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Fast and accurate circularization of a Rydberg atom
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Preparation of a so-called circular state in a Rydberg atom where the projection of the electron angular
momentum takes its maximum value is challenging due to the required amount of angular momentum transfer.
Currently available protocols for circular state preparation are either accurate but slow or fast but error prone.
Here we show how to use quantum optimal control theory to derive pulse shapes that realize fast and accurate
circularization of a Rydberg atom. In particular, we present a theoretical proposal for optimized radio-frequency
pulses that achieve high fidelity in the shortest possible time, given current experimental limitations on peak
amplitudes and spectral bandwidth. We also discuss the fundamental quantum speed limit for circularization of
a Rydberg atom when lifting these constraints.
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I. INTRODUCTION

Circular Rydberg levels are quantum states of the valence
electron that are characterized by a large principal quantum
number and a maximum angular momentum projection [1].
They can be prepared by optical excitation of ground-state
atoms into a low-angular-momentum Rydberg state, which
is then exposed to a dc field, lifting the degeneracy of the
Stark manifold, and to a near-resonance radio-frequency field,
providing the required angular momentum [2].

Their long lifetime makes these states an ideal tool for ap-
plications in quantum technology. For example, they provide a
key ingredient for microwave cavity quantum electrodynamics
[3], enabling the generation of nonclassical states of a cavity
mode [4]. Recently, they have attracted attention in the context
of quantum interfaces [5] and quantum-enhanced sensing and
metrology [6,7]. In more detail, an electrometer with record
sensitivity has been demonstrated using a superposition of
two circular states in adjacent Stark manifolds of a rubidium
Rydberg atom [6]. The repetition rate of the experiment is
ultimately limited by the time required for the circular-state
preparation. Sensing of magnetic, instead of electric, fields
would be enabled by creating a coherent superposition of two
circular states with opposite angular momentum projection
quantum numbers. Both the electrometer and the magnetome-
ter require the state preparation to proceed sufficiently fast to
beat unavoidable decoherence.

Similarly, using Rydberg atoms to build an interface
between optical and microwave photons [5] relies on fast
coherent transfer between low- and high-angular-momentum
states: While low-angular-momentum Rydberg states couple to
optical photons and thus have short lifetimes, circular states do
not. Circular states do however couple strongly to microwave
photons. In other words, it is circularization from low- to high-
angular-momentum states, together with its inverse process,
that provides the link to interface optical and microwave
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photons. However, such an interface will work reliably only
when the transfer proceeds both sufficiently fast and with high
accuracy.

Fast coherent transfer to the circular state has recently
been demonstrated by coupling a Rydberg atom to a radio-
frequency (rf) field with a well-defined polarization [2]. The
near-resonance rf drive implements a Rabi oscillation between
a low-angular-momentum state and the circular one, which
allows the circularization to proceed in about 200 ns. However,
the transfer rate was limited to about 80% by the anharmonicity
of the Stark manifold and perturbations due to the finite
quantum defects of the low-angular-momentum states [2].
Another possibility to perform the circularization is rapid
adiabatic passage [1,8], which relies on the slow transformation
of instantaneous eigenstates using chirped rf pulses or slow
variations of the dc field. Here fidelities close to 100% are
achievable, but the required time is much longer, namely,
several microseconds. As a result, large dynamic phases are
accumulated which are error prone due to imperfections in the
control. These errors propagate in the microwave-to-optical
interface or when generating a coherent superposition of
opposite angular momentum states. This problem of adiabatic
passage is generic; it is also encountered, for example, when
utilizing stimulated Raman adiabatic passage (STIRAP) to
realize quantum gates in Rydberg atoms: While population can
be transferred very efficiently, precise control over the phase
is extremely difficult and the famous robustness of STIRAP
is lost [9]. In the context of quantum-enhanced sensing and
metrology or quantum interfaces, adiabatic passage thus does
not provide a viable route.

Further improvement of the coherent transfer protocol of
Ref. [2] is hampered by the complexity of the dynamics that
proceeds in a comparatively large Hilbert space. Fast and
accurate preparation of a circular Rydberg state thus remains
an open challenge. Here we show how to use quantum optimal
control theory to tackle this problem.

Quantum optimal control theory is based on defining a
figure of merit, here the state preparation fidelity, and treating
it as a functional of the external controls. The latter are then
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determined using, e.g., variational calculus [10]. The control
problem is most often solved numerically, and large Hilbert
spaces do not pose a problem as long as the time evolution
of the system can be calculated with reasonable numerical
resources. Quantum optimal control theory is an ideal tool
whenever high fidelity is desired [10]. Being biased against
adiabatic solutions [11], it is, moreover, well suited to identify
protocols that require the minimum amount of time for a given
process [12]. For example, quantum optimal control theory has
been used to determine the shortest time required for transport
in a spin chain [12] and the fastest universal set of gates within
circuit QED [13].

The paper is organized as follows. Section II introduces
our model to describe the Rydberg atom, whereas quantum
optimal control theory is briefly reviewed in Sec. III. Section IV
explains how, based on a thorough understanding of the
circularization dynamics exploited in Ref. [2], a guess pulse
is constructed that, when optimized, provides the desired
fast and accurate transfer while obeying current experimental
constraints. The robustness of our control solution is analyzed
for various noise sources in Sec. V. Section VI explores how
far the quantum speed limit can be pushed when lifting typical
experimental constraints. Section VII summarizes.

