fast a photo-
electron leaves the parent ion. To this end, we can exploit that
the CAP acts as a sensor for the excited electron or, eventually,
the photoelectron to reach the asymptotic region, where the
CAP is active. Such an indicator is given by

�ρ(t) = 1 − (Tri[ρ̃
IDM (t)] + |α0(t)|2), (8)

since Tri[ρ̃IDM (t)] + |α0(t)|2 is not equal to one, due to the
CAP (only Tri[ρIDM (t)] + |α0(t)|2 is) and the CAP does not
affect the coefficients α0(t).

B. Optimization problem

Our optimization targets maximization of hole coherence.
In a first stage, we maximize the degree of coherence between
the 3s and 3p0 hole states in argon at the final time T , regardless
of the final hole population ratio in the 3s and 3p0 orbitals. It
is customary to minimize rather than maximize, such that the
final-time cost functional reads

J
(1)
T = (g3s,3p0 (T ) − 1)2. (9)

It takes values between 0 and 1 with J
(1)
T = 0 corresponding

to perfectly coherent 3s and 3p0 hole states.
When the target is not only to maximize hole coherence but

also to prescribe a certain ratioR between the hole populations,
the final time cost functional becomes

J
(2)
T = wpop

(
ρ3p0,3p0 (T )

ρ3s,3s(T )
− R

)2

+ wcoh(g3s,3p0 (T ) − 1)2,

(10)

where wpop and wcoh are optimization weights that can be used
to stress the relative importance of each term in Eq. (10).

Additional constraints in functional form, that are custom-
ary in gradient-based optimization and often cumbersome to
implement [29,30], are not needed when using gradient-free
optimization: the bandwidth of the field is determined by the
allowed frequency range, and the maximal amplitudes of the
Fourier components can be directly confined by choice of
sampling range.

C. Optimization method

We opt here for gradient-free optimization which only
requires evaluation of the functional but not its gradient.
This avoids backward propagation of an adjoint state that is
typical for gradient-based optimization approaches [31]. In
our case, backward propagation involves an inhomogeneous
Schrödinger equation with the inhomogeneity originating from
the correction of the ion density matrix due to the presence of
the CAP; cf. Eq. (6a). While a numerically exact solution
of inhomogeneous Schrödinger equations is possible [32], it
becomes challenging if the source term gets large. This is the
case here.

A number of methods for gradient-free optimization exists.
A popular approach, adopted also for applications of quantum
optimal control [15,16], is due to Nelder and Mead [33]. It
minimizes a function of n optimization parameters (therefore

gradient-free approaches are sometimes referred to as param-
eter optimization) by comparing function evaluations at the
n + 1 vertices of a general simplex, and updating the worst
vertex by moving it around a new vertex that is an average
of the remaining (best) vertices [33,34]. While the approach
often works well, it is rather sensitive to the initial guess and
thus often converges to local extrema. A recent alternative is
the NEW Unconstrained Optimization Algorithm [35], which
has already been applied to quantum optimal control [36–38].
As a further alternative to the Nelder-Mead simplex approach,
we consider here the principal axis optimization method [18]
which is based on an inverse parabolic interpolation.

The advantage of avoiding backward propagation of the
adjoint state with gradient-free optimization is balanced by
two drawbacks—the requirement for prior parametrization
of the field, and the convergence not being monotonic.
Gradient-free optimization may lead to poor fidelities if (i)
the parametrization of the field is not properly chosen, (ii)
the number of parameters is too small, or, paradoxically,
(iii) the number of parameters exceeds a certain threshold. In
the latter case, the algorithm converges to a local extremum.
In order to circumvent this problem, we employ a sequential
parametrization update technique which is explained in the
following.

D. Sequential optimization update

The poor performance of gradient-free optimization due
to a too large number of optimization parameters can be
avoided by a sequential update of the number of optimization
parameters [39]. Here, we adopt this approach to optimization
methods beyond a Nelder-Mead simplex search and allow for
treating the circular frequencies themselves as optimization
parameters while still maintaining a prespecified bandwidth.
The optimization is started with a minimal number of param-
eters, and additional parameters are included on-the-fly as the
algorithm proceeds iteratively, i.e., every time the value of the
optimization functional reaches a plateau.

As an example of the SPA technique, consider parametriza-
tion of the field by Fourier components,

ENI (t) =
N∑

n=1

I∑
i=1

sn(t,σn){fn(an,i) cos(ωn,i t)

+ fn(bn,i) sin(ωn,i t)}, (11)

with the Fourier amplitudes an,i and bn,i as optimization
parameters. The double sum notation was chosen to ease
implementation of a field that consists of N subpulses. In
Eq. (11), sn(t,σn) is a fixed envelope, for example Gaussian
or sin2 shaped. The durations σn of the subpulses as well
as the circular frequencies ωn,i can be fixed or considered
as additional optimization parameters. The functions fn(·) are
introduced in order to constrain the Fourier amplitudes an,i and
bn,i to within a prespecified range. For instance, a function of
the form

fn(ζi) = ζo

∫ ζi

0
e−t2

dt (12a)

ensures that the Fourier coefficient does not exceed a given
maximum absolute value ζo, avoiding large amplitudes for the
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resulting optimized field. Equivalently, a hyperbolic tangent
form,

fn(ζi) = ζn,o

eζi − e−ζi

eζi + e−ζi
, (12b)

may be utilized to control the maximal amplitude of the
optimized field. One could also apply the transformations (12)
to the overall electric field instead of each Fourier component
separately. This may, however, result in low frequency compo-
nents. Such artifact frequencies are undesirable, in particular
when the solution shall be constrained to a given spectral range.

