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Hybrid benchmarking of arbitrary quantum gates
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We present a protocol for interleaved randomized benchmarking of arbitrary quantum gates using Monte
Carlo sampling of quantum states. It is generally applicable, including non-Clifford gates while preserving
key advantages of randomized benchmarking such as error amplification as well as independence from state
preparation and measurement errors. This property is crucial for implementations in many contemporary systems.
Although the protocol scales exponentially in the number of qubits, it is superior to direct Monte Carlo sampling
of the average gate fidelity in both the total number of experiments by orders of magnitude and savings in classical
preprocessing, that are exponential.
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A central goal of quantum information science is to
engineer a physical system capable of functioning as a scalable
quantum computer that systematically outperforms classical
computers in certain applications. To this end, it is imperative
to drive arbitrary unitary evolution in a suitable quantum
system consisting of n � 1 qubits and to benchmark the
implementation of that operation.

Efficient benchmarking protocols, i.e., protocols that scale
at most polynomially in n, are available for quantum operations
in the Clifford group C [1–4], an important subset of quantum
operations [5,6]. In particular, randomized benchmarking (RB)
is a method to estimate the average error of the Clifford
group based on the fidelity of random Clifford gate sequences
[1,2]. RB has proven itself as a popular and experimentally
viable approach not only because of its scaling properties
but also due to its independence from state preparation and
measurement (SPAM) errors [1,2]. For individual gates of the
Clifford group, the fidelity can be estimated with interleaved
randomized benchmarking (IRB) [7]. The remarkable RB
construction hinges on the Clifford group elements being
distributed sufficiently uniformly on the special unitary group
SU(d = 2n). A central prerequisite for the scalability of RB
is that C can be simulated efficiently on a classical computer
[8]. However, for the same reason, quantum algorithms based
on those Clifford gates alone cannot outperform a classical
computer. To realize the full potential of quantum computation,
one has to access the full unitary group which is generated by
C and one additional non-Clifford gate, e.g., a single qubit
gate such as the π/8 gate. While IRB, for example, can
be generalized to an arbitrary gate, the fidelity estimation
becomes highly challenging [9]: Simulation and inversion of
the sequence become increasingly inefficient as alternating
Clifford and, e.g., π/8 gates generate the full SU(2n) [8]. In
order to sample all gates, including those not in C, one needs
to rely on strategies the experimental and classical resources
of which scale exponentially.

One such generally applicable protocol is given by Monte
Carlo sampling of the average gate fidelity which allows for
the validation of arbitrary quantum gates [3,4,10]. It requires
significantly less resources than the canonical approach, which
is to extract this information from full quantum process tomog-
raphy. However, Monte Carlo sampling is limited by SPAM
errors, which for many physical systems can overshadow the

gate error. Moreover its scaling in both experimental and
classical resources, although favorable compared to process
tomography, is still exponential in n. This poses the question
whether it is possible to combine the generality of Monte
Carlo sampling, i.e., going beyond the Clifford group, with
the experimental advantages of RB.

Here, we answer this question and demonstrate the benefit
of combining both methods. We show how arbitrary gates can
be benchmarked by replacing the inverting gate at the end of
each IRB sequence with Monte Carlo sampling of the resulting
quantum state. Our approach outperforms direct Monte Carlo
sampling of the average gate fidelity regarding the number of
measurements and yields an exponential saving in classical
computational resources while retaining the independence
on SPAM errors. Therefore it enables the benchmarking of
arbitrary gates in experimental settings.

We first briefly review the original RB protocol [1,2] as well
as IRB [7,9]. RB provides an estimate for the average fidelity
of a unitary two-design such as the Clifford group based on the
idea that random sequences of Clifford gates also randomize
the effect of error channels, turning them depolarizing. For
every sequence of y Clifford gates Ĉj , 1 � j � y, there is
a unique Clifford gate Ĉy+1 inverting the sequence which
can be efficiently found via the Gottesmann-Knill theorem.
By applying the sequence and its inverse to an initial state
ρ̂0 and measuring the survival probability of that state, the
sequence fidelity is accessible experimentally. Averaging over
all possible sequences and making the additional assumption
of a gate independent error channel � result in an average
sequence fidelity

�y = 1

�Cy

∑
{Cj }∈Cy

Tr

⎡
⎣ρ̂0

⎛
⎝Cy+1

1∏
j=y

(�Cj )

⎞
⎠(ρ̂0)

⎤
⎦, (1)

where � denotes cardinality and C(ρ) = Ĉρ̂Ĉ
†

is the operation
of the Clifford gate. The reverse order of the product ensures
the correct arrangement of the gates with the earlier operation
applied to the state appearing on the right of the latter
operation.

