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Controlling the s-wave scattering length with nonresonant light:
Predictions of an asymptotic model
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A pair of atoms interacts with nonresonant light via its anisotropic polarizability. This effect can be used to
tune the scattering properties of the atoms. Although the light-atom interaction varies with interatomic separation
as 1/R3, the effective s-wave potential decreases more rapidly as 1/R4 such that the field-dressed scattering
length can be determined without any formal difficulty. The scattering dynamics are essentially governed by
the long-range part of the interatomic interaction and can thus be accurately described by an asymptotic model
[A. Crubellier et al., New J. Phys. 17, 045020 (2015)]. Here we use the asymptotic model to determine the
field-dressed scattering length from the s-wave radial component of a particular threshold wave function. Applying
our theory to the scattering of two strontium isotopes, we calculate the variation of the scattering length with the
intensity of the nonresonant light. Moreover, we predict the intensities at which the scattering length becomes
infinite for any pair of atoms.
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I. INTRODUCTION

Collisions of neutral atoms at very low temperatures
are universally described by a single parameter, the s-wave
scattering length for bosons and unpolarized fermions or
the p-wave scattering volume for polarized fermions. These
parameters determine the strength of the contact potentials
for all partial waves [1,2]. Their values determine whether
an ultracold gas is weakly or strongly interacting and their
sign renders the interaction to be effectively attractive or
repulsive [3]. This is important, for example, for the stability
of Bose-Einstein condensation or the stability of Fermi gases
against collapse at high densities. Controlling the scattering
length or the scattering volume therefore has long been a
primary goal in quantum gas experiments [4–9].

While initial proposals suggested optical means for con-
trol [10–13], tuning the scattering length using a magnetic
field and Feshbach resonances turned out to be more practi-
cal [4,5]. This requires, however, the existence of a hyperfine
manifold on the atom and a sufficient width of the Feshbach
resonance. In contrast, optical control of the scattering length
is ubiquitous. It was demonstrated for narrow-line transitions
that are found, for example, in alkaline-earth atoms [7–9].
Despite the comparatively long lifetimes of the metastable
states employed in these experiments, control was limited by
non-negligible losses.

Nonresonant light can also be used to tune the scattering
length [14,15]. It couples to the polarizability anisotropy of the
collision complex and, for sufficiently high intensity, modifies
the scattering length [15]. This variation is similar to the
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control of the scattering length by a magnetic field near a
Feshbach resonance [5]. In particular, the scattering length
diverges when a bound level is located exactly at threshold.
For nonresonant light control this occurs when a shape
resonance crosses the threshold to become bound or when
the field-dressed s-wave potential is sufficiently deepened
to accommodate an additional bound level. Remarkably,
nonresonant light control is of universal character, independent
of the frequency of the light and the energy-level structure of
the molecule, as long as the frequency remains far from any
molecular resonance [14,15].

Collisions at very low temperature are essentially governed
by the long-range part of the interparticle interaction. The
scattering properties are therefore very well described by
asymptotic models, which account only for the asymptotic
part of the interaction potential [16–23]. The asymptotic
Hamiltonian describing nonresonant light control of a pair
of atoms [22,23] is identical to that found for dc electric
field control of the atom-atom interaction [24] as well as
that for ultracold collisions of polar molecules [25,26]. All
of these problems are governed by the anisotropic dipole-
dipole interaction, which decreases as 1/R3 (where R is the
interparticle separation) and introduces a coupling between
partial waves of the same parity.

For an isotropic potential that decreases asymptotically
as 1/R3, it is well known that the scattering length cannot
be defined [27]. In this case, the scattering phase shift at
low energy cannot be expanded in powers of the wave
number of the colliding particles since the threshold wave
function contains a log R contribution in addition to the term
proportional to R − ã that is used to define the scattering
length ã. However, the dipole-dipole interaction is anisotropic
and only of quasi-long-range character [24], which allows us
to define the scattering length without any particular difficulty.
Quasi-long-range refers to the fact that the effective s-wave
potential decreases as 1/R4 for large R and only the potential
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for the higher partial waves contains a diagonal long-range
contribution proportional to −1/R3 [28].

Here we investigate nonresonant light control of the
scattering length. We show that the asymptotic model together
with the nodal line technique [29,30], previously developed to
study nonresonant light control of shape resonances [22,23],
can be extended to the control of the field-dressed s-wave
scattering length ã. To predict the dependence of the field-
dressed scattering length on the nonresonant field intensity,
the asymptotic model only requires knowledge of the reduced
mass, atomic polarizability, and field-free s-wave scattering
length. The difficulty that we have to address here is the
problem of degenerate coupled continua. We obtain ã from
a particular threshold wave function that has a linear variation
in the � = 0 partial wave channel and does not diverge in all
others.

The paper is organized as follows. In Sec. II we review
the asymptotic model for an atom pair interacting with
nonresonant light via the polarizability anisotropy [22]. We
present the Hamiltonian in two types of reduced units, best
adapted to either the nonresonant field control or the dipole-
dipole interaction. In Sec. III we describe the method to
calculate scattering wave functions. In particular, in Sec. III B
we discuss the asymptotic form imposed on the degenerate
threshold wave functions. It is a judicious choice of this form
that allows for determining the scattering length. For more
details of the method, in particular an assessment of its validity
and the optimal choice of the asymptotic boundary conditions,
the reader is referred to the Appendix. The discussion is based
on the comparison between single-channel analytical calcula-
tions based on an extension of the Levy-Keller approach [31]
and additional multichannel numerical calculations. In Sec. IV
we first apply our model to two strontium isotopes 88Sr
and 86Sr and calculate the dependence of the intraspecies
88Sr -88Sr and the interspecies 86Sr -88Sr scattering lengths on
the nonresonant light intensity. We then exploit the universality
of ultracold collisions, captured by the asymptotic model, and
predict the nonresonant light intensity at which the scattering
length becomes infinite. We summarize in Sec. V.

II. LENGTH AND ENERGY SCALES FOR ANISOTROPIC
R−3 INTERACTION: HAMILTONIAN AND REDUCED

UNITS

In the Born-Oppenheimer approximation, the Hamiltonian
describing the nuclear relative motion of a pair of atoms
interacting with a nonresonant laser field is given by

H =TR+ h̄2L2

2μR2
+ Vg(R)− 2πI

c
[�α(R) cos2 θ + α⊥(R)],

(1)

where TR and h̄2L2/2μR2 are the vibrational and rotational
kinetic energies, respectively, and μ denotes the reduced
mass, R the interatomic separation, and Vg(R) the interaction
potential of the electronic ground state. The last term in the
Hamiltonian (1) stands for the interaction with a nonresonant
light field of intensity I , linearly polarized along the space-
fixed Z axis. Here θ denotes the polar angle between the
interatomic axis and the laser polarization axis and c the

velocity of light. The perpendicular and parallel components
of the polarizability tensor, α⊥(R) and α‖(R), are defined
with respect to the interatomic axis, and have the dimension
of a volume [22]. The polarizability anisotropy is given by
�α(R) = α‖(R) − α⊥(R).

In the asymptotic approximation, Vg(R) is replaced by
the van der Waals interaction −C6/R

6 and the molecular
polarizabilities are expressed in terms of the polarizabilities of
the two constituent atoms α1 and α2 as follows: α‖(R) = α1 +
α2 + 4α1α2/R

3 and α⊥(R) = α1 + α2 − 2α1α2/R
3 [32–34].

The rovibrational Hamiltonian (1) then becomes

H = TR + h̄2L2

2μR2
− C6

R6

− 2πI

c

(
(α1 + α2) + 2α1α2

3 cos2 θ − 1

R3

)
. (2)

In the second line, the term E0 = −2πI (α1 + α2)/c represents
the lowering of the dissociation limit due to the interaction with
the nonresonant field. The last term in the large parentheses is
very similar to the one involved in dipole-dipole scattering in
ultracold gases of atoms or molecules, with either permanent or
field-induced dipole moments. This is not surprising since the
polarizability coupling describes nothing but the interaction
of the two dipoles induced by the nonresonant field. The
correspondence between Eq. (2) and the standard dipole-dipole
interaction for electric (magnetic) dipoles becomes obvious by
writing

4πI

c
α1α2 ↔ 1

4πε0
d1d2 ↔ μ0

4π
m1m2, (3)

where d1,2 (m1,2) denotes the magnitude of the electric
(magnetic) dipole moments.