II. MODEL

We consider the single valence electron of an alkali-metal
atom. Without an external field, the energy spectrum is given
by the quantum defect theory [14]. Briefly, a complete set
of quantum numbers consists of the principal, orbital angular
momentum, and projected angular momentum quantum num-
bers n, �, and m�, similarly to the hydrogen atom. Imperfect
shielding of the nuclear charge by the core electrons breaks the
degeneracy of the eigenenergies for small �, when the valence
electron is close to the nucleus. The corresponding quantum
defect is accounted for by a correction δn�j to the Rydberg
formula for the eigenenergies [15]

En�j = − 1

2(n − δn�j )2
, (1)

where atomic units (h̄ = 1) are employed throughout and j is
the total angular momentum quantum number, |� − s| � j �
� + s. Since the quantum defect does not break the spherical
symmetry, n, �, and m� are still good quantum numbers.
In our calculations, we use a perturbative expansion of δn�j

up to second order. We use the values given in Ref. [16],
corresponding to 85Rb for n � 20. The quantum defect is
neglected for states with � > 7 and we neglect spin-orbit
coupling. Because the quantum defect is j dependent, we
choose j = � + s = � + 1

2 throughout.
In the presence of a dc electric field, the spherical symmetry

is broken and � is not a good quantum number anymore.
However, the component of the angular momentum along
the direction of the dc field is conserved such that m� is
still a good quantum number. Incidentally, neglecting the
quantum defect (i.e., considering a hydrogen atom), the
projection of the Runge-Lenz vector along the direction of
the dc field is also conserved. This gives rise to the ec-
centricity quantum number μ, which, for given n and m�,
takes the values −(n − |m�| − 1), − (n − |m�| − 1) + 2, . . . ,
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FIG. 1. Schematic spectrum for m� � 0 of the n = 51 manifold
for hydrogen (solid black line) and rubidium (dashed red line) with
a moderate dc field. The zero of energy was set to the field-free
position of the manifold. The states of rubidium with |m�| � 2
are significantly affected by the quantum defect. The blue ellipse
indicates the lowest diagonal ladder whose states are connected by
σ+-polarized transitions (blue arrows).

(n − |m�| − 1) − 2,(n − |m�| − 1). Note that μ alternates be-
tween only odd and only even numbers for different values of
m�. Perturbation theory in first and second order yields the dc
Stark shifts [17]

�E(1) = 3
2μnEdc, (2a)

�E(2) = − 1
16n4

(
17n2 − 3μ2 − 9m2

� + 19
)
E2

dc, (2b)

where Edc denotes the dc field strength, which is taken to be of
the order of 1 V/cm. For such moderate dc field strengths, the
second-order Stark effect can be neglected and the eigenvalues
form ladders for fixed n and m� (see the black energy levels in
Fig. 1). The ladders with ±m� are identical and neighboring
ladders �m� = ±1 have an energy offset of half a ladder step.
The number of steps in each ladder is given by n − |m�|.

An rf field, perpendicular to the dc one, induces transitions
between neighboring ladders. Pulses with a σ+ polarization
drive transitions between states with �m� = +1 while in-
creasing the energy, whereas transitions between states with
�m� = −1 are accompanied by a decrease in energy. The
opposite rules apply for σ−-polarized pulses. The states where
the magnetic and the eccentricity quantum numbers change
by one lie on so-called diagonal ladders. In the following,
we will only consider the lowest diagonal on the right-hand
side of the manifold, with m� � 0. Its states are connected
by σ+-polarized transitions (see the blue ellipse and arrows
in Fig. 1). Due to the harmonicity within the Stark manifold,
the states on this diagonal ladder can be interpreted as the
|J,M〉 states of a large spin-J system with J = (n − 1)/2 and
M = m − J [6]. The energy levels are pairwise separated by
ωat, which is given by the first-order Stark shift [see Eq. (2a)]
and of the order of 100 MHz for Edc = 1 V/cm and n ≈ 50.
In this analogy, the circular state corresponds to the north pole
|J,M = J 〉 of the generalized Bloch sphere. The coordinates
(X,Y,Z) of the Bloch vector on the sphere are given by the
expectation values of the x, y, and z components of the angular
momentum vector �J , respectively. In these terms, applying a
σ+-polarized pulse with phase φrf = ϕ + π/2 and detuning
δ = ωat − ωrf leads to a rotation of the Bloch vector along

�
 = (−
R sin ϕ,
R cos ϕ,δ) (3)

053418-2



FAST AND ACCURATE CIRCULARIZATION OF A … PHYSICAL REVIEW A 97, 053418 (2018)

with the Rabi frequency


R = 3Erfn, (4)

where Erf is the amplitude of the rf field. In the resonant case,
δ = 0, and when starting from the circular state, the rf field
induces a rotation to the (ϑ,ϕ) direction where ϑ = 
RT . The
resulting state |ϑ,ϕ〉 is called a spin-coherent state (SCS) in
analogy to the coherent states in quantum optics [18].

When alkali-metal atoms are considered, the quantum
defects perturb the harmonicity of the Stark manifold (see the
dashed energy levels in Fig. 1). For small values of |m�|, states
can be missing from the manifold if the energy shift due to their
quantum defect is much larger than their Stark shift. For the
dc fields considered here, states are missing in vertical ladders
with |m�| � 2. This results in irregular offsets of the vertical
ladders and anharmonic diagonal ladders. This can be seen
from the blue arrows on the left-hand side in Fig. 1, which are
detuned from the transitions between the dashed energy levels.
For |m�| = 2, only a single state is missing and the harmonicity
of the lowest diagonal ladder towards higher values of m� is
almost preserved, while it is broken towards the other side.
This makes the lowest level of the |m�| = 2 ladder the ideal
starting point for circularization [16], i.e., for the transition to
the circular state with m� = n − 1 and μ = 0.