Equation (1) can be rewritten as �y ≡ Tr[ρ̂0�
y

twirl(ρ̂0)]
where �twirl—the twirl of the error channel � over the Clifford
group [6]—is completely depolarizing, i.e., �twirl(ρ̂) = pρ̂ +

2469-9926/2017/95(6)/062335(5) 062335-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.062335


CHASSEUR, REICH, KOCH, AND WILHELM PHYSICAL REVIEW A 95, 062335 (2017)

1−p

d
1 with decay parameter p [11]. The average fidelity

associated with the channel �twirl then is � = p + 1−p

d
; the

average sequence fidelity becomes

�y = Tr

[
ρ̂0

(
pyρ̂0 + 1 − py

d
1

)]
= d − 1

d
py + 1

d
. (2)

To access p, one has to estimate �y for several sequence
lengths y by sampling over a (in practice small [9,12])
subset of possible sequences for each y; p and hence �

are derived by fitting the experimental data to an exponential
decay. Incorporating the error channels for SPAM and Cy+1

leads to �y = Apy + B, which leaves the exponential decay
unchanged and therefore yields a protocol robust against
imperfect SPAM [1,2]. An important extension to RB is the
IRB protocol that sets limits to the fidelity of a single Clifford
gate V̂C using the fidelity of this gate interleaved with a
random sequence, i.e., of the combined error channel �V �C ,
in comparison with the fidelity obtained for the Clifford group
[7]. This assessment of individual gates not only provides
information of possible error sources but can be used directly
for model free optimal control in an experiment [13,14].

Potential loopholes in RB and IRB such as gate dependent
errors and leakage can be accounted for by considering linear
maps acting on quantum channels instead of just quantum
channels [9]. Specifically, the extension of the sequence length
by one acts as a linear map T on the operator on ρ̂ representing
the shorter sequence (which depends on V for IRB). The
average sequence fidelity is a linear functional of the y-fold
product of T resulting in a multiexponential fidelity decay:

�y =
∑

i

aiλ
y

i . (3)

The eigenvalues, λi , of the linear operator T are close to real
and their absolute values are smaller than or equal to 1. The
resulting fidelity decay can be typically fitted using just a few
different exponential decays [9].

In this paper we go beyond the Clifford group. To do so,
we rely on the technique of Ref. [9] that does not depend on
VC being an element of the Clifford group. If it is not, the
unitary matrix representing an ideal implementation of the
sequence can be quite general since C and V generate a dense
subset of the whole special unitary group. The construction of
the inverse Cy+1 would be highly challenging and defeat the
concept of performing quantum computation using a restricted
set of gates.

Alternatively, one could be content to approximate the
inverting gate using the Solovay-Kitaev theorem. However,
this turns out to be inadequate for the following reason:
The theorem states that any gate can be composed out of a
small number l of gates depending only logarithmically on
the permitted inaccuracy but exponentially on the number
of qubits [15,16]. For RB to be reliable, the error rate εy+1

associated with Cy+1 should be much smaller than the error
of the sequence. Since both sequence and inverting gate are
composed of the same gate set, this is roughly equivalent to
l � y. Satisfying this is possible only for εV and εC sufficiently
small so that y is large while the Hilbert-space dimension must
be kept small as it enters the sequence length exponentially in
the Solovay-Kitaev algorithm. In other words, satisfying l � y

implies the ability to implement an arbitrary quantum gate
to a relatively high precision, i.e., availability of a universal
quantum computer as a starting point.

