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Defining the p-wave scattering volume in the presence of dipolar interactions
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The definition of the scattering volume for p-wave collisions needs to be generalized in the presence of dipolar
interactions for which the potential decreases with the interparticle separation as 1/R3. Here, we propose a way
to define the scattering volume characterizing the short-range interactions in odd-parity waves, by analyzing
the p-wave component of the two-body threshold wave function. Our approach uses an asymptotic model and
introduces explicitly the anisotropic dipole-dipole interaction, which governs the ultracold collision dynamics
at long range. The short-range interactions, which are essential to describe threshold resonances, are taken into
account by a single parameter related to the nodal structure of the wave functions at short distances.

DOI: 10.1103/PhysRevA.99.032709

I. INTRODUCTION

Collisions in ultracold atomic or molecular gases are uni-
versally described by the s-wave scattering length in case
of bosons and unpolarized fermions or by the p-wave scat-
tering volume in case of spin-polarized fermions. The value
determines the strength of the interaction, which is repulsive
(attractive) if the scattering length is positive (negative) [1].
Experimental control of the scattering properties, both scat-
tering length and scattering volume, is a long-standing goal in
ultracold gases [2–7].

Given the prominence of the elastic scattering parameters,
it is somewhat unsatisfactory that all scattering parameters,
even the scattering length, cannot be defined for an isotropic
potential decreasing asymptotically as 1/R3 [8–11]. In de-
tail, the tangent of the scattering phase shift at low energy
cannot be expanded in powers of the wave number k of the
incident wave. Simultaneously, the asymptotic threshold wave
function includes an ln(R) contribution in addition to the
(R − a) term that defines the scattering length a. In contrast,
for an anisotropic interaction decreasing as 1/R3, the s-wave
scattering length is unambiguously defined. In this case, the
effective s-wave potential decreases more rapidly, as 1/R4,
which results in a “quasi-long-range” character of the dipole-
dipole interaction [12,13]. In a previous study of non-resonant
light control [14], we have verified this assertion by analyzing
a particular threshold solution, the one that asymptotically
decreases in all � > 0 channels while linearly increasing in
the � = 0 channel. Here, we examine the definition of a p-
wave scattering volume for an anisotropic 1/R3 interaction,
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which is both an open problem and a prerequisite for studying
nonresonant light control of p-wave scattering as discussed in
the following paper, hereafter referred to as Paper II [15].

The paper is organized as follows. In Sec. II, we extend the
standard definition of the scattering volume for two interacting
ultracold atoms in the presence of nonresonant light. This
field-dressed scattering volume is numerically determined in
Sec. III, and we show that it presents a divergence each time a
bound state appears at threshold. We conclude in Sec. IV.

II. SCATTERING VOLUME IN THE PRESENCE
OF R−3 INTERACTION

In Sec. II A, we present the asymptotic Hamiltonian for
a pair of particles in a nonresonant light and the reduced
units suitable for describing the van der Waals interaction. For
such a dipolar-like Hamiltonian, the scattering volume cannot
be defined in the standard way (see Sec. II B). In Sec. II C,
we disentangle the problem by considering a single-channel
approximation in which the dominating channel coupling is
accounted for through an adiabatic analytical p-wave poten-
tial. We then use an extension of the single-channel Levy-
Keller approach [16] to determine analytically the scattering
p-wave function that allows us to define the scattering volume.
This function is written as a combination of two analytical
reference functions, and the ratio between their amplitudes
M(R) will turn out to be the key quantity for defining the
scattering volume. Above the dissociation limit, when the
spherical Bessel functions are used as reference functions,
M(R) is identical to the tangent of the local p-wave phase
of scattering theory (see Sec. II C). In Sec. II D, we consider
the zero energy limit of M(R) and recall that for the poten-
tial decreasing asymptotically as 1/R3, M(R) takes for very
large R a form including, aside from the standard term ∝k3,
a term linear in k, which prevents the use of the standard
definition of the scattering volume. However, information on
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the short-range interaction is captured by M(R) by restricting
the analysis to the R range where kR is not too large. We
show, in Sec. II E, that this restriction is equivalent to studying
the asymptotic behavior of the threshold wave function using
a pair of functions with asymptotic form ∼R2 and ∼1/R,
a method frequently used in scattering theory. Then, the
analytical expression of M(R) contains, aside from divergent
asymptotic terms involving the multipolar parameters of the
asymptotic potential, a constant term M0 depending on the
short-range interactions only. This term M0 is identified as a
scattering volume, and provides an extension of the standard
definition.

A. Asymptotic Hamiltonian and reduced units

Within the Born-Oppenheimer approximation, the asymp-
totic Hamiltonian describing the relative nuclear motion of
two atoms in a nonresonant light polarized along the labo-
ratory Z axis reads as [14]

H = TR + h̄2L2

2μR2
+ Vg(R) + D3 cos2 θ − 1

R3
, (1)

where R is the interparticle distance, μ the reduced mass, TR

the radial kinetic energy, and L the orbital angular momentum
operator. The potential describing the short-range interaction
Vg(R) is limited here to the van der Waals potential Vg(R) =
−C6/R6, with C6 the van der Waals coefficient. The last term
in the Hamiltonian Eq. (1) stands for the anisotropic interac-
tion due to the coupling of the linearly polarized nonresonant
light with intensity I and the polarizability anisotropy of the
particles with strength

D = 4π I

c
α1α2. (2)

Here, α1,2 are the static polarizabilities of the atoms and θ is
the Euler angle between �R and the Z axis. This is a dipole-
dipole interaction, which also describes dipolar scattering of
species with aligned permanent dipoles along the laboratory
Z axis, either electric dipoles, such as found in polar het-
eronuclear molecules, or large magnetic dipole moments of
ground-state open-shell atoms; cf. Paper II [15].

The Hamiltonian Eq. (1) commutes with parity and with
the projection of the orbital angular momentum on the labora-
tory Z axis LZ . As a result, the magnetic quantum number m
and the parity are conserved.

A universal form of the Hamiltonian Eq. (1) is obtained by
introducing reduced units. Here, we use the “van der Waals
reduced units” (denoted as r.u.) with the reduced length x,
energy E , and nonresonant field intensity I, respectively, de-
fined by R = σx, E − E0 = ε E (E0 denotes the lowering of
the dissociation limit), and I = β I [17,18]. The characteristic
length σ , energy ε, and field intensity β are

σ =
(

2μC6

h̄2

)1/4

, (3a)

ε = h̄2

2μσ 2
, (3b)

β = c

12π

h̄3/2C1/4
6

α1α2(2μ)3/4
= cσ 3ε

12πα1α2
. (3c)

These unit conversion factors contain all the information
specific to the particle species (μ, C6, α1, and α2). For
a dipole-dipole interaction characterized by the strength D
[Eq. (2)], the reduced intensity is I = 3D/εσ 3.

With these reduced units, the asymptotic Schrödinger
equation associated to Hamiltonian Eq. (1) takes the form[
− d2

dx2
+ L2

x2
− 1

x6
− I cos2 θ − 1/3

x3
− E

]
f (x, θ, φ) = 0,

(4)

where f (x, θ, φ) is the asymptotic wave function, x the in-
terparticle separation, and (θ, φ) the Euler angles defining
the orientation of the intermolecular axis in the laboratory
fixed frame. For this anisotropic interaction, the total wave
function f (x, θ, φ) can be expanded in a conventional way
into spherical harmonics (with a given parity and magnetic
quantum number m owing to the symmetries of the Hamilto-
nian, and for practical reasons, a limited number of � values),
each multiplied by a radial function u�(x).

The field intensity I (in r.u.) is a tunable parameter allow-
ing for the control of the collision. This has been discussed for
even-parity � states and m = 0, providing a means to tune the
s-wave scattering length [14]. Here, we consider collisions in
odd-parity states with m = 0 or ±1.