To optimize the electron’s dynamics in the circularization
process, we need to numerically compute the Hamiltonian.
Thus, we have to calculate the matrix elements of the interac-
tion Hamiltonian V = −�d · �E , where �d = q�r defines the dipole
operator and �E is either the dc or rf electric field, �Edc or �Erf(t),
respectively. To this end, the matrix elements are split into
their radial and angular parts. The latter can be expressed in
terms of the Clebsch-Gordan coefficients [19]. The radial part
is calculated numerically, using Numerov’s method [20].

To speed up the numerical calculations during the prop-
agation and optimization, the total Hilbert space has to be
reduced. For this purpose, we only take into account states
that have a large dipole matrix element with at least one of the
pivotal states on the lowest diagonal ladder. As it turns out,
it is sufficient to take the lowest and second lowest diagonal
ladders into account during the calculations. However, all
calculations were cross-checked by comparing to calculations
with a Hamiltonian defined on a larger Hilbert space that
contains all states of the n manifold.

Finally, the time-dependent Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = H (t) |ψ(t)〉 (5)

is solved numerically with the Chebyshev propagator [21],
using the QDYN library [22]. In the numerical implementation,
the |ψ(t)〉 state is expanded in the eigenbasis of the Stark states
in the presence of the dc field. The time dependence in the
Hamiltonian arises from the time dependence of the rf field
strength �Erf(t).

III. OPTIMAL CONTROL THEORY

The goal of this work is to drive the population from the
initial state |�(0)〉 towards the target circular state |�tgt〉 as fast
and as accurately as possible. To this end, we employ quantum
optimal control theory [10,23]. The success of the desired

state-to-state transfer can be quantified by the cost functional
[24]

JT = 1 − |〈�(T )|�tgt〉|2. (6)

It depends implicitly on the set of external control fields {Ek}via
the final state |�(T )〉, where k labels the different control fields.
To limit the pulse amplitude or to avoid lossy regions of Hilbert
space, one can impose additional constraints g[{Ek},{|ψj (t)〉}]
to the fields and to the states at intermediate times {|ψj (t)〉},
where j runs over the basis states [24,25],

J [{|ψj 〉},{Ek}] = JT +
∫ T

0
dt g[{Ek},{|ψj (t)〉}]. (7)

Here we seek to minimize the required field amplitude and re-
strict ourselves to one control field �Erf(t) = Ex

rf(t)�ex + Ey

rf(t)�ey ,
where the x and y components are optimized independently
from each other. Consequently, even when we start with a
σ+-polarized guess pulse, the polarization is not necessarily
conserved in the optimized field. Then the constraints in Eq. (7)
can be chosen as [24]

g[ �Erf] = λ

S(t)
[ �Erf(t) − �Eref(t)]

2, (8)

with S(t) ∈ [0,1] a shape function to smoothly switch the
field on and off and λ a weight. The reference field �Eref(t)
is usually the pulse from the previous iteration [23,24]. In
the following, we use Krotov’s method [26] in its adaption to
quantum dynamics [23,24,27,28] to carry out the optimization.
It consists in a sequential gradient-based algorithm, which
proceeds by forward propagation of the initial state and
backward propagation of the target state, followed by an update
of the field in order to match the two. The specific update
formula used here is found, e.g., in Refs. [23,24].

IV. FAST CIRCULARIZATION WITH CONSTRAINED
AMPLITUDE AND BANDWIDTH

We refer to circularization as transfer from the lowest-
lying state of the m� = 2 ladder to the circular state. This
initial state has to be prepared beforehand, starting with a
rubidium atom in the ground 5S1/2 state [2]. To this end, the
rubidium atoms are optically excited using three laser fields
in the presence of a weak dc field [6]. The target state of the
optical excitation, |51f,2〉, can be precisely addressed due to
its weak quantum defect. Afterward, the dc field is slowly
increased to its final value. This enlarges the spacing of the
states in the Stark manifold and the state |51f,2〉 becomes
adiabatically the lowest-lying state of the m� = 2 ladder. Now
the actual circularization can take place, where the circular
state is reached via an n-level Rabi oscillation.

A. The π pulse

As a first guess for the optimization, we choose an rf π -pulse
driving σ+ transitions within the lowest diagonal ladder of the
manifold. This pulse represents the present state of the art in
the experiment [2,16]. Due to the quantum defect, this pulse is
nearly resonant with transitions to the right side of the initial
state, whereas it is slightly detuned from the transition to the
left side (see Fig. 1). Because only states in the lowest diagonal
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FIG. 2. Distribution of the population over the lowest diagonal
ladder for a π pulse as described in Sec. IV A. Note the logarithmic
scale in the color bar. The expectation value E[m�] and the standard
deviation σ [m�] are indicated by the solid and dashed lines, respec-
tively. The large variance is caused by the non-negligible population
in m� = 1. The inset displays the population distribution at t = 50 ns
for m� � 30 (red line with dots). The gray line shows the population
distribution of the closest SCS |ψ (ϑ=0.62π,ϕ=0.49π )

SCS 〉.

ladder play a significant role during the circularization, we will
denote these states by |m�〉 for the sake of simplicity. The initial
state becomes |2〉 and the target circular state |50〉.

Following Ref. [16], we choose the n = 51 manifold and
Edc = 2.346 V/cm. The quasiresonant frequency of the ladder
is ω0 = 229.6 MHz, which has been calculated using the first-
order Stark splitting of hydrogen [see Eq. (2a)]. The chosen
guess pulse is a σ+-polarized rf pulse with central frequency
ωrf = 230 MHz and amplitudeErf = 18 mV/cm. The pulse has
a flat-top shape with sin2 edges lasting 10 ns each. The total
duration of the pulse tstop = 138 ns has been adjusted to match
a π pulse.