To overcome the limitations of these ideas, we present a
pragmatic approach to the problem. Consider the fidelity of a
specific sequence y, written as a vector of gates:

�y = Tr

⎡
⎣ρ0Cy+1

1∏
j=y

(V �V �jCj )(ρ0)

⎤
⎦ ≡ Tr

[
ρ

y
idρ

y
act

]
, (4)

where ρ
y
id = Cy+1

−1(ρ0) = (
∏1

j=y Cj )(ρ0) is the state ideally
generated by the sequence and determined on a classical
computer, and ρ

y
act is the one actually realized by applying

the gates V and Cj (including their errors �V and �j ) in the
experiment. Equation (4) is of the form used in Refs. [3,4,10]
to estimate the overlap of two states via Monte Carlo sampling.
Employing the notation of Ref. [10], the states are rewritten
in the basis of the generalized Pauli matrices on n qubits
normalized for the canonical scalar product defined by the
(un-normalized) trace, W = 1√

d
P⊗n:

�y = Tr
[
ρ

y
idρ

y
act

] =
d2∑
k

Tr[Wkρid]Tr[Wkρact]

≡
d2∑
k

χid(k)χact(k) =
d2∑
k

χid(k)2 χact(k)

χid(k)
≡

d2∑
k

Pr(k)Xk ,

(5)

where Pr(k) = χid(k)2 and Xk = χact(k)
χid(k) .

∑d2

k Pr(k) = 1 since∑
k χid(k)2 = Tr[ρ2

id] and ρid being a pure state. Therefore
Pr(k) can be used as a sampling probability where the
expectation value of the corresponding sampling is the desired
fidelity �y.

This is the core of our approach: Instead of actually
implementing the gate that inverts the random sequence and
measuring the error on identity, we treat �y as a state fidelity
which is estimated with Monte Carlo sampling. Following
Eq. (5), this consists in choosing a total of L Pauli measurement
operators Wkl

∈ W , 1 � l � L, according to the sampling
probability Pr(k) and measuring Wkl

(and hence Xkl
) Nl times.

We summarize the IRB protocol with Monte Carlo sampling
of quantum states as follows.

(1) Perform standard IRB to estimate the average error of
the Clifford group εC as a reference point.

(2) Choose q different sequence lengths y such that the
sequence fidelities �y can be assumed to provide a reliable fit.
This means the �y shall be close neither to 1 nor to the fidelity
limit for long sequences.

(3) For each selected sequence length, choose m different
sequences y of random Clifford gates interleaved with the
gate V . They are used to estimate the average fidelity �y by
comparing the actual and ideal state [see Eq. (4)] via Monte
Carlo sampling.

(4) Determine the ideal state on a classical computer, i.e.,
apply 2y unitary matrices onto the pure initial state vector.
This scales as O(yd2) as it cannot be done efficiently, since V

is not necessarily a Clifford gate.
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(5) Choose L measurement operators Wk at random,
following the distribution Pr(k) defined in Eq. (5).

(6) For each chosen measurement operator apply the
sequence y and measure Wk . This is repeated Nl times.

(7) Determine an estimate for the sequence fidelities �y

by averaging over all Nl measurements, the Xk for all L

measurement operators Wkl
, and the m different sequences

as given by Eq. (5).
(8) Fit �y to the multiexponential decay, Eq. (3), analo-

gously to the original IRB, and derive the combined average
error as �y=1

�y=0
.

(9) Calculate the average error of the arbitrary n qubit gate V

as εV = εC×V − εC and estimate the lower and upper bounds
as max(0,(

√
εC×V − √

εC))2 and (
√

εC×V + √
εC)2 as in the

original IRB.
The parameters of the protocol are chosen as follows: A

valid fidelity estimate via RB requires sufficient experimental
data for a fit to a (multi)exponential decay; hence q different
values for y, all provided with a substantiated estimate for
�y . Because it is sufficient to fit to only a few decays, a rather
small q suffices. The amount m of different sequences for each
value of y can be upper bounded by a global constant using the
leading order in gate errors (see Refs. [9,12]), yielding m not
larger than 100. Higher-order corrections to the uncertainty in
the error per gate originating from finite m can be bounded
using the fact that �y lies in the range [0,1] and invoking
Hoeffding’s inequality [17]. We choose sequence lengths y

in a way that the error is neither too small to be measured
efficiently nor so big that the decaying terms are already close
to zero. This condition is satisfied for

εy = O(1), (6)

as can easily be seen using the simplified model of a single
decay.