B. Statement of the problem

In standard scattering theory, a first method to determine
the scattering parameter in the channel � consists in analyz-
ing the asymptotic form of the radial component u�(x) of
the multichannel solution of Eq. (4) at a vanishingly small
positive energy. This function is written as a superposition of
the regular kx j�(kx) and irregular kx η�(kx) spherical Bessel
functions, where the latter is multiplied by − tan δ�(k, x), with
δ�(k, x) being the local phase converging at large distance, far
from the potential barrier for � � 1, to the asymptotic phase
shift δ�(k), which is proportional to k2�+1. The scattering
parameter (a�)2�+1, which has the dimension of a length to
the power of (2� + 1) and characterizes elastic collisions, is
defined by the following low-energy limit:

lim
k→0

− tan δ�(k)

k2�+1
= (a�)2�+1

(2� + 1)!!(2� − 1)!!
. (5)

Notice that, with a potential decreasing as 1/xq, the limit
in Eq. (5) does not exist for partial waves satisfying � �
(q − 3)/2 [8,19] because the tangent of the asymptotic phase
shift increases as kq−2 independently of �. Thus, the scattering
volume for � = 1, i.e., V = (a�=1)3/3 (a factor of 3 is included
to simplify further notation) is defined only for a potential
decreasing asymptotically at least as 1/x6 [9]. As a conse-
quence, the standard scattering volume is not defined for the
1/x3 dipole interaction appearing in Eq. (4).

A second standard method to calculate the scattering pa-
rameters (a�)2�+1 writes the asymptotic form of the zero en-
ergy wave function as a combination of the field-free regular
x�+1 and irregular 1/x� spherical waves, the latter with a
coefficient proportional to −(a�)2�+1 introduced in Eq. (5).

For the slowly decreasing 1/x3 potential and � = 1,
this standard scattering theory fails. Indeed, for very small
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TABLE I. Effective potential [see Eq. (7)] in the p wave for a pair of atoms in a nonresonant light of intensity I, given as a multipolar
expansion with terms −cq/xq (3 � q � 6). The cq coefficients are reported for waves with magnetic quantum numbers m = 0 or |m| = 1.
V m

d (x) is the diagonal term of the dipolar interaction (the diabatic potential). V m
ad (x) is the lowest eigenvalue of the two-channel Hamiltonian

(adiabatic potential accounting in an effective way for the dominating dipolar couplings between the p and f channels). V m
nad (x) is the sum

of the latter adiabatic potential and of the nonadiabatic coupling. Note that the −c3/x3 contribution is attractive for m = 0 and repulsive for
|m| = 1.

m = 0 |m| = 1

V c3 c4 c5 c6 c3 c4 c5 c6

V m
d 4I/15 0 0 1 −2I/15 0 0 1

V m
ad 4I/15 6I2/875 −4I3/65625 1 − 86I4/20671875 −2I/15 4I2/875 8I3/65625 1 + 8I4/6890625

V m
nad 4I/15 33I2/4375 −4I3/46875 1 − 3814I4/516796875 −2I/15 22I2/4375 8I3/46875 1 + 472I4/172265625

k, tan δ�=1(k, x) tends to a limit proportional to k. Simulta-
neously, writing the asymptotic form of the threshold wave
function as x2 − (a�=1(x))3/3x, the term (a�=1(x))3 diverges
for x → ∞ according to Eq. (5). Searching for a quantity
characterizing the nonuniversal part of the near threshold
dipolar scattering, i.e., a signature of the contribution of the
short-range interactions, we show that one can study the be-
havior of the local phase for k → 0 and x → ∞ while keeping
xk finite, i.e., for intermediate distances x such that the energy
remains well below the potential barrier. This is equivalent,
in the study of the threshold wave function, to determine the
asymptotically divergent contributions to (a�=1(x))3 and to
eliminate them. This strategy is used in the following section.

C. Effective p-wave potential and Levy-Keller wave function

We start by introducing a single-channel approximation,
accounting in an effective way for the dominating dipolar
couplings between the lowest odd partial � waves, which
prevail close to threshold at least for not too strong dipolar
coupling. We describe analytically the effective �-dependent
potential by its asymptotic multipolar expansion

V�(x) = − c�
3

x3
− c�

4

x4
− c�

5

x5
− c�

6

x6
. (6)

The dipole-dipole interaction in Eq. (4) directly couples the
� and � ± 2 channels. As a consequence, the contribution of
the � = 1 + 2q channel to the p-wave effective potential in
Eq. (6) appears at order q of perturbation theory and increases
as Iq/xq+2.

We use the three different effective potentials given in
Table I to approximate the multipolar expansion in Eq. (6).
The simplest one is the diabatic potential V m

d (x), which is
equal to the � = 1 diagonal matrix element in the spherical
harmonic representation of the potential in Eq. (4). If the
coupling between � and � ± 2 channels is not small compared
to the diagonal terms, it is advantageous to introduce an adia-
baticlike representation restricted to the � = 1 and 3 channels
for which an analytical formulation remains tractable. The
second approximation is thus the effective adiabatic potential
V m

ad (x) (see Table I), which is the lowest eigenvalue of the
2 × 2 potential matrix accounting for the coupling between
the � = 1 and 3 channels. The third one is the V m

nad (x) po-
tential, and adds to V m

ad (x) the diagonal contribution of the
nonadiabatic coupling arising from the x dependence of the
adiabatic eigenvector �(x), the so-called “kinetic energy”

term 〈� | d2�/dx2〉. For the considered range of intensities
I < 40 r.u., V m

nad (x) with multipolar coefficients up to q = 6
describes rather well the effective potential in the p wave at
distances x > 20 r.u.

For each partial � wave and energy ε = k2 � 0, the radial
Schrödinger equation

u′′
� (x) −

[
�(� + 1)

x2
+ V�(x) + k2

]
u�(x) = 0 (7)

can be solved analytically either exactly or using perturbation
theory. For simplicity, the � dependence of V�(x), the coeffi-
cients c�

i and u�(x) are omitted in the rest of this section.
The two-potential Levy-Keller method [16,20], which is

described in Appendix A 1, constructs the solution of the
radial Schrödinger Eq. (7) as the following linear combination
of two reference functions (ϕ(x), ψ (x)):

u(x) = A(x)(ϕ(x) − ψ (x)M(x)). (8)

These reference functions (ϕ(x), ψ (x)) are solutions of the
Schrödinger Eq. (7) at the same energy as u(x) but for the
potential Vf (x) = −cp f /xq, the dominant term in V (x). Thus,
Vf (x) is a zeroth-order approximation to V (x), and, as a
consequence, u(x) in Eq. (7) is a very rough approximation
of the radial �-wave component of the multichannel solution
f (x, θ, φ) in Eq. (4).

The function M(x) in Eq. (8) satisfies the nonlinear first-
order differential Eq. (A2a), and the logarithmic derivative of
A(x) the first-order differential Eq. (A2b) involving M(x).
Each of these differential Eqs. (A2a) and (A2b) introduces a
single integration constant M0 and A0, respectively. A0 is a
global multiplicative constant without interest here, whereas
M0 is an additive constant. We show below that M0 char-
acterizes the short-range nonuniversal contributions to the
dipolar scattering, and can be identified as the scattering
volume. This is in line with M(x) in u(x) Eq. (8) taking the
role of the tangent of a local phase, apart from the fact that for
the presently studied dipolar interaction this function does not
tend to a limit as x increases.

In this work, we define reference pairs for either k small
and positive or k = 0 using three analytical potentials Vf (x).
Details on these reference pairs are given in Table II and in
Appendix A 2. For k > 0, we take Vf (x) = 0 and the resulting
reference pair (ϕ(x), ψ (x)), labeled as BC2k, corresponds to
free partial spherical waves. For k = 0, we consider either
the pair (x�+1, 1/x�), labeled as BC2, corresponding to the
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TABLE II. Analytical expressions of the reference pairs labeled in column 1. Van der Waals reduced units r.u. defined in Sec. II B are used.
The linearly independent functions (ϕ(x), ψ (x)), which are �-wave solutions of the Schrödinger equation of the potential Vf (x) at energy
ε = k2 (k specified in column 2), are presented in the first and second lines of column 3, and their Wronskian W in column 5. The BC2k
functions are free spherical waves [Vf (x) = 0] at positive energy k > 0. The BC2 and BC23 functions are spherical solutions at threshold
k = 0 of Vf (x) = 0 and Vf (x) = −c3 f /x3 with c3 f > 0, respectively. The asymptotic limits of these functions are given in the fourth column,
note that the free spherical waves at threshold (BC2) are equal everywhere to their asymptotic form. The analytical functions BC23 are given
in Ref. [31].