To start the optimization, we choose, for simplicity, a single
pulse, N = 1, with two Fourier amplitudes, I = 2, and fixed
or variable circular frequencies. When using fixed circular
frequencies, a set of circular frequency values is specified
in the very beginning, which are successively added during
the parametrization updates. If the circular frequencies are
treated as optimization parameters, the spectral range can be
controlled by restricting the circular frequencies to an interval
via the mapping

ωnew = 1
2 (ωmax − ωmin) tanh(ω) + 1

2 (ωmax + ωmin), (13)

where ω ∈ IR is the circular frequency returned by the
optimization algorithm, whereas ωnew, which is guaranteed
to be in the interval ]ωmin,ωmax[ by Eq. (13), is the one used
for the propagation.

Consider for simplicity the example of fixed circular
frequencies, treating the pulse duration [full width at half
maximum (FWHM) of the intensity profile], Fourier ampli-
tudes and relative phases as optimization parameters. The
procedure consists of two loops, an outer loop over generations
(with each generation corresponding to a parametrization
with m parameters), and an inner loop, iterating for a given
parametrization. The inner loop proceeds until Nc evaluations
of the functional, i.e., propagations of the wave function,
are reached. It then checks whether the overall minimization
threshold is reached. If so, the complete procedure is stopped;
if not, it checks whether the value of the functional has
changed significantly during the Nc iterations. If so, another
Nc iterations are carried out; if not, then the algorithm
increases the number of optimization parameters, and restarts
the optimization for the new generation, using the best previous
field as guess field for the new parametrization with all
new optimization parameters set to zero. This procedure of
updating the parametrization of the field is repeated every
time that the functional gets stuck, allowing it to escape from
the plateau. The user needs to specify the maximal number of
generations Gmax, or new parametrizations, together with Nc,
the maximum number of evaluations of the functional, i.e.,
propagations, and the tolerance thresholds.

In the following, we show that such a sequential
parametrization update is more efficient than choosing a large
number of parameters from the beginning. In a sense, the
optimization is “driven” efficiently and does not get stuck
in a final plateau since every time the functional reaches a
saturation plateau, the additional parameters introduced allow
for escaping from such an asymptotic region. This is in line
with the findings of Ref. [39] where the frequencies are
randomized within a prespecified interval. Furthermore, we
show that updating the parametrization is particularly efficient

when combined with the principal axis method, due to Brent
[18], as compared to the Nelder-Mead optimization algorithm
[33], employed in Ref. [39].

III. MAXIMIZATION OF HOLE COHERENCE WITH
ARBITRARY POPULATION RATIO

A. Numerical performance of SPA optimization

The goal is to maximize the degree of coherence gi,j (T )
between the 3s and 3p0 hole population in argon, using an
electric field, linearly polarized along the z direction, in the
XUV regime with the maximal field amplitude not exceeding
0.02 a.u. Correspondingly, the target functional is the one
defined in Eq. (9). The wave packet is represented, according
to Eq. (1), in terms of the ground state |�0〉 and excitations
|�a

i 〉, from which the corrected form of the IDM, due to the
CAP, cf. Eq. (6a), is calculated. The calculations employed a
pseudospectral grid with density parameter ζ = 0.50 [19], a
spatial extension of 200 a.u., and 800 grid points, with angular
momentum functions restricted to Lmax = 10. A CAP strength
η in Eq. (5), η = 0.002, and absorbing radius rc in Eq. (5),
rc = 180.0 a.u., are chosen.

We first compare our sequential parametrization update
(SPA) technique to optimization with a standard fixed
parametrization, using the principal axis method in both cases
to determine the change in parameters. Figure 1(a) shows
the optimization efficiency for the two methods, started with
the same guess field. The optimization parameters are the
pulse duration and the Fourier components. The circular
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FIG. 1. (a) Comparison of a fixed parametrization (black line,
np = 13) and a sequential parametrization update (SPA optimization,
colored lines) in optimization using the principal axis method of
Brent. SPA optimization converges significantly faster and yields a
better hole coherence. (b),(c) Comparison of SPA optimization using
the principal axis method of Brent (b) and Nelder-Mead simplex
search (c). The same initial guess field was utilized in both cases. SPA
optimization with the principal axis method converges significantly
faster and yields a better hole coherence than with the Nelder-Mead
simplex search.
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frequencies, taken to be fixed on an evenly spaced frequency
grid, are chosen in the XUV regime. For the standard version,
the entire frequency grid is used from the beginning of the
optimization, while for SPA optimization circular frequencies
from the grid are successively added. The standard nonupdated
version (full black line), for which the field is defined by
13 optimization parameters, decreases quasimonotonically but
very slowly during the first 210 iterations. Then the functional
considerably decreases between the iterations 210 to 250
before reaching a plateau with final value J