In the Hamiltonian (2), the van der Waals potential
Vg(R) = −C6/R

6 represents the short-range physics, which
prevails when the atoms are rather close together but still
in the asymptotic region, whereas the long-range dynamics
is governed by the dipole-dipole interaction induced by the
nonresonant field. Thus, two length and energy scales can
be defined in the problem. The first one, well adapted to
the interaction with a low-intensity nonresonant field, is
independent of the field intensity and characteristic of the
short-range interaction. The other one is characteristic of
the dipole-dipole interaction and allows us to highlight the
universal character of the dipolar scattering.

Analogously to Ref. [22], we introduce reduced units
(ru) [21] to treat the centrifugal term and the van der Waals
interaction on an equal footing. The reduced units are R = σx,
E − E0 = εE , and I = βI for length, energy, and laser
intensity, respectively, with

σ =
(

2μC6

h̄2

)1/4

, (4a)

ε = h̄2

2μσ 2
, (4b)

β = c

12π

h̄3/2C
1/4
6

α1α2(2μ)3/4
= cσ 3ε

12πα1α2
. (4c)
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These unit conversion factors contain information specific
to the atom pair, i.e., the reduced mass μ, the van der Waals
coefficient C6, and the atomic polarizabilities α1 and α2. In
reduced units, the asymptotic Schrödinger equation reads[

− d2

dx2
− 1

x6
+ L2

x2
− I cos2 θ − 1/3

x3
− E

]
f (x,θ,ϕ) = 0,

(5)

where ϕ is the azimuthal angle and f (x,θ,ϕ) is the wave
function in the asymptotic limit.

Following Ref. [26] and using the equivalent dipoles
defined by the relations (3), we define a second set of reduced
units R = Dx and E = EDE , characteristic of the dipole-
dipole interaction and involving thus intensity-dependent
conversion factors,

D = μ

h̄2

4πα1α2

c
I, (6a)

ED = h̄2

μD2
= 4πα1α2

c

I

D3
. (6b)

In these reduced units, the asymptotic Schrödinger equation
reads[

− d2

dx2 − c6

x6 + L2

x2 −6
cos2 θ−1/3

x3 −2E
]
f (x,θ,ϕ) = 0,

(7)

where c6 is the reduced strength of the van der Waals
interaction

c6 = 2μC6/h̄
2D4. (8)

The two sets of reduced units are related as

D = I
6

σ, (9a)

ED = 72

I2
ε. (9b)

Whereas in Eq. (5) the short-range van der Waals interaction
is described by a universal term, it is the long-range dipole-
dipole interaction that appears as universal in Eq. (7). The
nonuniversal parameters of the two equations, c6 and I, are
related by

c6 = σ 4

D4
= 64

I4
. (10)

To give an example, the reduced units for 88Sr 2 are σ =
151a0, ε = 86 μK, and β = 0.636 GW cm−2 [22,23]. For non-
resonant intensities I � 40 ru (25 GW cm−2 for strontium),
the ratio D/σ � 6.6 results in an intensity-dependent unit
of length D � 103a0. For comparison, we will consider the
heteronuclear dialkali-metal molecules with the smallest and
the largest permanent electric dipole moment, which amount to
0.56 D (KRb) and 5.5 D (LiCs) [26,35]. For the dipole-dipole
interaction between two KRb or two LiCs molecules, the
reduced unit of length is very large, DKRb = 4800a0 or DLiCs =
6 × 105a0, while the reduced unit of energy is very small
ED,KRb = 120 nK or ED,LiCs = 7 pK. In order to observe, with
strontium atoms in a nonresonant field, effects similar to those

encountered in the dipolar scattering of these polar molecules,
an intensity-dependent unit of length D of the same order
of magnitude is needed. This implies huge nonresonant field
intensities, i.e., I ≈ 100 ru (65 GW cm−2) would be required
to obtain the same behavior as for KRb and I ≈ 3500 ru
(2200 GW cm−2) to mimic LiCs. The short-range van der
Waals interaction between two dialkali-metal molecules in
their absolute ground states is very small, with c6 = 7 × 10−6

or 9 × 10−9 ru for KRb or LiCs, respectively. In these systems,
the long-range dipole-dipole interaction prevails, such that the
van der Waals interaction can be neglected in Eq. (7), and
the short-range physics is taken into account by including a
repulsive wall [26]. This is in contrast to strontium where, for
the nonresonant light intensity that we consider, the van der
Waals term cannot be neglected.

III. ASYMPTOTIC MODEL AND NODAL LINE
TECHNIQUE

A. General description of the method

To solve the asymptotic Schrödinger equation (5), we first
expand the wave function f (x,θ,ϕ) in terms of spherical
harmonics Ym

� (θ,ϕ) with fixed magnetic quantum number m

and the same parity, i.e., even or odd values of �, due to the
symmetry of the Hamiltonian (2). For practicality, the infinite
sum over partial waves needs to be restricted to � varying
from �min = |m| to �max and includes n = (�max − �min + 2)/2
channels. Thus, a solution of Eq. (5) is given by

f (x,θ,ϕ) =
�max∑

�=�min

y�(x)Ym
� (θ,ϕ), (11)

where the sum runs over either even or odd values of � and
y�(x) ≡ y�,m(x) is the radial component of the solution in the
channel �, m. For simplicity, the magnetic quantum number
m is not specified in the radial part of wave function y�(x).
The amount of channels n that needs to be included in (11)
depends on the energy and on the laser intensity.

This basis set expansion transforms the asymptotic
Schrödinger equation (5) into the system of coupled equations

d2

dx2
y(x) + (M + E1) · y(x) = 0, (12)

where y(x) is the vector formed by the radial functions y�(x),
M is the matrix representation of 1

x6 − L2

x2 + I cos2 θ−1/3
x3 in the

basis of the spherical harmonics, and 1 is the identity. In
the present problem, the n considered channels correspond
to the same dissociation limit E0 lowered by the nonresonant
field. For E < 0, the energy levels are quantized and nonde-
generate. The continuous spectrum is n-times degenerate and
at each energy E � 0, n linearly independent solutions are to
be determined. We denote the physical wave functions, which
are a solution of (12) and satisfy the boundary conditions, by
a radial vector z(x), in contrast to y(x), which is a general
solution of (12). The wave functions are calculated here by
inward integration of the asymptotic Schrödinger equation,
starting at a large separation xmax with boundary conditions that
depend on the energy E . In the nodal line technique [22] one
replaces the interaction at very small interatomic separations
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by boundary conditions at the frontier between the inner and
the asymptotic domains.

In detail, the physical radial wave function, i.e., all partial
wave components z�(x), must vanish at the so-called nodal
line [29,36] x0 ≡ x0(E,�,I), given by

x0 = x00 + AE + B�(� + 1) + CI. (13)

The parameters x00, A, B, and C are characteristics of each
atom pair. In particular, x00 is the position of a node of
the field-free threshold s-wave function; it is determined
unambiguously by the field-free s-wave scattering length in
reduced units [19]. The parameter A accounts (to first order) for
the energy dependence of the node position for wave functions
with � = 0, whereas B describes the shift of the node of the
threshold wave functions induced by the centrifugal term for
different partial � waves. The last term in x0 accounts for the
effects of the nonresonant field in the inner domain x < x00

to first order in the field intensity. For more details on these
parameters and how to choose them, the reader is referred to
Ref. [22].

The wave functions z(x) are determined in two steps.
First, a set of linearly independent particular solutions labeled
yj (x) satisfying the asymptotic boundary conditions in the n

channels is obtained by inward integration. The number of
such solutions is equal to n in the bound spectrum E < 0 and
to 2n in the continuous spectrum E � 0. Second, the physical
wave functions z(x) are constructed as linear combinations of
the particular solutions yj (x) such that they fulfill the boundary
conditions at short range, on the nodal line.

For E < 0, to obtain the energy of a bound state at a
certain laser intensity I, each of the n particular solutions
yj (x) is related to a specific channel � in which the asymptotic
boundary condition imposes an exponential decay, while in
all other channels the radial functions vanish asymptotically.
Imposing the boundary conditions at short range is equivalent
to making a function vanish that depends on energy and
that is defined in terms of the radial components y

j

� (x0) on
the nodal lines. The roots, i.e., the energies for which the
function vanishes, determine the bound levels, providing the
quantization of the bound spectrum (see the Appendix in
Ref. [22]). Analogously, to find at which intensity there is
a bound state at a given energy, e.g., just below threshold, the
zeros of a function of intensity have to be computed.