Label k Pair of functions Asymptotic limits W

BC2k >0 kx j�(kx) sin(kx − �π/2) −k
−kx η�(kx) − cos(kx − �π/2)

BC2 0 x�+1 x�+1 −(2� + 1)
x−� x−�

BC23 0 −π (c3 f )�+1/2/(2�)!
√

x Y2�+1(
√

4c3 f /x) x�+1 −(2� + 1)
(c3 f )−�−1/2 (2� + 1)!

√
x J2�+1(

√
4c3 f /x) x−�

spherical solution at threshold of the free motion, or the BC23
pair, which is solution at threshold of Vf (x) = −c3 f /x3. The
� = 1 reference functions ϕ(x) and ψ (x) vary as x2 and 1/x,
everywhere for the BC2 pair and when x → ∞ for the BC23
functions. The same behavior occurs for the BC2k reference
pair in the x range satisfying kx small. In all three cases, M(x)
represents (in reduced units) a quantity that has dimension of
volume.

Using these reference functions, we determine analytical
expressions for the asymptotic behavior of M(x) depending
on the coefficients of the multipolar expansion in Eq. (6) of
the effective single-channel p-wave potential (see Appendix
A 3). Using these coefficients given in Table I, the derivation
of the asymptotic behavior of M(x) numerically calculated in
multichannel models (see Sec. III and Appendix B) becomes
tractable. In particular, it allows us to justify the procedure
developed in Sec. III A to extract from M(x) a constant term
similar to M0, characterizing the interactions at short range,
and defining a scattering volume.

D. Evaluating the k → 0+ limits for large kx: Universal behavior

The scattering parameters are determined at very low pos-
itive energy k → 0+ in the limit x → ∞ [see Eq. (5)]. We
first show that the standard way cannot be used to define the
scattering volume in the presence of an isotropic potential
decreasing as 1/x3.

Following the two-potential approach [20], we consider
a potential consisting of a short-range part which vanishes
for x > d , and, therefore, gives rise to the short-range phase
shift t0 = tan[δ�=1(k, x = d )] approximated close to threshold
by its leading term t0 ∼ −A k3 and of a long-ranged part
vanishing for x < d while identical to −c3/x3 for x > d . The
asymptotic p-wave phase shift tan δ�=1(k) = limx→∞ M(x) is
calculated by using the Levy-Keller approach to first order
of the perturbation theory, by using the reference functions
BC2k [Vf (x) = 0] (see Table II) and by setting M(x) ≡ t0 in
the right-hand side of the Ricatti equation [Eq. (A2a)]. The
integrals occurring in dM(x)/dx involve the regular [ϕ(x)]
and/or irregular [ψ (x)] spherical Bessel functions and are
analytically evaluated [20,21]. There is no contribution from
the upper integration limit (kx → +∞) in these integrals and
from the lower limit (kd small for sufficiently small k) one

obtains at low energy

tan δ�=1(k) ∼ k
c3

4
− k3

(
A − c3A2

4d4
+ 2Ac3

3d
+ c3d2

18

)
. . . .

(9)

This expression is identical to the one of Ref. [21] disregard-
ing the effective range contribution to t0. The term linear in k is
identical to the one obtained in the treatment of the potential
−c3/x3 in the Born approximation [22]. Note that it is the
∝ 1/x3 potential, which is at the origin of the contribution
linear in k in the asymptotic phase shift but this contribution
does not contain any contribution arising from the short-range
interactions. When k tends to zero and x tends to infinity, kx
becoming infinite, the tangent of the phase shift converges to
tan δ�(k) ∝ k c3 for all the partial waves with � � 1. Due to the
linear term, tan δ�=1(k)/k3 obviously diverges for k → 0+ and
the scattering volume cannot be defined in the standard way.
The elastic partial cross sections ∝ ( sin δ�(k)/k)2 become in-
dependent of the collision energy at very low temperature and
depend on the square of the strength of the dipolar interaction
only, which is the so-called “universal” behavior [10,11,23].
Let us mention that the low-k expansion of the partial-wave
dipolar phase shifts δ�,m(k) for � � 1 to orders kp higher than
the leading order p = 1 have been studied in a multichannel
treatment [24], giving, for the coefficients, some insight in the
universal scaling laws on the strength of the coupling ∝ Dq

[Eq. (2)] as well as in their nonuniversal contributions.
For a given species, the specific (nonuniversal) short-range

part of the potential can manifest itself by the existence of
shape resonances, not accounted for by the Born approxi-
mation, while already present in the short-range phase t0 (or
A) [Eq. (9)]. These resonances appear for particular short-
range properties and in a specific energy domain fixed by
the rotational barrier height, which depends on the magnetic
quantum number m and on the dipolar interaction strength.
In Sec. III B, we define from the threshold wave function a
scattering volume depending also on m, on the dipolar interac-
tion strength, and, in addition, on the short-range interactions.
This scattering volume presents divergences whose position
and width give the domain where shape resonances can be
expected.
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E. Defining the scattering volume via the threshold
wave function

Just above threshold (k → 0+) and for intermediate values
of x such that kx remains very small, the BC2k reference
functions of � = 1 wave used in previous section II D can be
replaced by their leading terms ϕ(x) ≈ (kx)2/3 and ψ (x) ≈
1/(kx) (see Table II). Inserting this approximation into the dif-
ferential Eq. (A2a) for M(x), and setting M(x) = 3M(x)/k3,
we obtain

dM(x)

dx
= − c3

3 x3

(
x2 − M(x)

x

)
. (10)

Using the BC2 reference functions (free spherical p-wave
functions at threshold) ϕBC2(x) = x2 and ψBC2(x) = 1/x in
the Levy-Keller approach, M(x) is solution of Eq. (10). Thus,
in the limited x range where kx remains small, the relative
amplitude M(x) obtained with the BC2k pair just above
threshold is identical to that obtained at threshold using the
BC2 pair. This has been numerically verified for various light
intensities, for energy and x values verifying 0.01 � kx � 0.1.
Therefore, we will characterize the low-energy p-wave dipolar
scattering by the threshold wave functions, more precisely
by the quantities M(x) and A(x) determined for the BC2
reference pair.

To obtain an analytical asymptotic expression for the so-
lution of Eq. (A2a), we expand M(x) into terms 1/xq (with
q � −2) and ln(x)/xq with (q � 0), therefore including the
asymptotic divergent terms x2, x, and ln(x). We determine the
coefficients of this expansion by equating the corresponding
terms on both sides of the equation. For the BC2 and BC23
reference functions, the results are reported in Eqs. (A3) and
(A4), respectively. In the expansions in Eqs. (A3) and (A4),
this method allows for the determination of all coefficients,
except the integration constant M0 of the Ricatti equation
[Eq. (A2a)], which may depend on the reference pair. The
other coefficients in the expansion of M(x) express in terms
of the multipolar coefficients cp of the long-range potential
V (x), on c3 f defining the single-term potential Vf (x), and also
on the integration constant M0.

Using the M(x) expansions up to the order 1/x7, we
integrate the first-order differential Eq. (A2b) for the loga-
rithmic derivative of A(x). The integration constant A0 is
determined by imposing the condition u(x) → x2 for x → ∞
upon the threshold wave function, which implies A(x) → 1.
For the BC2 and BC23 reference pairs, the expressions of
A(x) are given in Eqs. (A5) and (A6), respectively, and the
corresponding threshold wave functions u(x) in Eqs. (A7)
and (A8).