The final population in the circular state is 81% with an
expectation value of m� equal to 46. This indicates that the
population is spread over several ladder states, as can be seen
in Fig. 2. A large fraction of the missing population (6% of the
total population) can be found in the state |1〉. This effect can
be attributed to an insufficient detuning of the rf pulse from
the |2〉 → |1〉 transition. The transition frequencies ωm�,m

′
�
≡

E|m′
�〉 − E|m�〉 between the relevant states are

ω0,1 = 70.36 MHz, (9a)

ω1,2 = 182.95 MHz, (9b)

ω2,3 = 227.46 MHz. (9c)

The quantum defect barely affects the m� = 2 ladder and ω2,3

is nearly resonant with the rf pulse, while the detuning from
ω0,1 is large enough to prevent a significant population of state
|0〉. However, the rather small detuning from ω1,2 allows for
an off-resonance drive towards state |1〉. While some of this
population remains trapped in state |1〉, another part is reflected
from the lower bound of the ladder and follows the main packet
towards the circular state with a small delay. This can be seen
from the light gray streak slightly below the main red path and
from the strong deviation of the expectation value of m� from
the center of the population distribution in Fig. 2.

Moreover, the inset in Fig. 2 displays the population
distribution at the intermediate time t = 50 ns together with
the closest SCS |ψ (ϑ=0.62π,ϕ=0.49π)

SCS 〉. The latter is the SCS with

coordinates that best match the expectation values of the three
spatial components of the angular momentum vector for the
system state |ψ(t = 50 ns)〉 (see Sec. II). Apparently, the upper
peak of |ψ(t = 50 ns)〉 is more narrow than a SCS and the
residual population in the low-m� states affects the position
of |ψ (ϑ,ϕ)

SCS 〉 on the m� axis significantly. Thus, the overlap
of |ψ (ϑ=0.62π,ϕ=0.49π)

SCS 〉 and |ψ(t = 50 ns)〉 is only 65%. As
explained in Sec. II, a SCS can be rotated into the target circular
state in a very natural way. However, due to the deviation from
a perfect SCS, part of the population at the final time is spread
over several states neighboring the target.

To summarize our observations from Fig. 2, the fidelity
obtained with a π pulse is limited by (i) loss to |1〉, (ii) delay due
to reflection from the lower end of the ladder, and (iii) an imper-
fectly shaped SCS. These effects together result in an infidelity
of about 19% at the final time. One could now directly use the π

pulse as a guess field to start the optimization, which provides
an optimized pulse leading to a fidelity of 99%. However, such
a brute force approach comes at the expense of rather complex
optimized fields with an undesirably large spectral bandwidth
and a high field strength. In view of the experimental feasibility
of the optimized pulse, it is much more advantageous to first
exploit the available physical insight and construct an improved
guess pulse before starting the optimization.

B. Two-step amplitude guess pulse

The observations above suggest the splitting of the circular-
ization into the preparation of a SCS and a subsequent rotation
of the SCS into the target state. Before constructing a pulse
that implements such a two-step circularization, let us first
estimate the maximal speedup of the circularization that can
be expected.

As with any dynamics on the Bloch sphere, the fastest
rotation is obtained when the maximum allowed field am-
plitude is used. We choose Erf = 45 mV/cm, which is close
to the maximal experimentally feasible value 
R

2π
= 9 MHz

or Erf 
 46 mV/cm [see Eq. (4)]. Numerically, we find the
optimal duration of the pulse to be 61.2 ns (data not shown),
which is slightly faster than the analytical prediction for a π

pulse, which is 66.9 ns. The difference is explained by the fact
that the initial state |2〉 does not coincide with the south pole
of the Bloch sphere. Instead, it corresponds to a ring on the
Bloch sphere around the Z axis with Z ≈ −0.9 (the radius of
the sphere being normalized to 1).

While this amplified π pulse is more than twice as fast as the
one in the preceding section, its fidelity is decreased to 63%.
Obviously, for larger field strengths, the nonresonant run-off of
population becomes more significant. In addition to the 61.2 ns
for the mere rotation of a SCS, the accurate preparation of
the SCS itself needs some time. Therefore, the approach to
obtain high fidelity with the shortest possible duration is to
increase the pulse duration gradually until the desired fidelity
of JT = 10−2 can be reached under given constraints. Note that
higher fidelities could easily be realized in the calculations.
However, this will not be meaningful in view of application
in an experiment where detector efficiency, dc electric field
inhomogeneities, electric field noise, and other experimental
imperfections [6] intrinsically limit the measurable fidelity.
The lengthening of the pulse is motivated by the necessity to
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FIG. 3. Shown on top is the guess pulse (gray shape) and opti-
mized pulse [red (light gray) and blue (dark gray) lines corresponding
to the x and y components of the pulse, respectively]. The dashed grid
lines depict the step size of the coarse graining of the AWG (0.83 ns).
The bottom is the same as Fig. 2 but for the optimized pulse leading
to a fidelity of 99%. The gray line shows the population distribution
of the closest SCS |ψ (ϑ=0.69π,ϕ=0.54π )

SCS 〉.

reduce the amplitude in the beginning of the circularization,
in order to avoid population running off to the state |1〉 and
allowing sufficient time for the preparation of the SCS.

It turns out that the shortest possible pulse [see the top
panel of Fig. 3 (gray shape)] has a duration of 65 ns. Its initial
amplitude has been decreased to 30 mV/cm. After 10 ns the
amplitude is increased to the maximum value, 45 mV/cm. This
increase takes another 10 ns and uses a sin2 shape. The edges
of the pulse are unchanged. The new guess pulse, referred to
as two-step amplitude pulse, leads to a fidelity of 74%, which
is already a significant gain compared to the simple 61.2-ns π

pulse. Notably, the final population in state |1〉 under the new
guess pulse is decreased to only 6×10−6.