For E > 0, there exists an infinite number of sets of
physical solutions zj (x) that can be calculated. For any specific
problem, there is a most suitable choice for the n linear
combinations of the 2n particular solutions that is defined
by their asymptotic behavior. If the initial conditions of the
inward integration are chosen properly, the relevant physical
property can be determined in a straightforward way. To study
the resonance structure of the continuum [22], the asymptotic
behavior in each channel is described by combinations of
regular and irregular spherical Bessel functions [37]. For that
problem we impose that the 2n particular solutions be either
regular or irregular spherical Bessel functions at xmax in one
channel and zero in all others. Among all possible sets of
n physical combinations, we choose the standard form, in
which the combination for a given channel asymptotically
contains a regular component in this channel only and irregular

components in all channels. The n physical solutions zj (x)
are such linear combinations that vanish at the �-dependent
node position x0 (13): These conditions allow for a direct
determination of the reaction, scattering, and time delay
matrices K(E), S(E), and Q(E), respectively, as described
in Ref. [22]. The Q(E) matrix is well adapted to analyze
shape resonances, by studying the energy dependence of
its lowest eigenvalue [22]. In Sec. III B we show which
particular solutions y(x) and which combinations z(x) are
suitable for determining the scattering length, whereas in
the Appendix we study how the outer boundary conditions
affect the convergence of the calculation of the field-dressed
scattering length.

B. Threshold wave functions and field-dressed scattering length

In order to determine the field-dressed scattering length
ã(I), we construct a wave function at threshold (E = 0) that
varies linearly with x in the � = 0 channel and vanishes
asymptotically in all other channels. We determine this wave
function, as described above, by first constructing 2n particular
solutions, denoted here by fj

−(x) and fj
+(x) with 1 � j � n.

The asymptotic behavior of the nonzero component of fj
+(x)

is divergent, f
j

+,�j
(x) ∼ x�j +1, whereas f

j

−,�j
(x) does not

diverge, f
j

−,�j
(x) ∼ x−�j . Several choices for the asymptotic

form of f
j

±,�j
(x) are possible. Here we will use pairs of

analytical linearly independent threshold solutions of poten-
tials v�

p(x) = �(� + 1)/x2 − cp/xp, chosen as approximations
of the asymptotic diagonal term of the matrix −M in the
channel �j in (12) (this choice is discussed in the Appendix,
Sec. 1; see in particular Table III). The form of the physical
wave functions zj (x) is given by a linear combinations of a
single asymptotically divergent solution and all n nondivergent
solutions:

zj (x) =
n∑

j ′=1

[
δj ′,j fj ′

+ (x) − M
j

j ′ (x0,xmax)fj ′
− (x)

]
. (14)

The matrix M (not to be confused with M) is determined by
the boundary conditions on the nodal lines and depends both
on nodal lines and on xmax. For a given atom pair, the nodal
lines are fixed; in the following, we omit the x0 dependence.
One has M(xmax) = N−(xmax) · [N+(xmax)]−1, where, as in
Ref. [22], the matrices N+(xmax) and N−(xmax) are defined
by their matrix elements [N±]j�(xmax) = f

j

±,�(x0), which are
the values of all radial particular solutions on the nodal lines.
The scattering length is obtained from the s-wave component
of the physical solution zj=1(x), which in our notation
corresponds to �j = 0 and is of the form

z
j=1
�=0 (x) = f

j=1
+,�=0(x) −

n∑
j ′=1

M
j=1
j ′ (xmax)f j ′

−,�=0(x). (15)

In Eq. (15), the first term behaves asymptotically as
f

j=1
+,�=0(x) → x. The contributions to the sum of the radial

components with j ′ � 2 vanish asymptotically at least as
1/x2, whereas for j ′ = 1, f j ′=1

−,�=0(x) → 1. Using the definition
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M(xmax) ≡ M
j=1
j ′=1(xmax), one has, for sufficiently large xmax,

z
j=1
�=0 (xmax) ≈ xmax − M(xmax), (16)

with

lim
xmax→∞M(xmax) = ã(I). (17)

The field-dressed scattering length is unambiguously defined
by (17), if the limit xmax → ∞ exists for M(xmax) and if it is
independent of the boundary conditions of f+,�(x) and f−,�(x)
at xmax.

The nonresonant field introduces a coupling between
different partial waves that vanishes asymptotically as 1/x3, so
the definition of the scattering length becomes questionable.
Indeed, for an isotropic potential decreasing as −1/xp, the
limit of tan δ�(k)/k2�+1 for k → 0 does not exist for 2� + 3 �
p, with δ�(k) being the asymptotic elastic scattering phase shift
at the wave number k of the partial wave � [27,38]. A log k

term appears in its expression and a log x contribution in the
threshold wave function. However, in the s-wave channel, there
is no diagonal contribution of the nonresonant-field-induced
interaction and the diagonal potential of (5) and (7) behaves
asymptotically as −1/x6. As emphasized in Refs. [24,28], the
asymptotic behavior of a dipole-dipole interaction, equivalent
to the field-induced term considered here, can be termed
quasi-long-range, since it corresponds to an effective potential
proportional to −1/x4 for � = 0 and truly long-range effective
potentials proportional to −1/x3 for all other partial waves.
The effective s-wave potential becomes more attractive as the
laser intensity I increases and never exhibits a centrifugal
barrier. As a consequence, in spite of the 1/x3 dependence
of the nonresonant field interaction, the definition of the
field-dressed s-wave scattering length does not pose any formal
difficulty.

We analyze the validity of the outlined procedure to com-
pute the field-dressed scattering in detail in the Appendix. In
particular, in the Appendix, Sec. 2, we provide an extension of
the single-channel analytical two-potential approach originally
developed by Levy and Keller [31,39] to determine the
near-threshold elastic scattering phase shift in a long-range
potential. For a potential V (x) written as a sum of 1/xp terms,
we show that the expansion ofM(x) in powers of 1/x contains
a first term M0, accounting for the short-range interaction,
and a 1/x term, depending only on V (x) and on its separation
in two terms in the two-potential approach. This expansion
allows for straightforward determination of M0, i.e., of the
field-dressed scattering length. We have compared the results
of the single-channel Levy-Keller approach to systematic
multichannel numerical calculations, with a small number
of channels, various values of x00 and xmax, and different
asymptotic boundary conditions for f±,�(x). The comparison
between analytical and numerical results reveals that there
exists an optimal pair of functions for the initialization of the
inward integration in the � = 0 channel, corresponding to a
particularly rapid convergence of M(xmax). This allows for
the computation of the field-dressed scattering length using a
properly chosen xmax (see the Appendix, Sec. 4).

IV. RESULTS

The interaction of an atom pair with nonresonant light
modifies the effective potential of the vibrational motion such
that a scattering state may become bound [14,15]. A bound
state localized just at the dissociation limit for a particular
nonresonant field intensity corresponds to a divergence of the
scattering length as a function of the intensity. As a result,
a nonresonant field can be used to control of the scattering
length of a pair of colliding atoms.

To illustrate this control, we consider the two isotopes of
strontium, 88Sr and 86Sr, with the largest natural abundance,
68% and 16%, respectively, and no nuclear spin. The scaling
factors (4) adapted to the van der Waals interaction for the
88Sr -88Sr and 86Sr -88Sr atom pairs are reported in Table I
of Ref. [22]. We have chosen these atom pairs due to their
very different field-free s-wave scattering lengths, which also
correspond to a different structure for shape resonances [21].
88Sr has an intraspecies scattering length close to zero,
ã(I = 0) = −2 a0 = −0.013 ru, and field-free shape reso-
nances with � = 4,8,12, . . . , whereas the interspecies scatter-
ing length of 86Sr -88Sr is very large, ã(I = 0) = 100 a0 =
0.664 ru, and field-free shape resonances occur for � =
2,6,10, . . . [20]. For 88Sr -88Sr we derived realistic intensity-
dependent nodal lines from the wave functions calculated
in a single-channel diagonalization of the full Hamiltonian
[Eq. (1)] introduced in Ref. [14]. For 86Sr -88Sr, for which
there are no previous reliable theoretical or experimental data,
we used universal analytical parameters depending only on the
s-wave scattering length [22].