In Monte Carlo sampling, there are two sources for inac-
curate fidelity assessment, namely, the sampling inaccuracy
due to (a) the incomplete subset of the measurement operators
and (b) the finite number of measurements. The inaccuracies
can be bounded by Chebyshev’s and Hoeffding’s inequality,
respectively, to be allowed to exceed α

2 with a probability of
at most δ

2 . For a given error bound, this leads to an estimate of
the total number of experiments [3,4,10].

The sampling inaccuracy (a) is bounded by Chebyshev’s
inequality, which provides an upper limit to the probability of
deviating from the mean value of a distribution, depending on
its standard deviation:

Pr

(
|Z − [Z]| � σZ√

δ

)
� δ. (7)

Here, Z ≡ 1
L

∑
l=1 Xkl

is the fidelity estimate obtained by
the random choice of measurement operators Wkl

and [Z]
its classical expectation value, i.e., �y. The variance can be
estimated as

σ 2
Z = [Z2] − [Z]2 =

L∑
l=1

∑
kl

Pr

(
Xkl

L

)2

− �2
y

� 1

L

∑
k

χact(k)2 = 1

L
Tr

[
ρ2

act

]
� 1

L
, (8)

using the fact that ρact is a convex sum of projectors. Thus

Pr

[
|Z − �y| �

√
2

Lδ

]
� δ

2
(9)

and the choice L = �8/(α2δ)	 ensures the intended inequality,
where the outer brackets denote the ceiling function. To limit
the deviation (b) due to a finite number of measurements one
relies on Hoeffding’s inequality:

Pr(|S − 〈S〉| � α/2) � 2exp

(
− α2

2
∑

i(bi − ai)2

)
. (10)

S is the sum over random variables with outcomes in the
range [ai,bi], given by the adequately normalized sum of
all

∑
l Nl single shot measurements, and 〈S〉 = Z. Since the

measurement outcomes of Pauli matrices are bimodal, they
are situated at the boundaries of the respective range [ai,bi].
Therefore, the range over the variance ratio is most suitable
for Hoeffding’s inequality. To ensure that the probability to
exceed α

2 is at most δ
2 , it suffices to demand

δ

2

!
� 2exp

(
− α2

2
∑

l 4Nld−1[LNlχid(k)]−2

)
, (11)

which, with the natural choice Nl ∝ χid(k)−2, is satisfied for

Nl =
⌈

8

dLα2χid(k)2 ln

(
4

δ

)⌉
. (12)

Compared to Refs. [3,4,10], the total inaccuracy α as well as
the probability δ of exceeding it were chosen smaller by a
factor of 2 to simplify the further treatment.

The classical average over the total number of experiments
can be estimated as follows using Eq. (12):

[Nexp] = L

d2∑
k=1

Pr(k)Nk

� L

[
1 + 8d

Lα2
ln

(
4

δ

)]

� 1 + 8

α2δ
+ 8d

α2
ln

(
4

δ

)
. (13)

Equation (13) is also valid for direct Monte Carlo sampling of
the average gate fidelity and represents an exponential speedup
in the number of qubits compared to full process tomography,
which scales as O(d4) [10]. An important aspect is the scaling
with 1

α2 . It is key to the advantageous scaling of IRB with
Monte Carlo sampling of quantum states in comparison with
direct Monte Carlo sampling of the average fidelity as shown
below.