C. Optimization results

Next we seek to increase the fidelity of the two-step
amplitude pulse by employing Krotov’s method (see Sec. III).
The optimization is performed until the functional crosses
the threshold JT = 10−2, which corresponds to a fidelity
of 99%. The considered shape function S(t) [see Eq. (8)]
is the previously described sin2 function. To ensure experimen-
tal feasibility, the absolute value of the amplitude is constrained
to values smaller than 46 mV/cm. Spectral components driv-
ing either σ−-polarized or σ+-polarized transitions above
460 MHz are suppressed. This is most simply achieved by
cutting the amplitude and spectrum of the pulse to the allowed
range after each iteration. While such a procedure typically
results in loss of monotonic convergence of the optimization
[29–31], in our case JT does converge monotonically due to
the high quality of the guess pulse. All in all, 1390 iterations
were needed to cross the threshold. One iteration requires
a computation time of ∼50 s on a standard workstation for
the considered part of the manifold (the two lowest diagonal
ladders with m� � 0).

Comparison of the guess and optimized pulse (see the top
panel of Fig. 3) reveals that the pulse is mainly changed in

FIG. 4. Shown on top is the complex shape function of the
optimized pulse. The pulse is separated into its real [red (light
gray)] and imaginary [blue (dark gray)] parts while the envelope is
represented by the gray shade in the background. The dashed grid
lines in the background depict the step size of the coarse graining
(0.83 ns). The bottom shows the temporal evolution of the Bloch
vector coordinates X (staying close to 0), Y (going from 0 over 1
to 0), and Z (going from −1 to 1) in a frame rotating with ωrf and
of the overlap of the propagated state with the closest SCS |ψ (ϑ,ϕ)

SCS 〉
(going from 0 towards 1 in the first 20 ns). Shown are the dynamics
driven by the guess pulse (dashed lines) and optimized pulse (solid
lines). The vertical lines show the time scale of the detuned |2〉 → |1〉
transition.

the low-amplitude step while it is left nearly unaltered in the
high-amplitude step except for a shortening of the edge time.
The shorter edge times and the stronger time dependence in the
beginning of the pulse lead to a broadening of the spectrum,
but no conspicuous resonances appear in the spectrum other
than the near-resonance transitions at 230 MHz.

Inspection of the population dynamics under the optimized
pulse (see the bottom panel of Fig. 3) reveals that the population
is focused onto a few states with a small standard deviation and
without any significant population remaining in the low-m�

states. Moreover, it confirms the already predicted evolution:
In the beginning, a SCS is generated, which is then driven
towards the target state easily. As can be seen in the inset, the
state at t = 25 ns is very close to a SCS. Indeed, its overlap
with the closest SCS |ψ (ϑ=0.69π,ϕ=0.54π)

SCS 〉 indicated by the gray
line is 98.9%.

A deeper understanding of the dynamics is most easily
gained when the process is considered in a frame rotating with
ωrf. Accordingly, we demodulate the optimized pulse with the
carrier frequency ωrf. The result is a complex envelope Srf(t)
such that

�Erf(t) = Re[Srf(t)][cos(ωrft)�ex + sin(ωrft)�ey]

+ Im[Srf(t)][− sin(ωrft)�ex + cos(ωrft)�ey] (10)

(see also the top panel of Fig. 4). The real part of the
envelope can be interpreted as the shape of an rf pulse with
phase φrf = 0 (called the first quadrature), which induces a
rotation around the x axis of the generalized Bloch sphere [see
Eq. (3)]. Conversely, the imaginary part corresponds to the
shape of a pulse that is phase shifted by π/2 (called the second
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quadrature), which induces a rotation around the y axis. The
first quadrature is the dominating one as can be seen from the
red (light gray) curve coinciding with the envelope of the pulse
for most of the time.

The role of the two quadratures becomes evident when
considering the evolution of the state on the Bloch sphere (see
the bottom panel of Fig. 4). It is constructive to consider the
evolution driven by the guess pulse first (dashed lines). The
guess pulse consists of the first quadrature only, which induces
a rotation around the x axis. Since the initial state corresponds
to a ring around the z axis on the Bloch sphere, the population
with positive Y components is rotated to higher Z values
whereas the population with negative Y components is rotated
towards |1〉. This off-resonance transition needs 1/2δ1,2 =
10.6 ns, which is additionally accompanied by a rotation
around the z axis [cf. z component of �
 in Eq. (3)]. Because the
rotation only affects part of the state, the cylindrical symmetry
of the initial state is broken. This can be seen from the dip in
the X component at 10.6 ns. The accumulated population
in |1〉 then oscillates back towards |2〉 at 1/δ1,2 = 21.2 ns.
Afterward, the shape of the state does not change anymore
(as can be seen from the constant overlap with a SCS) and the
X component is increasing only a little due to the second-order
Stark shift. While, at the final time, the values of X, Y , and Z

are close to the target, the inaccurate shape of the state due to
the dynamics in the first approximately 20 ns is the main cause
of the insufficient final fidelity.

Thus, the main task of the optimized pulse is to improve
the shape of the state. It is evident from Fig. 4 that the first
21 ns of the pulse are designated to generate the required
high-fidelity SCS. When the initial state splits in the very
beginning, as explained above, both quadratures contribute to a
clear separation of the two parts. This can be seen in Fig. 3 from
the partitioning of the population into two distinct branches
around 10 ns. In particular, the part with m� > 2 reaches a
SCS-like shape much earlier, at 8 ns, than for the guess pulse
(cf. the peak in the overlap of the state with a SCS in Fig. 4). The
X value goes to zero here because the SCS-like state is located
exactly opposite of the remaining population in |1〉. When the
population that has been driven to |1〉 joins the SCS-like state,
the overlap decreases a bit before reaching its maximal value
of 99% after 21.2 ns, in agreement with the time scale of
the off-resonance oscillation to |1〉. Note that the remaining
inaccuracy is retained until the end and is the main cause of
the final error of 1%.