In the following we use the asymptotic boundary conditions
BC24∗, defined in the Appendix, Sec. 1, as initial conditions for
the inward integration of the asymptotic Schrödinger equation.

A. Scattering of 88Sr atoms: Realistic nodal lines

We have performed calculations with 11 channels, using
different xmax in different channels. We have chosen xmax

such that we obtain, at this point and for the largest intensity
considered, I = 40 ru (25 GW cm−2), an � purity close to
one for each adiabatic eigenvalue. Here xmax ranges from
xmax = 20.9 ru (3160a0) for � = 0 to xmax = 1.7 ru (255a0) for
� = 20. The largest systematic error of the scattering length
is obtained from the I2/xmax coefficient of the expansion of
M(xmax) given in Table V of the Appendix. For I = 40 ru
and xmax = 20.9 ru used for � = 0, this error is of the order
of −0.04 ru, which is absolutely negligible on the scale of the
figures presented below.

The field-dressed scattering length of 88Sr atoms is shown
in Fig. 1 together with the position of shape resonances and
bound states of 88Sr 2 as a function of the nonresonant light
intensity (top panel of Fig. 1). The almost linear character
of the energy dependence of the shape resonance positions is
discussed in Ref. [23]. All crossings between resonances or
bound states are in fact anticrossings. We introduce diabatized
labels �̃, where � is the orbital momentum of the field-free
states. The field-dressed scattering length exhibits divergences
or poles at the nonresonant light intensities for which a bound
state is located exactly at the dissociation threshold. This is
indicated by the dashed arrows in Fig. 1. To determine the
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FIG. 1. Comparison of the intensity dependence of bound-state
energies and shape resonance positions (top) to the field-dressed
scattering length of 88Sr atoms (middle and bottom). The resonances
and bound states are characterized by diabatized labels �̃ (see the
text). Broad poles (b), (e), and (g) correspond to regular scattering
states with �̃ = 0 becoming bound. Narrow features (a), (c), (d), (f),
and (h) are field-shifted shape resonances with �̃ = 20, 16, 12, 8,
and 4, respectively. Poles (d)–(f), which do not clearly appear in the
upper part, are shown in the bottom diagrams, with subtraction of the
background value of scattering length a1 + a2I and of the resonance
intensity Ipole [see (18)]. Poles (a) and (c) are too narrow to obtain a
precise shape.

width w of the poles, the field-dressed scattering length is
fitted to the expression

f (I) = a1 + a2I + w

(I − Ipole)
, (18)

where we have introduced an intensity-dependent background
scattering length a1 + a2I and Ipole is the nonresonant light
intensity at which the divergence occurs. The positions
and widths of the singularities of the scattering length are
summarized in Table I.

The new bound states can be classified according to their ro-
tational quantum number. Type (i) has �̃ > 0 and corresponds
to a shape resonance with vanishing width that is pushed below
threshold as the nonresonant field intensity increases. The
slope of the bound-state energy as a function of the nonresonant
field intensity is very large and correspondingly the pole of the

TABLE I. For the pair 88Sr -88Sr in nonresonant light, features of
the poles of the field-dressed scattering length (see Fig. 1): diabatized
label �̃ and position and width in reduced units (I and w) and in
physical units (I and W ). A pole denoted by (S) is a shape resonance
�̃ > 0 becoming a bound state as the intensity increases. A pole with
�̃ = 0 is a supplementary state, which appears because the adiabatic
s-wave potential becomes deeper. The calculations are done for n =
11 coupled channels with �max = 20. Realistic nodal lines (see the
text) are used.

�̃ Ipole Ipole w W

Pole label (ru) (GW cm−2) (ru) (GW cm−2)

(a) 20 (S) 0.368 0.234 too small too small
(b) 0 6.93 4.41 3.43 2.18
(c) 16 (S) 9.77 6.21 ∼10−12 ∼10−12

(d) 12 (S) 15.7 9.96 2.21 × 10−8 1.41 × 10−8

(e) 0 18.4 11.7 7.62 4.89
(f) 8 (S) 18.5 11.8 0.0916 0.0583
(g) 0 30.5 19.4 13.6 8.65
(h) 4 (S) 34.2 21.7 0.641 0.408

scattering length has very small width. Type (ii) is a regular
scattering state with �̃ = 0 that becomes bound. This is due to
the deepening of the field-dressed adiabatic s-wave potential,
which can accommodate an additional bound state. For a
supplementary bound state with �̃ = 0, the width of the pole
is very broad, because the energy of such a state remains very
close to the dissociation limit in a large range of intensities;
see the dependence of the bound-state energy as a function of
intensity in Fig. 1 that starts tangentially to the threshold.

The pole structure of the field-dressed scattering length in
Fig. 1 appears to be very similar to that observed for magnetic
Feshbach resonances [5]. However, there are two essential
differences. First, in a magnetic Feshbach resonance, there are
at least one open and one closed channel with different dissoci-
ation limits, whereas in the present problem, all channels have
the same dissociation limit. Magnetic Feshbach resonances
arise from the coupling between a bound state in the closed
channel and degenerate scattering states in the open one. In
contrast, the divergence of the scattering length as a function of
the nonresonant field appears when a shape resonance becomes
bound. Second, for magnetic Feshbach resonances, there is no
equivalent to regular scattering states being accommodated as
bound states in a modified s-wave potential.

The resonance structure in the energy dependence of the
near-threshold cross section has been previously analyzed in
Refs. [25,40]. In particular, for bosons, the resonances of the
� = 0, m = 0 lowest adiabatic potential, which extend over
a broad range of the cutoff radii modeling the short-range
interaction, correspond to our type (i) poles. They produce
an enhancement of the partial cross section averaged over the
polarization direction by about two orders of magnitude.

B. Interspecies scattering of 86Sr and 88Sr atoms: Universal
nodal lines

The power of the asymptotic model lies in the possibility
to predict, at least roughly, the intensity dependence of the
field-dressed scattering length for any atom pair. The field-free
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s-wave scattering length enters as the only free parameter;
it determines the universal nodal lines [21]. A universal
nodal line refers to Eq. (13) with the three parameters A,
B, and C taking universal values. In particular, analytical
formulas for the coefficients A and B in Eq. (13) are deduced
from the universal model of Ref. [16], which consists in
a −1/x6 potential limited by an infinite repulsive wall at
a distance x0G

→ 0. The shift of the node located at x00,
which is due to the contribution of the kinetic AE and
centrifugal B�(� + 1) energies in the range x0G

� x � x00, can
be evaluated using the WKB approximation [41]. Specifically,
the scattering length fixes the parameter x00 in (13) and is
used to estimate the universal coefficients AG = −(x00)7/8
and BG = (x00)5/4 [21]. For nodes at not too short range,
the obtained values for AG and BG are comparable to those
obtained from fitting to experimental data [29,30]. There is also
an analytical formula for the parameter CG accounting for the
contribution of the nonresonant field at short range [22].

We now use the asymptotic model with these univer-
sal nodal lines to predict the intensity dependence of the
field-dressed interspecies scattering length of 86Sr -88Sr. The
calculations were performed with n = 5 coupled channels, i.e.,
�max = 8.

For all channels, we have used xmax = 40 ru (6000a0). The
results are presented in Fig. 2 and the positions and widths of
the poles are summarized in Table II.

As for the intraspecies scattering of 88Sr atoms, there is
a strong difference in the widths of the two types (i) and
(ii) of poles in Fig. 2. The avoided crossings among bound
states are very broad and widely avoided. Due to one of these
anticrossings, the �̃ = 6 resonance crosses the threshold twice.
As a consequence, we obtain a negative width for the second
pole with �̃ = 6 in the scattering length (see Table II). Note
that the scattering length is large and positive when there is a
bound level close to threshold, which in this case occurs for
I < Ipole.