(1)
T = 0.21. SPA

optimization is started by defining at first a pulse characterized
by seven circular frequencies, which coincide with the first
seven circular frequencies from the overall set of circular
frequencies. After 50 iterations with these parameters, SPA
optimization reaches already a functional value slightly below
that reached by the nonsequential version after the same
number of iterations. Once the plateau for the field containing
seven optimization parameters is reached, the new generation
is started by adding six additional optimization parameters. As
can be seen from Fig. 1(a), such an update allows the functional
to considerably decrease, reaching after just 100 iterations the
same value that is obtained with the nonsequential version in
255 iterations. Furthermore, it also shows that there are some
frequency components resulting from the nonupdate version,
that are not necessarily required for the optimization. The
different colors in Fig. 1 illustrate the increase in the number
of optimization parameters as a function of the number of
propagations. From Fig. 1(a), it is clear that the sequential
parametrization update version is more efficient than standard
optimization: it allows not only to reach higher fidelities
at the end of the optimization, but also converges faster.
The comparison shown in Fig. 1(a) does not depend on the
specific choice of the initial guess. That is, we have carried
out the comparison for several guess fields and observed
always a better performance of SPA optimization compared
to optimization with fixed parametrization.

It is clear that the SPA approach can be extended to other
gradient-free optimization methods. A particularly popular
method is the widely used Nelder-Mead downhill simplex
approach, which we now compare to the principal axis method.
The convergence behavior of the two methods, when using
the SPA technique, is shown in Figs. 1(b) and 1(c). Both the
Nelder-Mead simplex and principal axis method are again
started with seven parameters, as described above, using the
same guess for both methods. The principal axis method is
found to clearly outperform the Nelder-Mead simplex: indeed,
with only seven optimization parameters, the principal axis
method reaches a value of J

(1)
T = 0.50 already after 100

propagations, whereas the simplex method requires almost
400 propagations to reach the same value. Moreover, the
simplex algorithm tends to reach a plateau more easily than
the principal axis method, and after 600 propagations, the
functional does not decrease even upon increasing the number
of parameters. This behavior is typical, and we only show
representative results in Figs. 1(b) and 1(c). For example,
changing the number of critical propagations does not change
this observation—the Nelder-Mead simplex method tends to
get stuck more rapidly and the optimization cannot escape
from the plateau; cf. the blue triangles in Fig. 1(c). In contrast,
as seen from Fig. 1(b), with the principal axis method the
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FIG. 2. Optimized fields obtained with SPA optimization using
the principal axis method (same color code as in Fig. 1). The field
with 26 parameters, shown in panel (d), yields a degree of coherence
of g3s,3p0 (T ) = 0.989.

functional continues to decrease, albeit slowly, when the
number of optimization parameters is increased. According to
our numerical experiments, this behavior is again independent
of the guess field.

We thus find that SPA optimization based on the principal
axis method represents a promising alternative not only to
the widely used Nelder-Mead simplex approach, but also to
the principal axis method itself, when used in the standard
version with a fixed number of optimization parameters. For
completeness, we present in Fig. 2 the optimized fields found
at the different stages of the update procedure, using the same
color code as in Fig. 1. Comparison of Figs. 2(b) and 2(c) with
Fig. 1(c) shows that, although both fields have very different
shapes and maximal amplitudes, they lead to similar hole
coherences, 0.56 and 0.55, respectively. The final optimized
field is depicted in Fig. 2(d). Its frequency components lie in the
XUV regime by construction and the maximal field amplitude
is constrained to below 0.02 a.u. as desired. The resulting
degree of coherence amounts to g3s0,3p0 = 0.989 after 1500
propagations.

All numerical experiments that we have carried out re-
produced the relative advantage of SPA optimization over
optimization with a fixed number of optimization parameters
[Fig. 1(a)] and of the principal axis method over Nelder-Mead
simplex [Figs. 1(b) and 1(c)]. However, they also revealed
a rather high sensitivity of the optimization success, both in
terms of convergence speed and final hole coherence achieved,
on the initial guess. This suggests to prescan the parameters of
the initial guess, as studied next.

B. Optimization using a “preoptimized” guess field

The idea is to identify a small number of key parameters
whose values are scanned in a prespecified range. While
this does not constitute optimization in itself, it is related in
spirit to the hybrid optimization approach of Ref. [40] which
combines a cheap, low-level parameter “preoptimization”
with a numerically more expensive, high-level gradient-based
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optimization. Once the parameter scan has been carried out, the
best parameters resulting from the scanning procedure, i.e., the
ones that minimize, at least locally, the functional of interest,
are chosen to define the guess for the actual SPA optimization.
As a result, the actual optimization is started with a minimal
number of optimization parameters at an already relatively
good fidelity.