The parameter M0 does not depend on the asymptotic
form of the potential and accounts for the interactions at short
range. Since M0 is the value in reduced units of a quantity
that has dimension of volume, it is a good candidate for
defining a scattering volume, except for its dependence on the
chosen reference functions. We show next that in fact MBC2

0
and MBC23

0 provide equivalent descriptions of the short-range
interactions. Indeed, the threshold wave function does not
depend on the choice of the reference pair and equalizing the
coefficients of the 1/xq and ln(x)/xq terms in the expansions
BC2 [Eq. (A7)] and BC23 [Eq. (A8)] of u(x) leads to the

following unique relation:

MBC23
0 − MBC2

0 = −2

9
c3 f c4 − 11

144
c2

3c3 f − 1

24
c3c2

3 f

+
(

83

432
− γ

6
− ln(c3 f )

12

)
c3

3 f , (11)

where γ denotes the Euler constant. Note that we have verified
the uniqueness of this relation (11) for terms up to q =
5. The difference �M0 = MBC23

0 − MBC2
0 depends on the

parameters c3, c4, and c3 f , and is perfectly known as soon
as the reference pairs are chosen. Therefore, it is sufficient
to determine MBC2

0 because MBC23
0 is known unambiguously

once c3 f is fixed. In particular, MBC23
0 and MBC2

0 diverge
simultaneously. The divergences, the most important features
in scattering, indicate a quasiresonant situation with a bound
state located just at threshold, which can lead to the observa-
tion of a threshold resonance in the cross section. They are
associated to infinite contact interactions in a pseudopotential
technique describing the short-range interaction of the two
particles by �-wave contact potentials [25,26].

So far, analytic solutions at threshold are derived in a
single-channel approximation in Eq. (7) of the coupled-
channels asymptotic Schrödinger Eq. (4). The coefficients of
the analytical single-channel Levy-Keller formula are eval-
uated by using the effective adiabatic potential in the p-
wave Table I. These results are used in Sec. III A to analyze
the asymptotic behavior of M(x) calculated in multichannel
models. This allows us to justify the procedure developed
below to extract from M(x) a constant term similar to M0

occurring in the Levy-Keller approach and characterizing the
interactions at short range.

III. DETERMINING THE SCATTERING VOLUME FROM
MULTICHANNEL ASYMPTOTIC CALCULATIONS

In this section, we describe how to determine the field-
dressed scattering volume M0 in the multichannel case. We
use an asymptotic model and the nodal line technique [14],
reviewed briefly in Appendix B 1. All the calculations are
restricted to the asymptotic Hamiltonian, which is valid for
x � x00, and accounts for the van der Waals and dipolar
interactions. All the short-range physics, specific to each
collision pair, is replaced by boundary conditions in all partial
waves depending on a single parameter x00 called the nodal
parameter. x00 is the position of one of the most outer nodes of
the field-free s-wave function at threshold. The knowledge of
x00 is equivalent to knowing the s-wave scattering length. Note
that the positions of the nodes in the inner region where the
van der Waals interaction dominates are quasiperiodic with
almost the same period for different �. It is therefore sufficient
to choose one period for the s-wave node position in order to
span all values of the scattering parameter a� in Eq. (5) for
all �. The nodal parameter determines the position of the �-,
energy-, and field-intensity-dependent nodal lines used in our
universal model [17,18].

In Sec. III A, we describe the calculation of M(x), the
tangent of the local phase, that we expand in an analytical
form involving the x-dependent terms suggested by the single-
channel Levy-Keller approach. A numerical fitting procedure
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allows us to extract from M(x) a constant similar to M0

occurring in the single-channel model (see Sec. II E). This
constant depends only on the short-range interactions, i.e., on
the nodal parameter x00, and is identified as the field-dressed
scattering volume. A detailed comparison of the numerical
multichannel results with the analytical single-channel Levy-
Keller ones justifies the procedure used to calculate this scat-
tering volume M0. In Sec. III B, we show that its dependence
on the field-free scattering length, equivalently on the nodal
parameter x00, displays a divergence each time a bound state
is located at threshold. A similar resonance structure occurs
when the nonresonant light intensity varies.

A. Asymptotic behavior of M(x) from numerical calculations

We start with a short description of the method used to de-
termine the asymptotic behavior of M(x) (see Appendix B 1
for more details). For a chosen pair of colliding partners, i.e.,
a fixed nodal parameter, a given dipolar interaction strength D
[Eq. (2)], a given magnetic quantum number m, and, for prac-
tical reasons, a limited number of � values, we calculate by
inward integration a complete set of physical solutions of the
threshold Schrödinger Eq. (4) for a chosen starting point xmax

of the integration procedure. We start by calculating particular
solutions, for which short-range boundary conditions are not
yet included, while the chosen analytic asymptotic form of the
solutions determines the initial conditions for the integration.
More precisely, at xmax all but one radial components vanish,
except in a particular channel � where they are equal to
the BC2 or the BC23 functions (see Table II). The num-
ber of particular solutions with diverging and nondiverging
asymptotic behavior is twice the number of physical solutions,
i.e., the number of � channels included in the calculation.
The physical solutions are constructed as linear combinations
of the particular solutions with coefficients determined by
imposing the short-range boundary conditions, i.e., by the
canceling of all radial components on the nodal lines defined
by the nodal parameter x00.

We then focus on the specific physical solution with a
large radial component at xmax only in the channel � = 1.
At the starting point xmax, its radial p component is a lin-
ear combination of the diverging and converging reference
functions, with factors 1 and −M(xmax), respectively, as in
the single p-channel model in expression of Eq. (8). The
boundary conditions on the nodal line allow us to determine
M(x) at xmax. By performing several calculations with dif-
ferent starting points xmax, we obtain M(x). We assume that
M(x) can be expanded in an analytical form involving the
terms suggested by the single-channel Levy-Keller approach
[cf. Eqs. (A3) and (A4)]. For the initial condition BC2, we
consider the following terms:

x2, x, ln(x), 1,
ln(x)

x
,

1

x
,

ln(x)

x2
,

1

x2
, . . . . (12a)

For |m| = 1, choosing c3 f = |c3| in the initial condition
BC23, we have the same terms as for BC2, whereas for m = 0
and choosing c3 f = c3 in BC23, we have the following terms:

x, ln(x), 1,
1

x
,

ln(x)

x2
,

1

x2
, . . . . (12b)

Finally, we perform a fitting procedure in xmax, the range
of xmax being adapted to this fitting procedure and spanning a
large domain where the dipolar interaction prevails, typically
20 r.u. � xmax � 500 r.u.. For the typical systems analyzed in
Paper II (see Tables I and II of Ref. [15]), the characteristic
lengths of the van der Waals and dipolar interactions, which
are equal for I = 6 r.u., amount to σ ∼ 150 a0, and the
resulting xmax interval is [3000 a0, 75 000 a0]. The fits allow
us to extract from M(x) a constant similar to M0 occurring
in the single-channel model in Sec. II E. This constant, which
depends only on the short-range interactions, i.e., on the nodal
parameter x00, is identified as the field-dressed scattering
volume.

For m = 0 and ±1, M(xmax) has been computed using
n = 3 channels with � = 1, 3, 5, three intensities I, and
0.142 152 r.u. � x00 � 0.152 135 r.u., the field-free scattering
length, quasiperiodic function of x00, varying from −∞ to
+∞ in this interval. The inward integration has been ini-
tialized with the BC2 and BC23 boundary conditions (see
Table II), and xmax is varied in the range [20, 500] r.u. The
numerical coefficients of the M(xmax) fits are reported in
Table III. For fixed m, I, and BC conditions, some coef-
ficients are independent of x00, whereas others depend on
x00. The x00-independent coefficients have been compared to
the analytical ones deduced from the single-channel Levy-
Keller approach using the multipolar coefficients cp of the
adiabatic p-wave potential V m

nad(x), given in Table I and the
c3 f coefficient for the BC23 boundary condition. We find
good agreement between the numerical and analytical re-
sults. The x00-dependent coefficients, labeled as vm(I, x00)
and ηm(I, x00), are the prefactors of the constant and 1/x
terms, respectively. They display the same characteristic x00

dependence with several divergences. In fact, as expected
from the Levy-Keller approach [see Eqs. (A3) and (A4)], these
coefficients are related as ηm(I, x00) = α × vm(I, x00) − β,
with α and β independent of x00 and expressing analytically
in terms of the cp and c3 f coefficients only. Here also the
numerically obtained coefficients α and β are x00 independent
and agree with the analytical ones. For given m and I,
the curves vm(I, x00) associated to the constant term of the
expansion and obtained with the BC2 and BC23 reference
functions differ by a quantity that does not depend on x00. The
numerical value of this difference is in good agreement with
the analytical formula �M0 = M0

BC23 − M0
BC23 [Eq. (11)]

calculated using the cp and c3 f coefficients.
We can also interpret satisfactorily the coefficients of the

M(x) asymptotic expansion from the multichannel calcula-
tions by comparison with the M(x) expansion deduced from
the analytical single-channel Levy-Keller approach. In detail,
we use the coefficients of the adiabatic p-wave potential (see
Table I) and the asymptotic boundary conditions deduced
from the potential Vf (x) introduced in the Levy-Keller ap-
proach (see Appendix A 1). This comparison justifies the
identification of the constant term vm(I, x00) of this multi-
channel calculation with the field-dressed scattering volume.
By analogy to the definition deduced from the single-channel
Levy-Keller approach, the label M0(I, x00) is introduced
instead of vm(I, x00).