C. Prediction of the field-dressed scattering length for any pair
of atoms

The asymptotic model with universal nodal lines can be
used to predict the intensity-dependence of the scattering
length for any pair of atoms, based on either the field-free
scattering length or the node position of the field-free s-wave
threshold wave function. This is illustrated in Fig. 3, where, in
the top panel, x00 corresponds to the sixth node (counted from
the outside) of the s-wave threshold wave function. The results
have been calculated using n = 5 channels, i.e., �max = 8. We
can read off from Fig. 3 the nonresonant light intensities at
which a new bound level appears at the dissociation limit and,
equivalently, a pole occurs in the field-dressed scattering length
ã(I): Any atom pair is characterized by a value of either x00

or ã(I = 0). Drawing a horizontal line at this value, a pole
in the field-dressed scattering length occurs when one of the
black curves crosses the horizontal line. We have included the
horizontal lines corresponding to infinite field-free scattering
length as well as those for 88Sr -88Sr and 86Sr -88Sr in Fig. 3
for illustration.

For x00, in the top panel of Fig. 3, we encounter two types
of states at the dissociation threshold. For shape resonances
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FIG. 2. Comparison of the intensity dependence of bound-state
energies and shape resonance positions (top) to the field-dressed
interspecies scattering length of 86Sr and 88Sr atoms (middle and
bottom). Due to the wide avoided crossings, it is impossible to
match colors and labels; diabatized curves are indicated by black
dotted lines. The broad poles of the scattering length (a), (d), and (f)
correspond to regular scattering states with �̃ = 0 becoming bound,
whereas narrow ones (b), (c), and (e) are shape resonances with �̃ = 6,
2, and 6, respectively, crossing the dissociation limit, as in Fig. 1. The
narrowest poles are shown in the bottom diagrams with subtraction
of the background scattering length for poles (b) and (e). In this part,
axis labels are omitted, since they are identical to those of the diagram
just above.

TABLE II. Same as Table I but for the pair 86Sr -88Sr. The calcula-
tions correspond to an n = 5 coupled-channel model (with �max = 8).
Universal nodal lines (see the text) are used. The exceptional shape
of the resonance (e) in Fig. 2 explains the sign of its width (see the
text).

�̃ Ipole Ipole w W

Pole label (ru) (GW cm−2) (ru) (GW cm−2)

(a) 0 10.9 6.99 5.29 3.39
(b) 6 (S) 15.5 9.94 0.0270 0.0173
(c) 2 (S) 22.6 14.5 3.74 2.40
(d) 0 24.4 15.6 7.51 4.81
(e) 6 (S) 29.2 18.8 −0.00230 −0.00148
(f) 0 37.2 23.8 18.9 12.1
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FIG. 3. Nonresonant light intensity, in reduced units, leading to
a divergence of the field-dressed scattering length. Each atom pair
is characterized either by a node position x00 of its field-free s-wave
threshold wave function (top panel) or by its field-free scattering
length (bottom panel), indicated by horizontal lines in either diagram.
The red lines corresponds to an infinite field-free reduced scattering
length, whereas the green and blue lines represent 88Sr -88Sr and
86Sr -88Sr, respectively. A diabatic labeling is used. Here �̃ > 0
describes a shape resonance becoming bound at the dissociation
threshold and �̃ = 0 denotes a regular scattering state that turns into
a supplementary bound level in the adiabatic field-dressed s-wave
potential.

(�̃ > 0) pushed below threshold [type (i) pole], atom pairs
with similar values of x00 have very different pole positions
and the slope of x00 as a function of the nonresonant field
intensity is very small. This shows that the position, or energy,
of a field-dressed shape resonance strongly depends on the
short-range interaction. An exception is observed for the �̃ = 2
states at I > 10 ru and the �̃ = 4 states at I > 30 ru, because
the direct coupling between the � = 2 and � = 0 (� = 2, 4,
and 6) channels is very large. In contrast, for regular scattering
states becoming bound in the modified s-wave potential [type
(ii) poles], the field intensity characterizing the pole positions
varies rapidly and almost linearly with x00. As a result, the
appearance of such a bound state depends mainly on the long-
range properties of the field-dressed adiabatic s-wave potential
and only to a lesser extent on the field-free scattering length.
This can be seen in the bottom graph of Fig. 3, where the �̃ = 0
poles appear as almost vertical curves.

According to the field-free analytical model of Ref. [42],
bound states with � = 4p, where p � 0 and an integer,
are located at threshold for an infinite scattering length,
whereas for scattering lengths of ã(I = 0) = 0.48 ru and
x00 = 0.158 ru bound levels with � = 2 + 4p are located at
the dissociation limit. These predictions are approximately
reproduced in our asymptotic model with universal nodal lines
in the field-free case (cf. Fig. 3).

The node position of x00 = 0.1595 ru is associated with
interspecies scattering of 86Sr and 88Sr atoms (blue vertical
line in the top panel of Fig. 3) and Fig. 3 confirms the results of
Table II, which were also calculated with universal nodal lines.
A field-free scattering length of −0.013 ru and x00 = 0.1549 ru
describe intraspecies scattering of 88Sr atoms (green horizontal
line). The asymptotic model with universal nodal lines predicts
three regular s-wave scattering states becoming bound at
I ≈ 7, 16, and 32 ru, i.e., very close to the nonresonant field
intensities obtained with realistic nodal lines for which the
parameters were adjusted to reproduce the field-free scattering
length (see Table I). This confirms the slight dependence of
the corresponding poles of the field-dressed scattering length
on the nodal lines. In contrast, for �̃ = 4 and �̃ = 8, the states
obtained with universal nodal lines are never located at the
dissociation limit, unlike the results obtained with realistic
nodal lines in Table I. As discussed above, the energies of field-
free shape resonances strongly depend on the node position in
the � channel, i.e., on the B coefficient in (13), a sensitivity that
increases for higher partial waves due to the factor �(� + 1).
Our present findings are in line with Ref. [22], where an
overestimation of the field-free shape resonance positions with
universal nodal lines was observed.

The actual nonresonant field intensities that are required to
control the scattering length in strontium are rather large: 4.4
and 7.0 GW cm−2 for intraspecies and interspecies scattering,
respectively. Control with a significantly smaller nonresonant
field intensity may be expected for atom pairs with a field-free
scattering length between 0.48 ru and that of 86Sr and 88Sr
atoms, 0.664 ru (or, correspondingly, x00 between 0.158 and
0.1595 ru): Since ã(I = 0) = 0.48 ru is the value for which
shape resonances �̃ = 2,6, . . . are located at threshold, a
comparatively small nonresonant field intensity is sufficient
to cross the �̃ = 2,6 curves in Fig. 3 by the horizontal line
for an atom pair with a slightly larger field-free scattering
length. According to [21], field-free scattering lengths within
this range are found for the intraspecies scattering of 7Li in
the ground singlet electronic state and of 41K and 87Rb in
either the ground singlet or lowest triplet state. Interspecies
scattering of 6Li -40K, 6Li -41K, 7Li -87Rb, and 7Li -133Cs in
the ground singlet electronic state and 6Li -7Li and 23Na -87Rb
in the lowest triplet state also exhibits field-free scattering
lengths within this range. The prospect of smaller nonresonant
field intensities required than for the control of interspecies
scattering in strontium comes, however, with the consequence
that the pole of the scattering length will be narrow since
a shape resonance, and not a regular scattering state (with
�̃ = 0), is pushed below the dissociation threshold.

In contrast, for atom pairs with negative field-free scattering
length, the nonresonant field intensity must be at least larger
than 2 ru. The corresponding large intensities make the
control of the scattering length with a nonresonant field
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more challenging for these atom pairs. For the example of
intraspecies scattering of 85Rb in the lowest triplet state, one
would expect an �̃ = 0 divergence atI = 3 ru (0.78 GW cm−2)
and an �̃ = 4 divergence at I = 5 ru (1.3 GW cm−2). The �̃ =
0 pole will be broad and could be exploited for nonresonant
light control of the scattering.

V. CONCLUSION

An asymptotic model has been used to analyze the
scattering of two ultracold atoms in a nonresonant laser
field. It provides a realistic approximation to the field-dressed
scattering length. The pair of atoms interacts with the non-
resonant light via its polarizability anisotropy such that the
potential acquires an anisotropic 1/R3 asymptotic behavior.
The asymptotic Hamiltonian is formally equivalent to the one
describing the anisotropic dipole-dipole scattering in ultracold
gases of atoms or molecules. While for a potential with an
isotropic 1/R3 long-range dependence the scattering length
cannot be defined, the anisotropy induced by nonresonant light
does not introduce a direct 1/R3 interaction term in the s-wave
channel. In second-order perturbation theory the effective
s-wave potential decreases as 1/R4 and the scattering length
can be defined without any formal difficulty. The field-dressed
scattering length is determined from a threshold wave function
that shows a linear variation with R in the s-wave channel and
does not diverge asymptotically for all higher partial waves.