This approach is particularly useful when no a priori
physical insight into the best choice of the field parameters
is available. The required calculations are independent of each
other and can thus be carried out in parallel. Nevertheless,
the number of parameters to be scanned should be kept at a
minimum. Furthermore, it is not necessary to perform the scan
with very high resolution since small changes in the parameters
that significantly improve the target will be readily identified
by the subsequent optimization.

We scan in the following three parameters of a transform-
limited Gaussian pulse—its peak amplitude, central frequency,
and duration or, equivalently, spectral width. The results
are shown in Fig. 3. Keeping the peak amplitude fixed at
E0 = 0.02 a.u. and varying the pulse frequency, one broad
minimum of the functional is observed in Fig. 3 (top) for
short (spectrally broad) pulses near ωph = 0.50 a.u. This
minimum is shifted to ωph = 0.64 a.u. for the longest pulse,
whereas both minima occur for intermediate pulse durations.
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FIG. 3. Parameter scanning prior to optimization: frequency scan
with fixed peak amplitude for several pulse durations (FWHM of
the intensity) (a) and joint frequency and peak amplitude scans for
fixed pulse durations τ = 6 a.u. (b) and τ = 23 a.u. (c). Favorable
parameters for the initial guess field can clearly be identified.

Note that τ refers to the FWHM of the intensity profile.
The results displayed in Fig. 3 (top) already provide an
insight into possible mechanisms for enhancing the degree
of coherence between the 3s and 3p0 hole states: for perfect
hole coherence, photoelectrons from the 3s and 3p0 orbitals
must be energetically indistinguishable. The binding energy is
1.272 a.u. for 3s and 0.591 a.u. for 3p0 at the Hartree-Fock
level. Therefore, a photon with ωph = 0.50 a.u. might create,
via three-photon ionization of the 3s orbital, a photoelectron at
an energy of ωe−(3s) = 0.228 a.u., while two-photon ionization
of the 3p0 orbital would create a photoelectron at ωe−(3p0) =
0.409 a.u. This is one scenario, where the minimum bandwidth
required for energetic indistinguishability corresponds to a
maximum τ = 30.7 a.u. This scenario corresponds to the
minimum in Fig. 3 (top) near ωph = 0.50 a.u. for τ up to
35 a.u. For shorter pulses, the minimum becomes broader but
remains centered at ωph = 0.50 a.u. The second minimum,
near ωph = 0.64 a.u., observed for long and spectrally narrow
pulses, cannot be explained by this first scenario. For example,
τ = 47 a.u. corresponds to a spectral bandwidth of 0.06 a.u.

However, a central frequency of ωph = 0.64 a.u. is not too
far from the transition frequency between the parent orbitals,
δω3s,3p0 = 0.681 a.u. A second conceivable scenario thus
consists in the one-photon ionization of the 3p0 orbital
together with the resonant excitation of a 3s electron into
the 3p0 hole. One-photon ionization of the 3p0 orbital with
a photon of ωph = 0.64 a.u. would lead to a photoelectron
at Ee−(3p) = 0.049 a.u., whereas a photoelectron originating
from the 3s orbital that absorbed two such photons would
have an energy of Ee−(3s) = 0.008 a.u.

In order to check whether these scenarios are indeed
responsible for the structure observed in Fig. 3 (top), channel-
resolved photoelectron spectra (PES) are shown in Fig. 4.
Indeed, for ωph = 0.64 a.u. and τ = 47 a.u. (yellow lines),
the channel-resolved PES reveal for 3s a peak in the vicinity
of ωe−(3s) = 0.01 and for 3p0 one at ωe−(3p0) = 0.05 a.u.

Given our resolution, these peaks essentially coincide with
the expected ones at 0.008 a.u. and 0.049 a.u., confirming the
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FIG. 4. Channel-resolved PES obtained from the transform-
limited Gaussian pulses studied in Fig. 3 for a maximal field amplitude
of E0 = 0.02 a.u.
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creation of hole coherence by resonant transition from the
3s into the 3p0 orbital. The same mechanism is seen to be
at work for the pulse with τ = 35 a.u. and ωph = 0.64 a.u.

(dark blue line in Fig. 4). The larger width of the blue peaks
compared to the yellow ones (τ = 47 a.u.) simply reflects the
larger bandwidth of the field.