The fairly good agreement between the coefficients of the
M(x) expansion according to Eq. (12) obtained from the
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TABLE III. The table presents the first coefficients of the expansion of M(xmax) in powers of 1/xmax, obtained by a fit performed with xmax

spanning the interval [20 r.u., 500 r.u.]. The nonresonant light intensity I, the magnetic quantum number m, and the asymptotic boundary
conditions BC are specified in columns 1, 2, and 3, respectively. The intensity dependence of the coefficients is indicated below the coefficients
in the second line of the top cells. The numerical calculations of M(xmax) include three coupled channels � = 1, 3, 5 using 150 or 200 values
of the nodal parameter x00, chosen such that the field-free s-wave scattering length varies from −∞ to +∞. For given I, m, and BC, and for
each value of x00, the calculated function M(xmax) is fitted to the analytic expansions in Eq. (12). In each cell of cell lines 2 to 13 and columns 4
to 11, the first line reports either the numerical values of the coefficients of the terms, when it does not vary with x00, or the symbol v(I, x00 ) or
η(I, x00 ) for the x00-dependent ones. The second line gives the analytical results obtained with the Levy-Keller formulas in Eqs. (A3) and (A4),
for the single channel � = 1 and for the potential V m

nad(x) (Table I). Except for the BC23 reference pair and m = 0, the coefficients vm(I, x00 )
and ηm(I, x00 ) are related by a linear transformation η(I, x00 ) = v(I, x00 ) × α − β, in Eqs. (A3) and (A4). All data are in reduced units.

x2
max xmax ln(xmax) ln(xmax)/xmax α β

I m BC I I2 I3 Constant I4 1/xmax I ∼I4

6 0 BC2 − 0.26667 − 0.3432 − 0.457 v0(I, x00 ) 0.50 η0(I, x00 ) − 1.05 0.835
− 0.26667 − 0.3667 − 0.469 M0

BC2 0.50 − 1.07 1.00
6 0 BC23 0 − 0.058775 − -0.115 v0(I, x00)-0.31 0.55

0 − 0.08229 − 0.127 M0
BC2−0.339 0.496

6 ±1 BC2 0.13333 − 0.110295 0.07625 v±1(I, x00 ) 0.0425 η±(I, x00 ) 0.55 0.4
0.13333 − 0.1260 0.0778 M0

BC2 0.0415 0.533 0.397
6 ±1 BC23 0.26667 0.10304 0.11875 v±1(I, x00 ) + 0.02 0.0775 η′

±(I, x00) 1. 0.35
0.26667 0.08737 0.120 M0

BC2+0.0116 0.0830 1.07 0.361
10 0 BC2 − 0.44444 − 0.95345 − 2.10 v0(I, x00 ) 4.25 η0(I, x00 ) − 1.8 3.5

− 0.44444 − 1.0187 − 2.17 M0
BC2 3.86 − 1.79 5.47

10 0 BC23 0 − 0.16325 0.53 v0(I, x00 )-2.2 −1.75
0 − 0.2286 − 0.589 M0

BC2−2.38 1.59
10 ±1 BC2 0.22222 − 0.3063725 0.3525 v±1(I, x00 ) 0.305 η±(I, x00 ) 0.95 0.89

0.22222 − 0.3499 0.360 M0
BC2 0.320 0.889 0.822

10 ±1 BC23 0.44444 0.286235 0.548 v±1(I, x00 ) + 0.001 0.53 η′
±(I, x00) 1.75 0.9

0.44444 0.2427 0.558 M0
BC2−0.0472 0.640 1.78 0.725

20 0 BC2 − 0.88889 − 3.815 − 16.5 v0(I, x00 ) 80. η0(I, x00 ) − 3.5 45.
− 0.88889 − 4.075 − 17.4 M0

BC2 61.7 − 3.56 82.6
20 0 BC23 0 − 0.653 − 4.0 v0(I, x00 )-28. 20.

0 − 0.914 − 4.71 M0
BC2−27.8 20.4

20 ±1 BC2 0.44444 − 1.22536 2.804 v±1(I, x00 ) 4.475 η±(I, x00) 2.335 11.6
0.44444 − 1.400 2.88 M0

BC2 5.12 1.78 8.16
20 ±1 BC23 0.88889 1.14545 4.323 v±1(I, x00 ) − 0.875 7.0 η′

±(I, x00) 3.5 10.5
0.88889 0.9707 4.46 M0

BC2−1.47 10.2 3.56 20.7

multichannel or the single-channel treatments proves that, for
the considered light intensities, the adiabatic potential V m

nad (x)
represents well the effective potential in the p wave. More im-
portantly, it corroborates the separation of the expansion terms
of M(xmax) into two types [see Eqs. (A3) and (A4)]. The
first type depends only on the asymptotic potential through
the multipolar coefficients cp and the coefficient c3 f for BC23
conditions. Among the second type, we encounter the constant
coefficient vm(I, x00), which depends on x00 and is similar
to the parameter M0 of the analytical approach. In fact,
the constants vm(I, x00) obtained with the BC23 and BC2
boundary conditions are equivalent and differ simply by the
known quantity �M0 [Eq. (11)]. In addition, we have care-
fully verified that, when the light intensity tends to zero and
the dipolar interaction becomes negligible, both MBC2

0 and
MBC23

0 approach the standard field-free scattering volume.
Let us emphasize that the divergent contributions to

M(x), which are proportional to x2, x, and ln(x), arise from
interactions that asymptotically decrease as 1/x3, 1/x4, and
1/x5. In contrast, the van der Waals interaction occurs (to
leading order) in the term proportional to 1/x in the expansion
of M(x). This is in agreement with the fact that the scattering
volume can be defined in the standard way for long-range

potentials decreasing rapidly at least as 1/x6. For M0, a direct
comparison between the numerical and analytical results is
not possible. In the analytical Levy-Keller model, M0

appears as integration constant in the solution of Eq. (A2a).
It could, in principle, be obtained if the value of M(x) is
known at a sufficiently small xb value (xb � 1). However,
since there is no explicit expression for this short-range
boundary condition, it does not provide a means to determine
M0. Therefore, this boundary condition at small xb will
be determined from numerical calculations in which all the
interactions present at x < xb are introduced, whereas the
asymptotic Hamiltonian Eq. (4) explicitly accounts for the
interactions occurring at x > xb. In the numerical approach,
M0 is well determined provided that the number of channels
n is sufficiently large to ensure convergence, as is shown in
Sec. III B. The boundary condition at xb plays a role very
similar to the parameter t0 in Eq. (9).