In more detail, from the zero-energy scattering wave
function, we have defined a quantity M(x) that tends to
the scattering length for large x. We first determined M(x)
analytically for a single-channel model and a potential given
by a multipole expansion. We predict in this way the expansion
of M(x) in powers of 1/x for various choices of reference
functions, with different asymptotic behavior. In particular, a
suitable choice of the reference functions allows us to cancel
the 1/x term. Then, for various atom pairs (i.e., various x00

or various field-free scattering length), we calculated M(x)
numerically for a range of values of xmax. Fitting M(xmax)
has allowed us to deduce an expansion of M(xmax) into a
series of 1/xmax. We have found the results of the numerical
fits to agree well with the analytical results when considering
an expansion of both the s-wave adiabatic potential and the
nonadiabatic coupling terms in powers of 1/x, the latter being
clearly non-negligible. The analysis has allowed us to estimate
the uncertainty of the calculated scattering length when it
is obtained from a single inward integration with judicious
asymptotic boundary conditions at a value of xmax that is not
too large.

We have shown that the scattering properties of an atom
pair can be controlled by tuning the nonresonant field intensity.
The scattering length diverges each time a field-dressed bound
state reaches the threshold. We have encountered two types
of divergences, with very different properties. On the one
hand, narrow divergences appear when a shape resonance
with partial wave � > 0 becomes bound. The corresponding
nonresonant field intensity strongly depends on the interaction
of the atom pair in the inner domain. On the other hand,
broad divergences appear when a deepening of the adiabatic
field-dressed s-wave potential results in additional bound
levels in the field-dressed s-wave channel. The corresponding

intensities vary approximately linearly with the node position
x00, which replaces the inner part of the potential. The
periodicity of the intensities at which the successive additional
levels appear is almost independent of the atom pair, since it
is a characteristic of the long-range part of the field-induced
interaction [25].

To illustrate the validity of the asymptotic method and
the capability of nonresonant light to control the scattering
length, we have considered the intraspecies scattering of 88Sr
atoms and the interspecies scattering of 86Sr and 88Sr atoms
as prototype systems. They have, respectively, a small and
large field-free scattering length and therefore very different
scattering properties. In contrast to shape resonances, where
the intensity dependence of the resonance position was found
to be rather different for the two cases [22,23], the intensity
dependence of the field-dressed scattering length turns out to
be very similar, in particular for broad poles of the scattering
length. This is explained by the fact that these poles occur when
a regular scattering state becomes bound, which is dictated
almost exclusively by the field-induced dipole-dipole term,
independently of the short-range interaction. In addition to
strontium, we have considered an arbitrary pair of atoms,
characterized only by the field-free scattering length, and
we have predict, in a completely general way, at which
field intensity the field-dressed scattering length exhibits a
divergence. This allows us to estimate the nonresonant light
intensity required to tune the scattering length for a given atom
pair, provided the field-free scattering length is known.

In view of experimental realization of nonresonant light
control, the high intensities that are required can be achieved
by tightly focused YAG or CO2 lasers. For strontium, they are
both far detuned from any transition involving the electronic
ground state, even though their frequencies are very different,
1064 nm compared to 10 μm. The coupling to the nonresonant
light will therefore be dominated by the static polarizabilities
and dynamic polarizability effects are negligible. There is no
advantage of one of the two wavelength choices over the other
in terms of heating due to photon scattering. With a heating rate
of less than 1 μK/s for I = 109 W/cm2, estimated in terms of
the atomic photon scattering rates [43], heating is negligible
for 1064 nm and even more so for longer wavelengths. Note
that this picture changes when alkali-metal atoms are involved.
Depending on the species, dynamic polarizability effects may
become important for 1064-nm light, which might decrease
the required intensity but increase heating rates. In this case,
a full calculation for the specific atom pair will be required
since it is not straightforward to derive an asymptotic model
for the dynamic polarizability. One might also wonder whether
multiphoton processes beyond the two-photon effects that we
have accounted for in our model come into play. However,
despite the high intensities, the overall light-matter coupling is
still sufficiently small for low-order perturbation theory to be
valid [23]. For example, multiphoton ionization of strontium
would require seven photons of 1064 nm and many more for a
CO2 laser. Multiphoton processes can therefore be ruled out.

In future work, it will be important to consider the scattering
of fermionic atoms. For a pair of polarized fermionic atoms
colliding in odd-parity waves only, all channels involve an
asymptotic 1/R3 potential and, at ultracold temperature,
the usual p-wave scattering volume describing the collision
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TABLE III. Analytical expression (column 2) of the pairs of linearly independent functions used either as asymptotic boundary conditions
(BC, labeled in column 1) at xmax in the channel � or as a reference pair of � = 0 functions in the analytical model (ϕ and ψ being, respectively,
the divergent and the nondivergent ones). The symbols α, ρ, and γ that appear in column 2 are given in columns 4, 5, and 6. These functions are
analytical solutions at threshold (E = 0) of the single-�-channel Schrödinger equation with the potential v�

p(x) = �(� + 1)/x2 − cp/xp [45],
with p given in the third column. The functions behave asymptotically as x�+1[1 + O(cpxq )] and x−�[1 + O(cpxq )] for the divergent (upper
sign or row 1) and nondivergent (lower sign or row 2) case, respectively, with q given in column 7. For free spherical waves, labeled by BC2
with p = 0 and cp = 0, the functions are everywhere equal to their asymptotic limit.

Label Function p α ρ γ q

BC2 x�+1 0 0
BC2 x−�

BC26 γ
√

xJ∓α(ρ) 6 (2� + 1)/4
√

cp/(2x2) (
√

cp/4)±α�(1 ∓ α) −4
BC24 γ

√
xJ∓α(ρ) 4 (2� + 1)/2

√
cp/x (

√
cp/2)±α�(1 ∓ α) −2

cannot be defined. In another work [44], the theoretical tools
developed here for s-wave scattering will be adapted to
describe the near threshold p-wave scattering of two fermionic
atoms in a nonresonant laser field.
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APPENDIX: COMPUTATION OF THE FIELD-DRESSED
SCATTERING LENGTH

In this appendix we discuss in detail how to compute the
field-dressed scattering length. The analytical functions chosen
to initialize the inward integration, by boundary conditions
(BCs) at xmax, are specified in Sec. 1. In Sec. 2 we suggest
an extension of the single-channel approach by Levy and
Keller [31,39] to the threshold wave function in order to
calculate analytically the asymptotic phase shift for near-
threshold elastic scattering in a long-range potential written
in a multipole expansion. Using this extension, we obtain
analytical asymptotic expansions of M(xmax) in powers of
1/xmax for different asymptotic boundary conditions. The
adiabatic s-wave potential and the nonadiabatic contributions
are examined in Sec. 3. For a small number of channels, we per-
form systematic calculations of M(xmax) and numerical fits to
obtain the coefficients of the M(xmax) expansion in powers of
1/xmax, which are compared to the analytical results in Sec. 4.

1. Asymptotic boundary condition for the inward integration

The pairs of analytical functions defined in Table III provide
the asymptotic boundary conditions at xmax in the channel
�, i.e., initial conditions for inward integration in channel �.
They are solutions of the Schrödinger equation associated with
the asymptotic potential v�

p(x) = �(� + 1)/x2 − cp/xp, with
p > 2, for zero energy [27,45]. We present several choices,1

generally expressed in terms of Bessel functions, which behave

1In principle, any pair of functions with different logarithmic
derivatives at xmax could be used for each � to obtain a set of solutions,
but the asymptotic behavior of the solutions would in general be
difficult to analyze.

asymptotically as x�+1[1 + O(cpxq)] and x−�[1 + O(cpxq)],
respectively.

The labels are chosen as follows. The boundary conditions
BC2 use cp = 0 and p = 0 such that v�

p(x) reduces to
the centrifugal term. The centrifugal term plus the van der
Waals contribution, i.e., p = 6, is labeled by BC26. The case
BC24 with p = 4 is well adapted to represent the effective
field-dressed s-wave potential in a multichannel description,
because both the adiabatic potential and the nonadiabatic
couplings vanish asymptotically as 1/x4 (see Sec. 3).