Completely different PES are obtained for a central fre-
quency of ωph = 0.50 a.u. (red and cyan lines in Fig. 4).
Assuming here the first scenario to be relevant, i.e., a
simultaneous three-photon ionization of 3s and two-photon
ionization of 3p0, we expect peaks at ωe(3s) = 0.228 a.u.

in the 3s-PES and at ωe−(3p) = 0.409 a.u. in the 3p0-PES.
These peaks are indeed observed for the red and cyan curves
in Fig. 4. Even if for τ = 47 a.u. (cyan line in Fig. 4)
the spectral bandwidth is too small to really render the 3s

and 3p0 photoelectrons indistinguishable, the mechanism of
simultaneous three-photon ionization of 3s and two-photon
ionization of 3p0 explains the small dip at ωph = 0.50 a.u. in
the brown line in Fig. 3. This holds of course also for the deeper
minima observed for shorter, i.e., spectrally broader pulses.
We thus conclude that the first scenario, of simultaneous
three-photon ionization of 3s and two-photon ionization of
3p0, is at work for ωph = 0.50 a.u.

For completeness, the channel-resolved energy-integrated
photoelectron angular distributions (PADs) corresponding to
the PES of Fig. 4 are shown in Fig. 5. Interestingly, for the
first control scenario, the angular distributions are completely
different for 3s and 3p0 photoelectrons, whereas they are very
similar for the second one. This is not too surprising since in
the second control scenario, the 3s electron is, after creation
of a 3p0 hole, resonantly excited into the 3p0 orbital before
being ionized. In contrast, in the first control scenario, 3s and
3p0 electrons are directly ionized which renders a correlation
between the 3s and 3p0 PADs more unlikely.

A scan of the central frequency thus provides not only
a good initial value for this parameter but also insight into
the possible control mechanisms. A more complete picture is
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FIG. 5. Channel-resolved PAD corresponding to the PES shown
in Fig. 4: panels (a) and (b) display the contribution of 3s

photoelectrons to the energy-integrated PAD; panels (c) and (d) that
of 3p0 photoelectrons.
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FIG. 6. SPA optimization with the principal axis method, using
favorable initial parameters in the guess pulse: the convergence is
significantly accelerated (a). Guess and optimized fields are shown in
(b) and (c).

obtained when scanning both frequency and peak amplitude
of the field, keeping only the duration fixed. The results are
shown in Figs. 3(b) and 3(c) for pulse durations of τ =
6 a.u. and τ = 23 a.u., respectively: Apparently, spectrally
too broad pulses are not suitable for the maximization of
hole coherence; cf. Fig. 3(b). The best pulses are obtained
for τ = 23 a.u. [light-blue area in Fig. 3(c)] where a distinct
window of favorable central circular frequencies occurs
between ωph = 0.50 a.u. and ωph = 0.65 a.u. Interestingly,
good hole coherences are obtained even for weak fields. One
has to keep in mind, however, that these come with low overall
ionization probabilities.

Once we have scanned the basic parameters of the field,
we use the best values to start the actual SPA optimization,
increasing the number of parameters once the change in the
functional, J

(1)
T , becomes too small, as before. Figure 6 shows

the corresponding results. The parameter scan allows one to
find an already good guess field, depicted in Fig. 6(b), such
that SPA optimization starts with a value of J

(1)
T = 0.17, cf.

Fig. 6(a), to be compared with the poor starting fidelities in
Fig. 1. After only 180 iterations, J

(1)
T has dropped to 0.04. At

this stage, seven optimization parameters are used, resulting
in a comparatively simple shape of the optimized field; cf.
Fig. 6(c). For comparison, the lowest value of J

(1)
T obtained

in Sec. III A without a prior parameter scan amounts to 0.07.
Thus the sequential update technique based on the principal
axis method, with prior scanning of the optimal parameters for
the guess field reveals itself to be a very efficient optimization
method. It allows for reaching high fidelities while minimizing
the number of optimization parameters as well as the numerical
effort.

The dynamics obtained with various guess and optimized
fields are analyzed in Fig. 7, which displays the degree of
coherence as a function of time. Figures 7(a) and 7(b) compare
g3s,3p0 (t) for a randomly chosen guess field with a large
number of parameters (black line) and for the optimized field
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FIG. 7. Degree of coherence as a function of time obtained
with guess (left) and optimized (right) fields: (a) randomly chosen
initial parameters (np = 26); (b) corresponding optimized field with
g3s,3p0 (T ) = 0.989 (np = 26); (c) initial guess field consisting of two
time-delayed Gaussians (np = 8); (d) corresponding optimized field
for which the degree of coherence oscillates between g3s,3p0 (t) = 0.97
and 0.75 with a final value of g3s,3p0 (T ) = 0.80 (np = 16); (e) initial
monochromatic guess field with favorable parameters identified by
parameter scan; (f) corresponding optimized field [np = 7, the same
as shown in Fig. 6(c)] for which the degree of coherence oscillates
between g3s,3p0 (t) = 0.98 and g3s,3p0 (T ) = 0.90.

obtained from this guess (red line). The fields are shown
in gray (not scaled). Whereas the guess field yields a very
poor fidelity, cf. the y-axis scale, the maximized degree of
coherence between the hole states 3s and 3p0 reaches a
value of g3s,3p0 = 0.989. Figures 7(c) and 7(d) answer the
question whether a time-delayed sequence of two Gaussian
pulses is suitable for maximizing hole coherence. We treat
the amplitudes, circular frequencies, and delay as optimization
parameters. Since the subpulse structure essentially disappears
upon optimization, we conclude that time-delayed pulses are
not suitable for maximizing hole coherence. Finally, Figs. 7(e)
and 7(f) display the degree of coherence obtained with the
guess constructed after parameter scan and the corresponding
optimized field, also shown in Figs. 6(b) and 6(c).