B. Dependence of the scattering volume on field-free s-wave
scattering length and light intensity

For a given light intensity, the p-wave scattering volume
depends only on the field-free s-wave scattering length, or
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FIG. 1. Field-free s-wave scattering length (red dashed line) and
field-free standard p-wave scattering volume (black solid line) as a
function of the nodal parameter x00 (r.u. units are used). The gray
vertical lines indicate the limits of the quasiperiod of the variation
of the field-free s-wave scattering length associated with the seventh
node (counted from outside) of the field-free s-wave threshold wave
function. To each collision pair corresponds a particular value of the
nodal parameter.

on the nodal parameter x00, and captures all effects of the
short-range interactions. We recall here that, as soon as the
s-wave scattering length of a colliding pair is known, we
can fix a suitable x00 for modeling the system using the
asymptotic model [14,17]. Figure 1 shows the field-free s-
wave scattering length and field-free p-wave scattering vol-
ume defined in the standard way versus x00. In the absence
of the nonresonant light, we use the ordinary definition of
the scattering volume in Eq. (5) because the anisotropic
1/x3 term in the asymptotic Schrödinger Eq. (4) vanishes.
Furthermore, there is no channel coupling and the single-
channel approximation becomes exact. The range for x00 in
Fig. 1, x00 ∈ [0.142 152, 0.152 135] r.u., corresponds to one
quasiperiod of the s-wave scattering length varying from −∞
to +∞. The divergences of the s-wave scattering length,
which correspond to the contact interaction becoming infinite,
are experimentally important since they represent a resonant
situation with an � = 0 bound state at threshold, and are
correlated to a large value of the partial s-wave cross section
just above threshold [9,27]. The p-wave scattering volume
also displays a singularity within this x00 range, with an � = 1
bound state at threshold, accompanied by a threshold shape
resonance with asymmetrical profile in the partial p-wave
cross section. The position and width of the singularities of
the scattering length and scattering volume are completely
different. This has been observed before for a truncated x−6

potential, with a repulsive wall at the position x0 → 0+ [28],
a simple model that predicts the s-wave scattering lengths
corresponding to divergences of the scattering parameters in
Eq. (5) in any partial � wave. In particular, the field-free
resonances � and �′ = � + 4q (q integer) were found to be
degenerate [28]. For the studied x00 range, our asymptotic
model predicts that the field-free � = 1 scattering volume
diverges at x00 = 0.1495 r.u., i.e., for the field-free scattering
length a = 0.9668 r.u. (see also Ref. [17]), instead of the
universal value 0.96 r.u. [28]. Similarly, the � = 3 field-free
standard scattering volume, not shown in Fig. 1, diverges
for x00 = 0.1447 r.u., i.e., for a = 0.056 51 r.u., instead of
the universal value a = 0 r.u. given in Ref. [28]. The re-

FIG. 2. Field-dressed p-wave scattering volume for m = 0 (up-
per pannel) and |m| = 1 (lower pannel) as a function of the nodal
parameter x00 calculated for n = 1 (green dashed line), n = 2 (blue
dotted line), n = 3 (red dot-dashed line) and n = 4 (black solid line)
channels (r.u. units are used). The non-resonant light intensity is
I = 6 r.u. The resonances labeled by �̃ correspond to a bound state
at threshold with a dominant �-contribution in its wave function. The
vertical gray lines correspond to an infinite s-wave scattering length.

sults of Ref. [28] differ from those obtained by the nodal
method due to the quasiperiodicity in the variation of the
scattering length with 1/x2

00 which becomes more exact as x00

decreases [29].
We now analyze the field-dressed scattering volume as a

function of x00 for m = 0 and ±1 at a rather weak intensity
I = 6 r.u. in Fig. 2. Note that the nonresonant field interaction
removes the m degeneracy. For the single-channel model
n = 1 and m = 0, the field-dressed scattering volume diverges
at x00 = 0.1427 r.u. in the top panel of Fig. 2, which is shifted
from the field-free position x00 = 0.1497 r.u. in Fig. 1. This
large shift in x00, �x00 ∼ 0.007 r.u., shows the high sensitiv-
ity of the resonance on the nonresonant field intensity, due to
the low rotational barrier for � = 1. By increasing the number
of channels to n = 2, the � = 1, m = 0 resonance is slightly
shifted toward higher x00 values, up to x00 ∼ 0.1432 r.u. This
is due to a small contribution of the � = 3 channel to the
bound-state wave function labeled by �̃ = 1. For I = 6 r.u.,
the different channels are weakly coupled so that the bound
states �̃ are clearly characterized by their dominant �-wave
contribution. The position of the �̃ = 1 resonance slightly
varies with increasing n, and is stabilized for n � 3. For the
n = 2 calculation, the scattering volume shows an additional
singularity at x00 = 0.1452 r.u. associated with the occurrence
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of a bound state at threshold with dominant � = 3 weight. As
expected, the position of the field-dressed �̃ = 3 resonance is
close to the field-free one x00 = 0.1447 r.u., the small shift
�x00 < 0.005 r.u. is due to the higher rotational barrier. For
n = 3, another singularity associated with a �̃ = 5 bound
state occurs around x00 = 0.150 r.u., and is very close to the
field-free � = 1 resonance shown in Fig. 1. By using four
channels, a �̃ = 7 resonance appears at x00 ≈ 0.145 r.u., very
close to the �̃ = 3 one. Indeed, by increasing the number of
channels, the predicted degeneracy of the �̃ and �̃ + 4
resonances [28] becomes manifest.

We analyze now the field-dressed resonances with |m| = 1
shown in the bottom panel of Fig. 2. A comparison with the
field-dressed m = 0 resonances shows significant differences.
In the n = 1 channel model, the |m| = 1 resonance position
is x00 = 0.1486 r.u., suffering a shift, �x00 = 0.0009 r.u.,
smaller than the one we encounter for the |m| = 0 resonance.
Furthermore, the field-dressed |m| = 1 resonance is much
narrower than the m = 0 one. This is ascribed to the effective
potentials being asymptotically attractive (repulsive) for m =
0 (|m| = 1), the latter having a 1/x3 contribution two times
smaller (see Table I). By increasing the number of channels,
additional resonances with |m| = 1 and � � 3 appear. This
demonstrates that, for these resonances, the strength of the
channel mixing is approximately independent of m. Indeed,
as � increases, the resonance positions become almost m
independent since they are essentially governed by the height
and width of the rotational potential barriers.

Let us emphasize that the presence of a divergence of
the scattering volume at x00 is linked to the appearance of a
shape resonance at threshold, as we have verified. The shape
resonance is due to tunneling through the rotational barrier
and results in an asymmetric profile in the cross section. It
destroys the universal character of dipolar scattering at ultra-
cold temperatures which is characterized by partial wave cross
sections which are proportional to D2 and are independent of
collision energy.

At the rather low intensity I = 6 r.u., the calculation of the
field-dressed resonance �̃ is almost converged when the multi-
channel model includes up to the �′ = � + 2 channel, which
corresponds to a model including n � (� + 3)/2 channels.
In contrast, a larger number of channels are needed for
much higher intensities or for dipolar partners coupled by
strong dipole-dipole interaction D. For instance, in Ref. [23]
more than 30 channels are needed to describe the scatter-
ing cross sections of aligned dipolar molecules at ultracold
collision energies. Indeed, collisions between KRb (respec-
tively RbCs) molecules with equivalent dipole length D ∼
5700 a0 (respectively 47 000 a0) and van der Waals length
σ ∼ 140 a0 (respectively 180 a0) correspond to collisions in a
strong nonresonant light with very high intensity I = 240 r.u.
(respectively 1600 r.u.).

IV. CONCLUSIONS

The standard definition of the p-wave scattering volume
is known to diverge for 1/R3 interactions, which appear for
atoms in a nonresonant light or for the dipole-dipole scat-
tering between ultracold atoms or molecules. In this work,
we have defined a generalized p-wave scattering volume

for two trapped ultracold atoms in nonresonant light. To
this end, we have employed an asymptotic model [14,17],
based on the fact that ultracold collisions are dominated by
long-range forces. The short-range interactions are taken into
account by the nodal parameter, which is fixed once the field-
free s-wave scattering length is known. Note that when the
light intensity tends to zero, the field-dressed p-wave scat-
tering volume approaches the standard field-free scattering
volume.

In detail, we have deduced the analytical expression of the
p-wave component of the threshold wave function from the
two-potential approach developed by Levy and Keller [16]
in a single-channel approximation. For large R, this radial
wave function expresses as a linear combination of R2 and
1/R the free spherical wave solutions. The latter term is
multiplied by a R-dependent factor similar to the tangent of
the local phase shift, but asymptotically diverging. We have
shown that this factor includes a constant term capturing the
nonuniversal part of the short-range contributions to dipolar
scattering and generalizing, with the proper dimension, the
standard definition of the scattering volume. In numerical
multichannel calculations, the p-wave scattering volume is
obtained by fitting the asymptotic behavior of the p-wave
component of the threshold wave function to the analytical
expansion.