The polar angle of the closest SCS |ψ (ϑ,ϕ)
SCS 〉 amounts to ϑ =

0.75π . The time that is required to rotate this state towards the
north pole with the maximally allowed field strength is given
by T = ϑ/
R = 42 ns. This rotation is visible in Fig. 4 by
the smoothly increasing Z component and the flat shape of
the first quadrature. At the same time, the second quadrature
helps to adjust the X component of the state to compensate for
the drift due to the second-order Stark effect. The peak of the
second quadrature at 62.5 ns induces a final adjustment of the
X component and kicks the SCS to the circular state. Finally,
by adding a small overhead due to the edges of the pulse, the
calculated time scales are in full agreement with the duration
of the numerically determined time-optimal pulse.

To corroborate our finding on time optimality, we have
tested several values for initial and final pulse amplitudes,

duration, and start of the amplitude ramp. It turns out that the
crucial parameter for the success of the optimization under
the given constraints is the pulse duration. This confirms the
discussion of the preceding paragraph. In fact, several different
guess pulses with the same duration lead to almost the same
optimized pulse. Pulses which are longer than 65 ns can also
be optimized to the desired fidelity within a similar number
of iterations (of the order of 2000). On the other hand, no
shorter pulse (such as the 61.2-ns pulse described above) can
be optimized to the desired fidelity under the given constraints
within at least 104 iterations.

V. ROBUSTNESS AGAINST NOISE

To estimate the performance of our theoretical predictions
under experimental conditions, we investigate the stability
of the optimized two-step amplitude pulse with respect to
different sources of noise.

A. Coarse graining

In an experiment, the optimized pulse is realized by an
arbitrary waveform generator (AWG), which samples the pulse
at discrete points in time. The AWG is limited to a frequency
bandwidth of 480 MHz for two channels. This constraint is
fulfilled by the optimized pulse due to the bandwidth restriction
during the optimization. In addition, the maximum sampling
rate of 1.2 GS/s leads to a temporal step size of 0.83 ns. This
limitation might have a severe impact on the fidelity.

To examine the influence of the limited resolution, we
perform a coarse graining of the optimized pulse. In between
two time steps, the pulse shape is interpolated linearly. This is
a reasonable approximation of the real behavior of the pulse
between two time steps. A piecewise-constant approach has
also been tested and leads to almost the same results.

The step size of the coarse graining is indicated by the
vertical dashed lines in the background of Fig. 3 (top). In
particular, at the maxima and minima of the pulse, there will
be a significant difference between the original and the coarse-
grained pulse. As a result, the increase in the m� expectation
value is too slow, which results in a final fidelity of only 22%,
while the most populated state is |49〉 (data not shown). Never-
theless, qualitatively the evolution is similar to the original one
and it may be possible to attenuate the effect of coarse graining
by increasing the amplitude in a well-adjusted way.

A more elegant way to solve this problem consists in
shaping directly the two quadratures. This corresponds to an
optimization in the rotating frame and is shown in Fig. 4 (top).
It essentially circumvents the issue of limited time resolution
altogether since the time dependence of the complex shape
function Srf(t) is sufficiently slow to be insensitive to the
coarse graining. Thus, the fidelity decreases by only 0.06%
compared to the original pulse without coarse graining. This is
a striking improvement compared to the brute force approach
and highlights once more the importance of choosing the
proper frame of reference.

B. Fluctuating field strengths

The second most important source of noise is fluctuations
in the dc and rf fields. In theory, the dc field is assumed to be
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FIG. 5. Fidelity of the optimized pulse as a function of noise
strength fnoise. Shown are the average values from 1000 repetitions
with randomly generated noise. The error bars indicate the standard
deviation σ . The line serves as a guide to the eye.

perfectly static, which is not the case in a real experiment. The
dc field fluctuations lead to an uncertainty in the position of
the energy levels in the Stark manifold. To check the stability
of the pulse with respect to this noise, we have calculated
the Hamiltonian for dc field strengths of Edc ± �Edc/2 with
�Edc = 50 and 150 μV/cm, corresponding to the best and
worst case scenarios in a real experiment, respectively. Then
we propagated the initial state under the action of each of
these Hamiltonians and of the optimized two-step amplitude
pulse. It turns out that, in both cases, the loss of fidelity
with respect to the original dc field strength is of the order
of 10−4 only. The robustness of our optimized pulse can be
understood as follows. An offset in the dc field leads to the
accumulation of an erroneous phase. This phase is proportional
to the dc field offset and the pulse duration. The high stability
of the optimized pulse is thus a direct result of its short
duration.

Next we consider amplitude noise in the rf pulse. To
investigate its influence, we simulate fluctuations by adding a
white-noise stochastic contribution. The noisy amplitude Ẽrf(t)
is realized as

Ẽrf(t) = (1 + Rfnoise)Erf(t), (11)

where R ∈ [−1,1] is a random number and fnoise ∈ [0,1] is the
noise strength. Note that the range of fnoise implies amplitude
fluctuations of at most up to a factor of 2 with respect to the
original pulse. To avoid discontinuities, the random number R

is fixed for a half-period, i.e., between two zeros of the pulse. In
other words, we assume the fluctuations to occur on a time scale
slower than half a period of the rf pulse (∼2 ns). Moreover, the
x and y components are modified independently such that we
also account for polarization noise in the simulation.