Remarkably, the degree of coherence oscillates as a function
of time in Fig. 7, even after the field is over. These oscillations
may be related to two possible mechanisms. On one hand,
the oscillations might be related to how fast the photoelectron
leaves the parent ion since the interaction between any outgo-
ing photoelectron and the remaining ion creates entanglement
and thus decreases the hole coherence. On the other hand, they
may be caused by excitation of Rydberg states, which would
allow the electron-ion interaction to persist even long after
the pulse is over. In both cases, the excited electron reaches a
sufficiently large spatial extension to be affected by the CAP.
To analyze how fast the excited electron reaches the region
of the CAP, Fig. 8 shows the correction to the ion density
matrix due to the CAP, cf. Eq. (8), for the three different
optimized fields shown on the right-hand side of Fig. 7. The
optimized field, for which the degree of coherence shows
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FIG. 8. Photoionization probability, obtained in terms of the
absorbed part of the ion density matrix, cf. Eq. (8), as a function
of time for the three optimized fields depicted in Figs. 7(b), 7(d), and
7(f). The color code is the same as in Fig. 7.

the fastest oscillations with the smallest amplitude (red line
in Fig. 7), produces the more energetically excited electrons
(the ones reaching large spatial domain first), whereas the
slowest oscillations of the degree of coherence with the
largest amplitude (green line in Fig. 7) are associated with
the less energetically excited electrons reaching the CAP
region; cf. Fig. 8. From these observations we may conclude
that the oscillations arise from the interaction between the
remaining ion and the excited electron, which perturbs the
coherence of the ion density matrix. Thus the fastest excited
electrons interact the least with the remaining ion whereas the
slowest (or bound) ones, which interact with the remaining
ion during longer times, lead to a larger perturbation of
the degree of coherence. A similar conclusion regarding the
interaction between the photoelectron and the photoion was
previously drawn for hole decoherence in the photoionization
of xenon [12].

This interpretation is relevant for the full model including
interchannel coupling where a fast departure of the photo-
electron minimizes the interaction with the remaining ion. In
contrast, within the intrachannel model, the excited electron
can interact only with the electrons remaining in the channel
from which it originates. One should therefore expect that
the oscillations in this case become less important. In Fig. 9,
we compare the degree of coherence as well as the hole
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function of time, obtained with the optimized field shown in Fig. 7(b).
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populations as a function of time for the full model and the
intrachannel approximation. We have used the optimized field,
depicted in Fig. 7(b), that produces the fastest photoelectrons
(within the full model), so that the oscillations in g3s,3p0

are minimal. As can be seen in Fig. 9(a), the oscillations
at times larger than 50 a.u., due to the interaction between
the excited electron and the parent ion, disappear completely
if we allow the excited electron to interact only with the
orbital from which it originates. Furthermore, the interchannel
coupling is also found to be responsible for the oscillations
in the hole populations after the pulse is over; cf. Fig. 9(b)
and Fig. 9(c). We have carried out the same analysis for
the optimized field depicted in Fig. 7(f), which produces
slower photoelectrons; cf. Fig. 8. Again, the oscillations in
g3s,3p0 (t) and the hole populations are found to disappear in
the intrachannel approximation (data not shown). Despite the
modified dynamics, the final value for the degree of coherence
remains almost the same for both optimized fields when
switching off the interchannel coupling. In contrast, the final
hole populations are considerably changed; cf. the lower panels
in Fig. 9. This strongly suggests that the oscillations present
in the degree of coherence as well as in the hole populations
are induced by the interchannel interaction.

IV. MAXIMIZATION OF THE COHERENCE WITH
PRESCRIBED HOLE POPULATION TARGET

A remarkable feature of the optimization results presented
in the previous section is the population difference between
the hole states. Indeed, the population of the 3p0 hole exceeds
that of the 3s hole by at least two orders of magnitude in
all examples studied. Such a large population difference is
undesirable in view of utilizing the coherent superposition
in time-dependent spectroscopy. We therefore address now
the question whether it is possible to maximize the degree
of coherence between the 3s and 3p0 hole states while
simultaneously controlling the final hole population.

We consider all possible scenarios, i.e., equal populations,
ρ3p0,3p0 > ρ3s,3s and ρ3p0,3p0 < ρ3s,3s . To be specific, we ask
for the corresponding population ratio R to be equal to 0.7 in
the last two cases and utilize the optimization functional J

(2)
T ;

cf. Eq. (10). Starting with equal populations, Fig. 10 shows the
degree of coherence, hole populations, and optimized field as
a function of time, demonstrating success of SPA optimization
also for this more challenging control target. Suppressing the
excitation of a 3s electron into the 3p0 orbital (green line with
dots in Fig. 10) strongly modifies the degree of coherence.
It reduces the final value from 0.98 to 0.39, indicating that
sequential ionization of 3s electrons is important here. In
contrast, channel coupling is found to affect the hole coherence
only during the first half of the pulse, with identical final
coherence (data not shown).