For the resource estimate, we aim for an inaccuracy of
fidelity measurements that is one order of magnitude smaller
than the error rate ε. Average gate fidelities are not fundamental
quantities of physics but estimators on how well a quantum
algorithm composed of a set of gates performs. Therefore any
attempt at an overly precise characterization of gate errors
does not yield a valuable gain in information. In addition, the
systematic uncertainty αIRB of IRB caused by Clifford gate
errors limits the accuracy that can reasonably be achieved,
even more so for other methods not robust against SPAM
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errors. Based on Eq. (6), �y ∼ 1 − yε such that uncertainties
in its estimation affect the estimate of ε roughly with a factor
of 1

y
. Therefore relative errors in �y approximately translate to

relative errors in ε. Using the above statement and the fact that
the inaccuracy of an IRB based estimation αIRB is aimed to be
close to ε, one chooses an inaccuracy αMC(y) for the Monte
Carlo sampling of sequence fidelities �y that result in an
estimation without unnecessary additional precision compared
to αIRB. It scales linearly with εy, which is on the order of 1.
Therefore αMC(y) varies distinctly but not excessively over
the q different sequence lengths y but depends on neither the
error rate ε nor the Hilbert-space dimension d = 2n. For the
sake of simplicity, let αMC be defined as an effective average
value for αMC(y) setting an average as to what precision
each sequence fidelity has to be assessed. αMC as a system
independent constant of the protocol can safely be assumed to
not deceed 10−1.5.

The above derivation of αMC(y) ensures the required
accuracy for each of the q × m single sequence fidelities
rather than just for the resulting estimate for ε. This provides a
reasonable fit to the decay function as each data point provides
sufficient accuracy. Exploiting that in a more rigorous way may
result in an improvement of prefactors but cannot improve the
scaling since q and m are largely system independent [9,12].

The total number of experiments then adds up to

[Nexp] � qm

[
1 + 8

α2
MCδ

+ 8d

α2
MC

ln

(
4

δ

)]
, (14)

which differs by a factor of qm α2

α2
MC

compared to direct

Monte Carlo sampling of the average fidelity [10]. Translating
this factor into numbers relating to recent advances in the
implementation of quantum gates as well as the error threshold
for quantum computing highlights the advantage of our
protocol. A specific set of values taking into account recent
experimental results [18–20] corresponds to q = 20, m = 50,
and ε = 10−3 based on relatively high error rates of two
qubit gates. These values yield α = 10−4 and two orders of
magnitude of improvement in the total number of experiments
via the above factor.

Another concern regarding scalability is the use of classical
computational resources. Although more easily accessible,
classical resources are not infinite and therefore become
relevant eventually, especially for Monte Carlo sampling

where classical resources scale exponentially with a higher
exponent than the number of experiments. The sampling
of measurement operators can be done using conditional
probabilities, scaling with n2d2 for states and n2d4 for
processes and hence outperforming the naive approach of
calculating all Pr(k) [4,10]. Accounting also for the necessity to
calculate ρid for each sequence, the classical resources needed
for our protocol scale asa

Nclass = O

(
qm

α2
MC

(
d2

ε
+ n2d2

))
, (15)

compared to O( 1
α2 n

2d4) for direct Monte Carlo sampling of the
average gate fidelity. Hence, we obtain an exponential speedup
of O(d2) in classical resources in addition to the reduction of
the number of experiments.

Combining the currently best but individually restricted
methods for estimating quantum fidelities (interleaved ran-
domized benchmarking and Monte Carlo sampling), we have
extended the former to arbitrary quantum operations, outside
of the Clifford group, while reducing the enormous overheads
and avoiding the SPAM dependence associated with the latter.
The extension to non-Clifford gates is made possible by
treating the RB sequence fidelity as a state fidelity that can
be estimated with Monte Carlo sampling. This avoids the
actual accurate physical implementation of the inverting gate
in the RB sequence which, for a non-Clifford gate, would
require availability of a universal quantum computer. Our
protocol inherits from IRB robustness with respect to SPAM
errors; for current experimental settings this can completely
mask the actual error channel. As a conclusion the resulting
hybrid algorithm is a viable tool for SPAM-independent, robust
benchmarking of arbitrary quantum gates. While nonexponen-
tial scaling is still out of reach and might well be impossible,
the proposed protocol reduces the total number of experiments
compared to direct Monte Carlo sampling of the gate fidelity
due to error amplification and yields exponential savings in
the classical preprocessing resources.
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