The impact of the rf amplitude noise on the fidelity of the
target state is evaluated by repeating the propagation 1000
times, each with a different realization of Eq. (11), for noise
strengths between 0.5% and 20%. As can be seen from Fig. 5,
the fidelity decreases for higher noise strengths and the spread
becomes larger. For example, a fidelity of 95.9% is expected on
average for a noise level of 10%. This roughly corresponds to
the present estimate of amplitude fluctuations in the experiment
[2,16], a value that could be reduced with simple experimental
improvements. Even at a level of 10% amplitude noise, the
optimized pulse leads to significantly faster and more accurate
circularization than achieved with, e.g., a π pulse [2,16].

FIG. 6. Number of required iterations Niter to reach a fidelity of
JT = 10−2 together with the required maximal field strength Emax

rf =
maxt |Erf(t)| and bandwidth �ωrf of the corresponding optimized
pulse for different pulse lengths tstop. The two field strengths where
the adjacent manifolds start to mix with the central n manifold and
where the atom is ionized are marked by horizontal dashed lines. The
gray background indicates the region where the model ceases to be
predictive. The red lines serve as a guide to the eye.

VI. QUANTUM SPEED LIMIT

Quantum mechanics itself sets a natural lower bound on
the minimal time that is needed to realize a certain dynamics
[32]. In the following, we will investigate the quantum speed
limit for the circularization beyond (present) experimental
constraints using optimal control theory. The speed limit has
been investigated for multipartite systems such as entangling
gates between atomic qubits [33] or transport in a spin chain
[12]. In these cases, it is the interaction strength between the
subsystems that sets the speed limit. Here, such a limit is absent;
instead, the speed limit for unary system dynamics in a realistic
model is considered.

To speed up the circularization, we gradually increase the
field strength of the guess pulse. In this context, it is important
to keep in mind that our model consists of only the two lowest
diagonal ladders. Eventually, this approximation will cease
to be valid. We first discuss the quantum speed limit for our
model and then examine the implications for the actual atom.
No constraints on the optimized pulse are included except for
Eq. (8). The optimization is performed until the functional
crosses the threshold JT = 10−2. For each value of tstop, we
have tested several guess pulses with different edge times
and field strengths. In Fig. 6, we have plotted the number of
iterations required to reach the desired fidelity for the best
guess, i.e., the pulse that needs the lowest number of iterations.
It is evident from the figure that the number of iterations
increases as the pulse becomes shorter. The fluctuations in
the data points can be credited to the high sensitivity of the
optimization to the guess pulse. In principle, Fig. 6 suggests
that it is possible to circularize the atom within less than
1 ns. However, when the field strength of the optimized pulse
increases dramatically, our model will cease to be predictive
for the actual atomic system since we account for a small part
of the Hilbert space only.
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The first approximation is to neglect higher diagonal ladders
in the n = 51 manifold. Because the transition frequencies be-
tween the pivotal states and the omitted states are larger and the
dipole matrix elements smaller than between the states in the
considered part of the Hamiltonian, a reoptimization to reach
the desired fidelity is possible in principle. The optimized fields
will certainly look different, but the possibility of reaching the
target state will not be affected. Nevertheless, the numerical
calculations become rather demanding. One iteration of a pulse
with tstop = 7 ns needs a computation time of about 6 s in our
model (involving 101 states). In contrast, when all states of the
central n manifold are considered (∼2500 states), one iteration
of the optimization requires approximately 10 min. The total
computation time is given by that estimate times the number
of iterations, of the order of 104 for tstop = 7 ns, and increasing
for decreasing tstop.

The next approximation is omission of adjacent Stark
manifolds. As the driving rf field becomes stronger, the states
in the Stark manifold get increasingly dressed and the energy
spacing increases. Once the dressing is strong enough to
induce a crossing of adjacent manifolds, the instantaneous
eigenenergies of our model will significantly differ from the
ones obtained when considering the full atomic system. As a
result, our model does not describe the actual atom anymore. In
the following, we will derive an approximation for the critical
rf field strength where this effect becomes non-negligible.

For reasons of simplicity we will neglect the quantum defect
here. Because the position of the center of a manifold is given
by the Rydberg formula [see Eq. (1)] the central n manifold will
cross the upper n + 1 manifold first. Moreover, the eccentricity
quantum number takes its maximal possible value of |μ| =
n − 1 at the top and the bottom of the m� = 0 ladder, which
results in the largest possible first-order Stark splitting [see
Eq. (2) and Fig. 1]. In addition, the energy levels get dressed by
the rf field. The eigenstates of a perfect spin-J system coupled
to a field mode are separated in energy by the Rabi frequency

 = | �
| [see Eq. (3)] [16]. When each pair of states acquires an
additional energy splitting of 
, the edges of the diagonal spin
ladder are shifted by 
(n − 1)/2 with respect to the middle
of the ladder. Adding up all contributions and considering a
resonant rf field, the position of states at the top (+) or bottom
(−) of the m� = 0 ladder is given by

E±
n = − 1

2n2
± 3

2
(n − 1)nEdc ± 3nErf

n − 1

2
. (12)

Solving E+
51 = E−

52 for Erf with Edc = 2.346 V/cm results in a
critical field strength of 2.5 V/cm for the driving field. This
value is in agreement with the numerical calculation of the
instantaneous eigenenergies of the n = 50–52 manifolds for
different rf field strengths when taking the quantum defect into
account.