As for the population dynamics, Fig. 10(b) reveals the 3p0

hole population to always be larger than the 3s population until
the two populations reach the same value. This is true both with
and without interchannel coupling. The interchannel coupling
is seen to only affect the final populations, by an amount
that is not very large. While the 3s hole population increases
monotonically, the 3p0 hole population reaches a maximum
value at the same time that the degree of coherence becomes
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FIG. 10. Maximizing the degree of coherence between the 3p0

and 3s hole states while simultaneously optimizing for a hole
population ratio of one: degree of coherence (a), hole populations
(b), and optimized electric field (c) as a function of time.

stationary. After that time, the 3p0 hole population decreases
to the target value. In contrast to the degree of coherence
that becomes stationary already while the pulse is still on,
the hole populations do so only at the end of the pulse. The
population dynamics confirms the importance of excitations
from 3s electrons to 3p0: when this transition is switched off,
the 3s hole population drops to essentially zero; cf. the green
line in Fig. 10(b). We can thus conclude that the decrease of the
3p0 hole population and simultaneous increase of the 3s hole
population, seen for the full model, is due to a dipole transition
between these two states. In other words, Rabi oscillations
occur between these orbitals, as indicated by the oscillatory
pattern of the red and blue lines in Fig. 10(b) for −10 � t �
15 a.u. This interpretation is confirmed by the fact that these
oscillations occur with the same frequency, but a phase shift
of π (data not shown).

Next, we target the case ρ3p0,3p0 > ρ3s,3s with a population
ratio of R = 0.7. Given the fact that the 3p0 hole population
always turned out to be larger than the 3s hole one in Sec. III,
this is the simplest of the three cases. The results are shown
in Fig. 11. Similar to the case of equal hole populations,
the interchannel coupling does not affect the final degree of
coherence and the final populations. However, in contrast to
the case of equal populations, both the hole population and the
degree of coherence become stationary at the same time, once
the pulse is over; cf. Figs. 11(a) and 11(b). Direct transitions
between the 3s and 3p0 orbitals are found to play again an
important role; cf. the green lines in Figs. 11(a) and 11(b).

Finally, we maximize the degree of coherence constraining
the hole populations such that ρ3p0,3p0 < ρ3s,3s . This is the
most difficult target, but it is successfully addressed by SPA
optimization and the results are shown in Fig. 12. Compared to
the cases of equal population and larger 3p0 hole population,
the population dynamics is more intricate, showing a crossing
in order to reach the desired population ratio and a number of

023420-9



GOETZ, MERKEL, KARAMATSKOU, SANTRA, AND KOCH PHYSICAL REVIEW A 94, 023420 (2016)

0

0.2

0.4

0.6

0.8

1

g 3s
,3

p

full model
w/o 3s-3p transition

-40 -20 0 20 40 60 80 100 120 140 160 180

time (a.u.)

-0.2
-0.1

0
0.1
0.2

E
(t

) 
(a

.u
.) optimized field

0
0.1
0.2
0.3
0.4
0.5

ho
le

 p
op

ul
at

io
n 3s (full model)

3p
0
 (full model)

3s w/o 3s-3p transition

3p
0
 w/o 3s-3p transition

(a)

(b)

(c)

FIG. 11. Maximizing the degree of coherence between the 3p0

and 3s orbitals while simultaneously optimizing for a hole population
ratio of ρ3s,3s/ρ3p0,3p0 = 0.7: degree of coherence (a), hole popula-
tions (b), and optimized electric field (c) as a function of time.

distinct oscillations. We again check whether these oscillations
correspond to Rabi cycling between the 3s and 3p0 orbitals by
switching off the transition dipole matrix elements. We find
that, when 3s to 3p0 transition are not allowed, no oscillations
are present in the population dynamics, and the 3s hole
population drops to essentially zero. Moreover, analysis of the
population oscillations reveals again their identical frequency
and a phase shift of π (data not shown).

For all three variants of the 3s to 3p0 hole population
ratio, the corresponding optimized fields were successfully
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and 3s hole states while simultaneously optimizing for a hole
population ratio of ρ3p0,3p0/ρ3s,3s = 0.7: degree of coherence (a),
hole populations (b), and optimized electric field (c) as a function of
time.
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FIG. 13. Maximizing the degree of coherence between the 3p0

and 3s hole states while simultaneously optimizing for a given hole
population ratio: spectra of the optimized fields for the three different
hole population ratios, R = ρ3s,3s/ρ3p0,3p0 .

identified by SPA optimization. Their spectra are shown in
Fig. 13. The circular frequencies were treated as optimization
parameters, using Eq. (13) to constrain them to ωmin = −4 a.u.