The asymptotic model depends only on the nodal pa-
rameter x00, which is fixed once the field-free s-wave scat-
tering length of the collision partners is known [17]. In
absence of nonresonant light, we have analyzed the depen-
dence of the field-free p-wave scattering volume on this
parameter x00, which is significantly different from the s-
wave scattering length dependence. The p-wave scattering
volume also displays one singularity in the x00 range where
the s-wave scattering length changes from −∞ to +∞.
This is in line with earlier predictions [28]. The singular-
ity is caused by the appearance of a � = 1 bound state
at threshold. In presence of nonresonant light, the original
p-wave singularity is shifted and, more remarkably, addi-
tional singularities appear. This is due to the field-dressed
p-wave function containing contributions from additional
field-free partial waves for which a bound state at threshold
appears.

Instead of universal nodal lines with a single nodal param-
eter introduced in this paper, it is possible to consider nodal
lines with energy � and also intensity (equivalently dipole
strength) dependence adjusted to a real pair of atoms [17,18].
In this case, the short-range interactions are more precisely
accounted for and an accurate prediction of the near threshold
resonances becomes possible. This description is equivalent
to those introducing a regularized zero-range potential, the so-
called contact interaction, with infinitely many terms [25], but
is probably more tractable. In addition, multipolar ultracold
collisions can be studied, in a straightforward extension of
this work to the nonzero energy regime, as it has been done in
previous studies devoted to the analysis of shape resonances
[17,18,30].

In the following paper (Paper II [15]), we will use the
method developed here to control the scattering volume using
nonresonant light. This is an extension of our previous work
on controlling the s-wave scattering length [14].
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APPENDIX A: TWO-POTENTIAL LEVY-KELLER
APPROACH

1. Levy-Keller method

The two-potential method was proposed by Levy and
Keller [16,20,32] to determine the single-channel wave func-
tion u(x) ≡ u�(x), which is the �-wave solution of the
Schrödinger Eq. (7) associated to the potential V (x) ≡
V�(x) = −c3/x3 − c4/x4 − c5/x5 − c6/x6 [see Eq. (6)], with
energy ε = k2. In this model a second potential Vf (x) is
introduced, leading to the definition of a “reference” pair of
functions (ϕ(x), ψ (x)). They are linearly independent solu-
tions of the Schrödinger equation of the potential Vf (x) at the
same energy ε and for the same �. This �-wave solution u(x) is
written as a linear x-dependent combination of the reference
functions

u(x) = A(x)[ϕ(x) − ψ (x)M(x)], (A1a)

with the imposed condition

du(x)

dx
= A(x)

(
dϕ(x)

dx
− dψ (x)

dx
M(x)

)
. (A1b)

In the expression (A1a), A(x) is a global amplitude, and
M(x) the relative amplitude of ϕ(x) and ψ (x). M(x) plays
the role of tan δ(x), with δ(x) being the local phase shift
describing the collisional partial waves in terms of spherical
Bessel and Neumann functions.

To solve Eq. (A1), we first eliminate the global amplitude
A(x) in Eq. (A1a) by using the radial Schrödinger equations
satisfied by u(x) and by the pair (ϕ(x), ψ (x)), and the im-
posed condition (A1b). We derive the following equation for
the relative amplitude:

d M(x)

dx
= − V (x) − Vf (x)

W
[ϕ(x) − ψ (x)M(x)]2, (A2a)

with W being the Wronskian of the reference pair, W =
ϕ(x)ψ ′(x) − ϕ′(x)ψ (x). The integration of this differential
equation introduces a constant M0, which may depend on
the reference pair. In a second step, we obtain the differential
equation for the logarithmic derivative of A(x):

d ln (A(x))
dx

= − V (x) − Vf (x)

W
ψ (x)[ϕ(x) − ψ (x)M(x)],

(A2b)

which is integrated imposing the boundary condition A(x) →
1 for x → ∞. Once A(x) and M(x) are determined, the solu-
tion u(x) is obtained. We emphasize that, obviously, u(x) does
not depend on the choice of the second potential Vf (x) nor on
the reference pair. If V (x) expresses as a multipolar expansion
(6), an analytical expression for the asymptotic form of u(x)
can be obtained for energy ε > 0 when free spherical waves
are chosen as reference functions or at threshold ε = 0 for
different reference functions.

In summary, the Levy-Keller method first computes M(x),
which is related to the local phase shift, and the amplitude
A(x) is independently obtained in a second step, after intro-
ducing an arbitrary constant M0. In contrast, in the exten-
sively used phase-amplitude method pioneered by Milne [33],
the amplitude satisfies a nonlinear equation that is integrated
first and the phase is calculated in a second step. Thus, the
pair of functions amplitude and phase, which parametrize the
wave function, are not unique and does not necessarily lead
to the determination of the scattering parameters in Eq. (5).
Note that a direct integral representation for scattering phase
shifts, based on a modified version of Milne’s approach, has
been recently proposed [34].

Note also that the asymptotic solution of Eq. (7)
could be constructed using perturbation theory, as done by
Hinckelmann and Spruch with another formulation of the two-
potential approach [20]. For the long- range part x > d , they
consider a single multipolar potential V (x) = −cp f /xq, and
for the short-range one x < d , an unknown potential charac-
terized at x = d by a phase δ�(k, x = d ) such as tan[δ�(k, x =
d )] increases as k2�+1 at low energy. For x > d , the phase
of the wave function is obtained by treating the external
part of V (x) to first order of perturbation theory, the zeroth
order consisting of free spherical waves. This procedure is
analogous to the Levy-Keller approach with the reference pair
BC2k and Vf (x) = 0 (see Table II), and determining M(x) by
first-order perturbation theory.

2. Reference pairs

The analytical pairs (ϕ(x), ψ (x)) used in this work to
obtain analytical solutions u(x) of the Schrödinger Eq. (7)
by the Levy-Keller method are presented in Table II. These
reference functions depend on the energy and on the cho-
sen potential Vf (x). They are labeled according to the im-
posed asymptotic behavior, i.e., the boundary conditions
(BC). Whereas the wave function u(x) does not depend
on the reference pair, the relative amplitude M(x) and the
global amplitude A(x) depend a priori on the chosen ϕ(x)
and ψ (x).

For positive energy ε = k2 > 0, we use the reference pair
labeled by BC2k, which corresponds to the spherical Bessel
and Neumann functions describing free spherical waves. For
vanishingly small wave number k and not too large distance,
x � 1/k, such that kx → 0, the reference functions behave as
ϕ(x) ∝ (kx)�+1 and ψ (x) ∝ (kx)−�.

Considering the solutions at threshold, i.e., k = 0, the
reference pair BC2 corresponds to the partial waves for
free motion, i.e., Vf (x) = 0, with functions ϕBC2(x) = x�+1

and ψBC2(x) = 1/x�. The p-wave pair of BC23 func-
tions (ϕBC23(x), ψBC23(x)) correspond to the solutions at
threshold of the potential Vf (x) = −c3 f /x3 with c3 f > 0.
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These analytical functions are proportional to the Bessel
functions of second kind Y3(

√
4c3 f /x) and first kind

J3(
√

4c3 f /x) (see Table II), and have been used for � � 3 in
Ref. [31].

For the three sets of reference functions with � = 1, M(x)
is the value in reduced units of a quantity that has dimension
of volume.

3. Analytic expansion at threshold for p waves of M(x), A(x), and u(x)

For the potential V (x) [Eq. (6)] and a chosen pair of reference functions see (Table II), the asymptotic expansion of M(x),
solution of Eq. (A2a), is obtained analytically by identifying the coefficients of the xq and ln(x)/xq terms (see Sec. II E for
more details). This method does not allow the determination of the constant term M0, which does not depend on the asymptotic
properties of the Hamiltonian Eq. (7). When the nodal line technique is used, M0 depends only on the nodal parameter x00.