2. Two-potential approach to analytically determine the
asymptotic behavior of M(xmax)

We extend the two-potential method suggested originally
by Levy and Keller [31,46,47] to determine, in a single-
channel approach, the asymptotic behavior of M(xmax) for
the threshold s-wave solution of the Schrödinger equation
involving an asymptotic potential V (x) = −c4/x

4 − c5/x
5 −

c6/x
6. Following this method, a second potential Vf (x) is

defined to determine a pair of reference functions ϕ(x) and
ψ(x), which are linearly independent, analytical threshold
solutions of this potential. According to Ref. [31], the s-wave
solution at threshold of the Schrödinger equation with the
potential V (x) can be written as

u(x) = A(x)[ϕ(x) − ψ(x)M(x)], (A1)

with the condition

du(x)

dx
= A(x)

[
dϕ(x)

dx
− dψ(x)

dx
M(x)

]
. (A2)

The Schrödinger equation for u(x) with the condition (A2) is
equivalent to

dM(x)

dx
= −Vp(x)

W
[ϕ(x) − ψ(x)M(x)]2, (A3a)

1

A(x)

dA(x)

dx
= −Vp(x)ψ(x)

W
[ϕ(x) − ψ(x)M(x)],

(A3b)
with Vp(x) = V (x) − Vf (x) and W the Wronskian of ϕ(x)
and ψ(x).

Here we choose Vf (x) = 0 or Vf (x) = −cp/xp with p � 4
and we use for ϕ(x) and ψ(x) the pairs of analytical functions
� = 0 defined in Sec. 1. Since for each p the asymptotic limits
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TABLE IV. Analytical expansion in powers of 1/x of M(x) (column 4), which characterizes the s-wave threshold solution u(x) [Eq. (A1)]
of the single-channel Schrödinger equation in the potential V (x) = Vf (x) + Vp(x) = −c4/x

4 − c5/x
5 − c6/x

6 when u(x) is written in terms
of two reference functions (labeled in column 1), which are threshold solutions of the potential Vf (x) (column 2). Vp(x) is given in column 3
and the expression of the reference functions is given in Table III.

Label Vf (x) Vp(x) M(x)

BC2 0 −c4/x
4 − c5/x

5 − c6/x
6 M0 + c4/x + (c5 + c4M0)/x2 + O(1/x3)

BC26 −1/x6 −c4/x
4 − c5/x

5 − (c6 − 1)/x6 M0 + c4/x + (c5 + c4M0)/x2 + O(1/x3)
BC24 −c4f /x4 −(c4 − c4f )/x4 − c5/x

5 − c6/x
6 M0 + (c4 − c4f )/x + [c5 + (c4 − c4f )M0]/x2 + O(1/x3)

of the reference functions are pure centrifugal wave functions,
the scattering length ã is the limit of M(x) for x → ∞ [see
Eq. (17)]. For a chosen pair of reference functions [ϕ(x) and
ψ(x)] associated with a given potential Vf (x), the asymptotic
form of M(x) is expanded in powers of 1/x. The coefficients
of this expansion are obtained analytically by identifying the
terms with the same power of 1/x in Eq. (A3a). It is obvious
that this asymptotic analysis does not determine the constant
coefficient M0, which does not appear on the left-hand side
of the equation. This is not surprising since this coefficient
depends on the short-range part of V (x). Conversely, the other
terms depend only on the potentials Vp(x) and Vf (x). The
analytical expansion of M(x), corresponding to the labels of
Table III, is reported in Table IV. To O(1/x3), M(x) does
not depend on the coefficient of the van der Waals interaction
−c6/x

6. The coefficient of 1/x depends only on the 1/x4

terms in Vp(x) and Vf (x). The convergence of the M(x)
expansion can be then controlled by a proper choice of Vf (x).
For example, the case BC24 allows us to cancel the 1/x term
in the expansion of M(x) by imposing c4f = c4, i.e., by using
reference functions related to the total −c4/x

4 contribution
to V (x).

As mentioned above, this asymptotic analysis does not de-
termine the constant coefficient of the expansion M0, i.e., the
scattering length ã. However, if one introduces the analytical
expansion of M(x) in powers of 1/x into Eq. (A3b), one can
obtain the analytical expansion of A(x) in powers of 1/x (in-
cluding theM0 term) and then of the wave function u(x) itself,
which obviously does not depend on the choice of reference
functions. One can finally compare the values of M0 corre-
sponding to different reference pairs: It appears that the value
of M0 does not depend on the choice of the reference pair.

3. Adiabatic s-wave potential and nonadiabatic effects

In Table IV one can see that, when using the reference pair
BC24 and c4f = c4, M(x) converges as 1/x2 instead of 1/x

in the other cases. One may expect an increased convergence
of the numerical multichannel calculations when using the
BC24 condition in the s channel. To determine the optimal
c4 value, we calculate the expansion in powers of 1/x of the
effective s-wave potential in the matrix −M(x) in (12) and of
the nonadiabatic contributions to this potential in an n-channel
description.

For two coupled channels, with � = 0 and 2, an analytical
expression can be found for the field-dressed adiabatic s-wave
potential v�=0

ad (x) of the Hamiltonian (5). It is obtained as the
lowest eigenvalue of the 2 × 2 matrix −M(x) appearing in (12)

and given by the van der Waals interaction plus a series of the
form Iq−2/xq ,

v�=0
ad (x) = − 1

x6
− 2

135

I2

x4
− 4

8505

I3

x5
+ 58

2679075

I4

x6

+O

(I5

x7

)
. (A4)

The diagonal contribution of the nonadiabatic coupling, due to
the x dependence of the corresponding adiabatic eigenvector
�(x), i.e., the kinetic energy mean value 〈�|d2�/dx2〉, reads

vn−ad(x) = − 1

405

I2

x4
− 8

25 515

I3

x5
+ 64

2 679 075

I4

x6

+O

(I5

x7

)
. (A5)

Note the importance of this nonadiabatic term, which amounts
to roughly 1/6 of the direct coupling term (A4).

For n = 2, 3, and 4 channels and for I = 6, 10, and 20 ru,
we have calculated the differences between the eigenvalues
of the matrix −M(x) and the analytical results for n = 2.
These differences have been least-squares fitted to a series
of the form Iq−2/xq and q � 4. The coefficients are always
very small. The difference between the n = 3 and n = 2 cases
is even smaller and between the n = 4 and n = 3 results it
is almost negligible. This rapid stabilization of the adiabatic
representation as the number of channels increases reflects
the tridiagonal structure of the Hamiltonian matrix, with off-
diagonal terms �� = ±2.

4. Asymptotic behavior of M(xmax): Numerical calculations

Here we analyze the influence of the asymptotic BCs for the
inward integration at xmax given in Sec. 1 and of the number
of coupled channels on the field-dressed scattering length.
For n = 2, 3, and 4 channels, i.e., � = 0,2, � = 0,2,4, and
� = 0,2,4,6, respectively, we have performed a large number
of numerical calculations in the interval 0.142 152 ru � x00 �
0.152 135 ru, which corresponds to the field-free scattering
length varying from −∞ to +∞. Remember that each value
of x00 is associated with a specific pair of atoms.

In the multichannel asymptotic boundary conditions labeled
BC2 (BC26) in Table V, we have used the pairs of functions
BC2 (BC26) of Table III for any �. For the BC24 conditions,
the BC24 functions were used in the � = 0 channel and either
the BC2 or BC26 pairs in the other channels, both leading
to the same results. For v�=0

p=4(x), we have considered either
the adiabatic s-wave potential of the two-channel model (A4)
with c4 = 2I2/135 or this term plus the nonadiabatic contri-
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TABLE V. First three coefficients of the expansion of M(xmax) in powers of 1/xmax obtained by a fit performed with xmax spanning the
interval [20 ru,500 ru], with different asymptotic boundary conditions [column 2, labeled BC and related to the potential Vf given in column
3 (see the Appendix, Sec. 1)] and three different nonresonant field intensities I (column 1), using three coupled channels (� = 0, 2, and 4).
The calculations were performed using 150 or 200 values of x00 [Eq. (13)] chosen such that the field-free s-wave scattering length varies from
−∞ to +∞. The table reflects the dependence on x00 of these coefficients: Either they are constant (coefficient of 1/xmax, column 5) or they
present a characteristic shape (see Fig. 4) with three divergences (constant coefficient, column 4, and coefficient of 1/x2

max, column 6). The
constant coefficient M0(I,x00) varies with x00 and I, but not with the BCs and is equal to the field-dressed scattering length ã(I,x00) [Eq. (17)].
Its particular value for x00 = 0.148 741 ru [i.e., ã(I = 0) = 0.786 619 ru] is given in parentheses in column 4, to show the precision of its
determination by the fit. For each value of I and for each type of initial condition, the variation with x00 of the coefficient of 1/x2

max, labeled
η(I,x00) in column 6, depends on the boundary conditions (which is expressed by the different superscripts) but exhibits always a shape very
similar to the one of ã(I,x00); more precisely, it is related to M0 by a linear transformation [Eq. (A6)]. Column 7 shows the dependence on I
of the coefficient of 1/xmax.