and ωmax = 4.0 a.u. The most difficult optimization target
results in the broadest spectrum; cf. blue line in Fig. 13.
It is a common observation that more difficult optimization
problems result in more complex control fields. Overall, the
optimized spectra are too broad to identify one of the two
control mechanisms, based on photon energies of 0.50 a.u.

versus 0.68 a.u., as discussed in the previous section, by
inspection of the spectra alone. The numerical effort, in
terms of optimization parameters, is comparable for all three
cases—the final number of optimization parameters amounts
to 28. The most difficult optimization target required the largest
number of iterations. In this case, the value of the functional
J

(2)
T decreased with a slower rate, compared to the other two

cases. For all three population ratios, SPA optimization was
started with the same guess field, using four optimization
parameters: the FWHM, a frequency, a Fourier amplitude,
and a phase shift. At the end of the procedure, the FWHM,
nine frequency components, nine Fourier amplitudes, and nine
phases were optimized.

V. CONCLUSIONS

To summarize, we have introduced a sequential update of
the pulse parametrization to ease implementation of gradient-
free parameter optimization in quantum control. We have
applied this technique to maximize the coherence of hole state
superpositions in the photoionization of argon. A sequential
update of the pulse parametrization, which adds more terms to
the parametrization once the optimization gets stuck, allows
for faster convergence and better final results. Such a sequential
update can be combined with any method for parameter
optimization, and we have tested it here for the principal axis
method and the Nelder-Mead downhill simplex approach. The
principal axis method which so far has not been employed in
quantum control turns out to be clearly more efficient than
the widely used Nelder-Mead approach. Thus the principal
axis method, in particular when combined with a sequential
parametrization update, represents an efficient and viable tool
for quantum control.

Admittedly, parameter optimization comes with the dis-
advantage of depending, sometimes critically, on the chosen
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parametrization. This is outweighed in our case by the ease of
implementation, even for a non-Hermitian Hamiltonian. The
latter is due to the fact that the long propagation times for pho-
toionization require the use of a complex absorbing potential.
For comparison, the alternative approach of gradient-based
optimization always involves backward-in-time propagation
of Lagrange multiplier wave functions, and the CAP becomes,
in the adjoint equation, a source term which can easily give
rise to numerical instability.

We have employed TDCIS, as a systematic multichannel
theory, to describe the photoionization dynamics. The restric-
tion to the single excitation subspace inherent in TDCIS is,
we believe, sufficiently quantitative for the purpose of the
present paper. This assessment is based on earlier applications
of the method that compared well with experimental results
[10,41–43], including experiments involving highly intense
XUV fields [41] and strong optical fields [10,43]. Extending
the TDCIS method to TDCISD by including double excitations
is conceivable, but presently too demanding for applications
in quantum control.

The technique introduced here can be further improved by
scanning key parameters prior to optimization. The numerical
effort required for the scan is more than paid off by the
reduction in the number of iterations. It also allows for an
identification of possible control mechanisms. In our example,
determination of the photon energy turned out to be the
most important step. Two favorable energies were identified
that correspond to two different scenarios—three-photon
ionization of the 3s orbital simultaneously with two-photon
ionization of the 3p0 orbital for pulses with sufficiently large
spectral bandwidth to render the photoelectrons energetically
indistinguishable and one-photon ionization of the 3p0 orbital
combined with transitions between 3s and 3p0. When only the
hole coherence is optimized, without any restriction on the hole
population, the population of the 3p0 hole is found to exceed
that of the 3s hole by two orders of magnitude or more. We
have therefore extended the optimization functional to include
a term that prescribes the population ratio. An equal or similar
population of both hole states would be required when using

the hole state superposition in time-dependent spectroscopy.
SPA optimization has addressed also this more challenging
control task very successfully, yielding hole coherences close
to one for exactly the population ratio desired, no matter
whether the population of the 3s hole should exceed that of the
3p0 or vice versa or whether the populations should be equal.
The resulting pulse shapes were found to be fairly simple,
with their spectra indicating the second control scenario to be
at work.

The optimized pulses that we have found have compar-
atively simple shapes. Their duration is in the range of a
few hundred attoseconds. This is within the capability of
current attosecond-pulse production schemes [44]. Admittedly
the pulses require somewhat lower mean photon energies,
less than 20 eV in our specific example. There has also
been considerable progress in generating increasingly strong
attosecond pulses [45]. In contrast, attosecond pulse shaping
is still in its infancy, and we believe that theory work such
as ours will stimulate further development. In particular, our
present results demonstrate the pulse requirements that need
to be met in order to control the properties of one-hole states.

In all optimizations for hole creation in argon, channel
coupling was found not to play any role. This is in contrast to
photoionization in xenon where channel coupling is the main
source of decoherence [12]. It may explain why, for argon,
hole coherences very close to the absolute maximum can be
achieved. Of course, this raises the question as to what the
maximum hole coherence is in a case where channel coupling
is known to be important. SPA optimization is an ideal tool to
address this question.
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