As a result, our model ceases to be predictive for rf field
strengths above this value, which, according to Fig. 6, concerns
all pulses that are shorter than approximately 7 ns. For these rf
fields strengths, our model no longer provides an appropriate
description of the Rydberg atom and it is not possible to draw
any definite conclusion about the possibility to circularize
the atom with sufficient confidence. While it may still be
possible to reach the target circular state under these very
strong and broad pulses, the numerical effort to check the

hypothesis poses a serious obstacle. When considering the
extended Hilbert space containing all states with n = 51 ± 1
and m� � 0 (∼4000 states), the computation time of one
iteration increases to one hour. Thus, the optimization becomes
numerically infeasible because more than 104 iterations are
necessary to provide the desired fidelity.

Eventually, when the field strength of the rf field is increased
even further, a hard physical bound is reached when the fields
are strong enough to ionize the atom. For states on the lowest
diagonal ladder, the order of magnitude of the necessary field
strength is given by the static field ionization threshold, E =
1/9n4 [15], which is 83 V/cm for n = 51.

In summary, we find the speed limit to be determined by the
internal structure of the atom. In other words, the speed limit is
defined in terms of the spectrum of the field-free Hamiltonian
[32], but for real physical systems this Hamiltonian is typically
an idealization. For very strong external control fields, this
idealization ceases to be valid. It is thus important to keep in
mind the assumptions on which the Hamiltonian is based when
determining the quantum speed limit.

VII. CONCLUSION

We have tackled the question of how to prepare a Rydberg
atom both quickly and accurately in a circular state. The
necessary angular momentum transfer is realized by a suitably
shaped rf pulse. Using quantum optimal control theory, we
have shown that the circularization can be sped up by a
factor of 3 to take merely 65 ns. Even more importantly, the
fidelity can be boosted from about 80% to 99%. The pulse
has been constructed so as to be compatible with the current
experimental setup [2] in terms of maximal field amplitude and
spectral bandwidth. We have found that the time needed for
the circularization is mainly determined by the experimentally
available rf field strength.

We have tested our optimized rf pulses for robustness
against various sources of noise. Overall, we find the protocol
to be surprisingly stable. This is due to the short duration and
small bandwidth of the pulse. The most detrimental source
of noise is amplitude fluctuations of the rf field. Fluctuations
above about 5% are found to compromise the circularization
fidelity. When considering improvements of the experimental
setup, stabilization of the rf field amplitude should thus be a
priority.

Key to the successful derivation of an experimentally
feasible shaped rf pulse was the careful construction of a
preoptimized guess field, exploiting previous insight into the
circularization dynamics. In fact, in quantum optimal control
theory, many solutions to a given control problem can typically
be found. Which of these solutions is obtained in numerical
optimization is then determined by the guess with which the
iterative algorithm is initialized. Starting with a π pulse that
approximately rotates the system state onto the north pole of
the J = (n − 1)/2 spin Bloch sphere [2] results in optimized
pulses that are unnecessarily strong and spectrally broad.

In general, preoptimization of the guess pulse is a worth-
while endeavor to guide the optimization towards experimen-
tally feasible pulses. It can be carried out in a semiautomatic
way by parametrizing the field and determining the best pa-
rameters before handing over to a gradient-based search [34].
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In the case of circularization, a numerical preoptimization of
the guess pulse turned out not to be necessary. Analysis of
the solution obtained by optimizing a π pulse revealed that
the dynamics can be split into the preparation of a SCS and
a rotation, with the proper angle, of this SCS towards the
north pole. While the rotation requires the largest possible
field strength to proceed at maximum speed, the preparation
of the SCS is hampered by a large field strength. The run-off
of population to other levels during the preparation of the SCS
explains why a simple π pulse fails. An intuitive solution is thus
to decrease the amplitude during the SCS preparation, while
ramping it up for the rotation of the SCS. With such a guess
field, the optimization has to introduce only small adjustments
that do not come with an increase of bandwidth or amplitude.

Splitting the transfer to the circular state into two steps
furthermore allows us to identify what limits the minimum time
required for the circularization. The time scale for preparing
a SCS is given by the detuning of the rf pulse from undesired
transitions to states with lower-angular-momentum projection,
whereas the time to rotate the SCS to the north pole is
determined solely by the Rabi frequency. A further speedup
would thus be possible by using (a) a larger dc field strength,
which increases the detuning, and (b) a larger rf field strength,
which allows for faster rotation.

For the given dc field strength, increasing the rf field strength
could, in principle, bring the circularization time down to
about 10 ns. However, this would result in the consequence
of not only large rf amplitudes but also a much broader
spectral bandwidth. Therefore, given the present experimental
technology, circularization times much below 50 ns do not
seem realistic.

Of course, it is still interesting to investigate, from a
theoretical point of view, the fundamental limit to the minimum
time for circularizing a Rydberg atom. Previously, the quantum
speed limit was discussed for multipartite systems where the
interaction strength is the key factor [12,33], whereas here we
have considered dynamics in a unary system. We have found
that, using quantum optimal control theory, the duration of
the circularization can be decreased by yet another order of
magnitude while maintaining sufficient accuracy. However, the
control fields become so strong that eventually the theoretical
model ceases to be reliable.

Since any theoretical description of a physical system is
always based on idealization and simplifying assumptions,
this finding is not restricted to Rydberg atoms. In fact, in a
unary system, it is the spectrum of the field-free Hamiltonian
alone that determines the speed limit [32]. One could thus be
led to think that it is possible to push the minimum duration
for a certain dynamics to arbitrarily small values by using
control fields that are strong enough to distort the spectrum.
However, such strong fields will eventually always result in
loss processes and thus introduce an effective speed limit. It
would be interesting to rigorously account for this phenomenon
in the fundamental theory of the quantum speed limit.
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