I Constant Coefficient Coefficient Coefficient
(ru) Label Vf (x) coefficient of 1/xmax of 1/x2

max of I2/xmax

6 BC2 0 ã(I,x00) (0.105964) 0.64002 η(I,x00) 0.017778
6 BC26 −1/x6 ã(I,x00) (0.105964) 0.64002 η′(I,x00) 0.017778
6 BC24 −c4/x

4 ã(I,x00) (0.105964) 0.1067 η′′(I,x00) 0.002964
6 BC24∗ −c∗

4/x
4 ã(I,x00) (0.105964) 0.01781 η′′∗(I,x00) 0.0004947

10 BC2 0 ã(I,x00) (−3.28493) 1.7779 η(I,x00) 0.017779
10 BC26 −1/x6 ã(I,x00) (−3.28492) 1.778 η′(I,x00) 0.01778
10 BC24 −c4/x

4 ã(I,x00) (−3.28492) 0.2962 η′′(I,x00) 0.002962
10 BC24∗ −c∗

4/x
4 ã(I,x00) (−3.28493) 0.0495 η′′∗(I,x00) 0.000495

20 BC2 0 ã(I,x00) (−1.77085) 7.1125 η(I,x00) 0.017781
20 BC26 −1/x6 ã(I,x00) (−1.77086) 7.112 η′(I,x00) 0.01778
20 BC24 −c4/x

4 ã(I,x00) (−1.77086) 1.186 η′′(I,x00) 0.002965
20 BC24∗ −c∗

4/x
4 ã(I,x00) (−1.77085) 0.198 η′′∗(I,x00) 0.000495

bution (A5) with c∗
4 = 7I2/405. These two cases are referred

to as BC24 and BC24∗, respectively.
For each x00, we have calculated M(xmax) for 20 ru �

xmax � 500 ru, using the method described in Sec. III B. A
fitting of M(xmax) to a polynomial in 1/xmax provides the first
coefficients of the expansion of M(xmax) in powers of 1/xmax.
In this way, we obtain the dependence of these coefficients
on x00. The results for three coupled channels, i.e., � = 0, 2,
and 4, are presented in Table V for I = 6, 10, and 20 ru. The
coefficients are either x00 independent (coefficient of 1/xmax,
column 5) or they present a characteristic shape (see Fig. 4)
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FIG. 4. Field-dressed s-wave scattering length for n = 2 (blue
dashed line), n = 3 (red dot-dashed line), and n = 4 (black solid
line) channels and I = 10 ru. The field-free scattering length (gray
line) is also plotted.

with several (three, in the results of Table V, where we consider
three channels) divergences (constant coefficient, column 4,
and coefficient of 1/x2

max, column 6), the position in x00 of
the divergences only depending on I and on the number of
channels.

The constant termM0, which is the field-dressed scattering
length ã(I,x00), only depends on I and on x00, i.e., on the
field intensity and on the atom pair, but not on the boundary
conditions. The accuracy of this procedure is illustrated by
values of the field-dressed scattering length for the specific
choice of x00 = 0.148 741 ru [i.e., ã(I = 0) = 0.786 619 ru]
(see values in parentheses in the fourth column of Table V): A
dependence on the boundary condition appears at most in the
sixth digit.

The coefficient of 1/xmax is independent of x00, but depends
on the boundary conditions and is proportional to I2 (see
columns 5 and 7 of Table V). The coefficients of I2/xmax are
identical for BC2 and BC26 (0.017 78), smaller for BC24
(0.002 96), and even smaller for BC24∗ (0.000 49). These
differences are due to the way the term 1/x4 is considered in
the boundary conditions of the s wave.

To compare with the analytical results of Table IV,
we examine the coefficients of the I2/xmax factor in the
M(xmax) expansion (column 7 of Table V). We first recall
that an approximation for the s-wave field-dressed potential is
−c∗

4/x
4, a sum of the adiabatic and nonadiabatic two-channel

contributions (A5). With the boundary conditions BC2 and
BC26, which do not include a 1/x4 term, the coefficient of
I2/xmax is close to c∗

4 = 0.017 28, as expected. When the direct
coupling term proportional to 1/x4 between the � = 0 and
� = 2 channels is included in the reference functions, the cor-
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responding contribution disappears in the I2/xmax coefficient
of the M(xmax) expansion: This explains why the difference
between the boundary conditions BC2 and BC24 is 0.01482 or
≈ 2/135. Analogously, a comparison of the BC24 and BC24∗
results shows that when the nonadiabatic couplings are ac-
counted for, the I2/xmax coefficient in the M(xmax) expansion
decreases by 0.002 47 ≈ 1/405. These multichannel results
testing the influence of the asymptotic boundary conditions on
the I2/xmax coefficient agree perfectly with the single-channel
two-potential model. The small but nonvanishing coefficient
of 1/xmax in the BC24∗ case provides an estimate for the
differences between the single-channel analytical approach,
which includes the adiabatic plus nonadiabatic contributions,
and the multichannel model with a full numerical calculation.
The BC24∗ boundary condition yields the smallest coefficient
of the 1/xmax term inM(xmax) (see Table V), which is approxi-
mately equal to 0.198/20 ∼ 0.01 ru for I = 20 ru and xmax =
20 ru. This value gives an estimate of the error introduced
in the field-dressed scattering length when the dependence
of M(xmax) on xmax is neglected and when the field-dressed
scattering length is set equal to M(xmax) instead of M0. The
boundary conditions BC24∗ thus represent the best choice to
systematically calculate the field-dressed scattering length.

The coefficient of 1/x2
max in the numerical expansion of

M(xmax), labeled η(I,x00) (see column 6 of Table V), depends
on I and on x00 and have a dependence on x00 similar to the
one of M0(I,x00) = ã(I,x00). One has

η(I,x00) = m2ã(I,x00) + m1, (A6)

with coefficients depending both on I and on the boundary
conditions. The two-potential model predicts also a linear

transformation, with coefficients depending on the reference
functions and on the coefficients c4, c4f , and c5 (see Table IV).
We find that the slope m2 is proportional to I2 and the
additional constant m1 to I3. This could be expected from
the analytical results of Table IV and from the adiabatic
potential (A4) and the nonadiabatic coupling term (A5), whose
1/x4 and 1/x5 terms vary as I2 and I3, respectively.

The field-dressed scattering length as a function of x00

is presented in Fig. 4 for I = 10 ru, comparing n = 2, 3,
and 4 channels. The considered range of x00 corresponds to
one quasiperiod of the field-free scattering length, i.e., the
latter, which is also plotted (in gray), varies once over the
whole domain [−∞,+∞]. When increasing n by one unit, an
additional divergence appears, related to the new channel with
a larger �. While the poles with �̃ = 0 and �̃ = 2 are difficult to
distinguish, because the coupling between these two channels
is very large at this intensity, it is easy to identify the �̃ � 4
value of the field-dressed channel associated with a particular
divergence and to see how the position of these divergences
changes with increasing n. The location of the poles with �̃ = 0
and �̃ = 2 are approximately stabilized as soon as the � = 4
and � = 6 channels are introduced in the model. Indeed, the
field-dressed scattering length reaches an almost stable value
in the three-channel model, except for divergences related to
shape resonances with �̃ � 4. The width of the poles, as x00

is varied, is large for �̃ = 0 and 2 and becomes narrower
as �̃ increases. By fixing x00 and varying I, the width of
the poles as a function of intensity decreases rapidly as �̃

increases (see Figs. 1 and 2). In this range of intensity, a
control of the scattering length could only use the �̃ = 0 and 2
divergences.
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