Using the BC2 reference pair (x2, 1/x), one obtains

MBC2(x) = − c3

6
x2 −

(
c2

3

9
+ c4

3

)
x −

(
c3

3

12
+ c3c4

3
+ c5

3

)
ln(x) + MBC2

0 +
(

c4
3

18
+ 2c2

3c4

9
+ 2c3c5

9

)
ln(x)

x

+
(

11c4
3

162
+ 37c2

3c4

108
+ 2c2

4

9
+ c3c5

3
+ c6

3
− 2c3MBC2

0

3

)
1

x
+ · · · . (A3)

For the BC23 reference functions associated with the potential Vf = −c3 f /x3 (c3 f > 0), it yields

MBC23(x) = − c3 − c3 f

6
x2 −

(
(c3 − c3 f )2

9
+ (c3 − c3 f )c3 f

3
+ c4

3

)
x

−
(

c3
3 − c3

f

12
+ c3c4

3
+ c5

3

)
ln(x) + MBC23

0 + (c3 − c3 f )

(
c3

3

18
+ 2c3c4

9
+ 2c5

9

)
ln(x)

x

+
[

(c3 − c3 f )

(
11c3

3

162
+ c2

3c3 f

72
+ c3c2

3 f

135
+ 491c3

3 f

3240
+ 5c3c4

54
− 7c3 f c4

108

)

+ 2c2
4

9
+ c3c5

3
+ c6

3
− (c3 − c3 f )c3

3 f γ

9
− (c3 − c3 f )c3

3 f ln(c3 f )

18
− 2(c3 − c3 f )

3
MBC23

0

]
1

x
+ · · · (A4)

with γ being the Euler constant.
When c3 is positive, it is possible to account entirely in the reference functions for the −c3/x3 attractive contribution to the

potential V (x) by setting c3 f = c3. The expression of MBC23(x) is then particularly simple because the terms x2 and ln(x)/x
disappear, and the x term depends only on c4. Furthermore, for c3 f = c3, the 1/x term does not have contributions from MBC23

0
and ln(c3) nor from c4

3. This simple case c3 f = c3 is used in the study of the � = 1 and m = 0 states for which the adiabatic
approximation to the effective potential in the p channel is asymptotically attractive (see Table I). For the � = 1 and |m| = 1
states, the adiabatic p-wave potential V |m|=1

nad (x) is repulsive (c3 < 0 see Table I) and c3 f = −c3 is used in BC23 to ensure real
reference functions and real M(x). The asymptotic form for Mc3 f =−c3

BC23 (x) is then given by Eq. (A4).
For a given potential V (x) [Eq. (6)], the asymptotic expansions of MBC2(x) and MBC23(x) depend on the multipolar

coefficients cp of V (x) and on the c3 f coefficient defining the BC23 reference pair. Furthermore, they introduce a priori different
constant coefficients MBC2

0 and MBC23
0 , which take into account the contribution of the inner part of the potential V (x) not

involved in the derivation of Eqs. (A3) and (A4). This constant M0 is the x-independent term in M(x) and also appears in
some x-dependent terms. For instance, the coefficient of the term 1/x can be expressed as η = αM0 − β, where α and β only
depend on the multipolar coefficients cp of V (x) and on c3 f . For the reference pair BC23 and c3 f = c3, the coefficient of 1/x is
independent on x00 and only depends on V (x). The calculation of the difference �M0 = MBC23

0 − MBC2
0 [whose result is given

in Eq (11)] is presented below.
Using these analytical asymptotic expansions of M(x), we integrate Eq. (A2b), and impose the asymptotic condition A(x) →

1 for x → ∞, to obtain the analytical expressions of A(x). For the BC2 and BC23 reference pairs, we encounter the following
analytical expressions of A(x):

ABC2(x) = 1 + c3

3

1

x
+

(
c2

3

12
+ c4

6

)
1

x2
+

(
c3

3

36
+ c3c4

9
+ c5

9

)
1

x3
+ · · · (A5)

ABC23(x) = 1 + c3 − c3 f

3x
+

(
(c3 − c3 f )2

12
+ c3 f (c3 − c3 f )

24
+ c4

6

)
1

x2

+
(

(c3 − c3 f )3

36
+ (c3 − c3 f )2c3 f

24
+ (c3 − c3 f )c2

3 f

60
+ c4(c3 − c3 f )

9
+ c4c3 f

36
+ c5

9

)
1

x3
+ · · · . (A6)
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For c3 f = c3, the expression for ABC23(x) is simpler because the 1/x contribution disappears, and the 1/x2 and 1/x3 terms depend
only on c4, and on c5 and c4c3, respectively.

Using these analytical expressions of M(x) and A(x), we obtain from Eq. (A1a) the following asymptotic expansions of the
threshold p-wave function u(x):

uBC2(x) = x2 + c3

2
x +

(
c2

3

4
+ c4

2

)
+

(
c3

3

12
+ c3c4

3
+ c5

3

)
ln(x)

x
+

(
17c3

3

216
+ c3c4

4
+ c5

9
− MBC2

0

)
1

x

−
(

c4
3

48
+ c2

3c4

12
+ c3c5

12

)
ln(x)

x2
−

(
79c4

3

1728
+ 11c2

3c4

48
+ c2

4

8
+ c6

4
+ 37c3c5

144
− c3MBC2

0

4

)
1

x2
+ · · · , (A7)

uBC23(x) = x2 + c3

2
x +

(
c2

3

4
+ c4

2

)
+

(
c3

3

12
+ c3c4

3
+ c5

3

)
ln(x)

x

+
[

17c3
3

216
+ c3c4

4
+ c5

9
− MBC23

0 −
(

2

9
c4 + 11

144
c2

3

)
c3 f − c3c2

3 f

24
+

(
83

432
− γ

6
− ln(c3 f )

12

)
c3

3 f

]
1

x

−
(

c4
3

48
+ c2

3c4

12
+ c3c5

12

)
ln(x)

x2
−

{
79c4

3

1728
+ 11c2

3c4

48
+ c2

4

8
+ c6

4
+ 37c3c5

144

+ c3

4

[
−MBC23

0 −
(

2

9
c4 + 11

144
c2

3

)
c3 f − c3c2

3 f

24
+

(
83

432
− γ

6
− ln(c3 f )

12

)
c3

3 f

]}
1

x2
+ . . . . (A8)

Let us recall that the wave function u(x) does not depend
on the chosen reference pair. Thus, comparing uBC2(x) and
uBC23(x), i.e., (A7) and (A8), the coefficients of the 1/x and
1/x2 terms are equal only if the constants MBC2

0 and MBC23
0

are related by Eq. (11), which only involves the multipolar
constants cp of V (x) and the coefficient c3 f defining the
BC23 reference pair. We have verified that relation (11) en-
sures the equality of the coefficients multiplying 1/x3, 1/x4,
1/x5, ln(x)/x3, ln(x)/x4, and ln(x)/x5 in the wave functions
uBC2(x) and uBC23(x). For c3 f → 0, the reference pairs BC23
and BC2 become identical and MBC23

0 → MBC2
0 .

APPENDIX B: MULTICHANNEL DETERMINATION
OF M0

1. Multichannel calculations

The nodal line technique presented in detail in Ref. [14]
is used to numerically solve the asymptotic multichannel
Schrödinger Eq. (4) in an n-channel model (odd � values, � =
1, 3, . . . , 2n − 1). We expand the threshold wave functions
f (x, θ, φ) in terms of spherical harmonics and restrict the
number of odd-parity partial waves to n, with n = (�max −
�min + 2)/2 and �min = 1 � � � �max with � odd. The scat-
tering volume is determined by choosing a particular p-wave
physical threshold solution. We impose to this solution, writ-
ten as the vector z j=1(x), with n radial components z j=1

� (x),
to decrease asymptotically in all channels � � 3, and to di-
verge only in the � = 1 channel. This solution is constructed
from n particular pairs of solutions (f j

+(x), f j
−(x)) (1 � j � n)

with radial components ( f j
+,�(x), f j

−,�(x)) in the different �

channels, and with imposed asymptotic forms. Each pair is
associated with a particular channel � = � j , with � j=1 = 1
and the asymptotic form of its component in this � j channel
is imposed at xmax to be one of the analytical functions BC2
or BC23 defined for k = 0 in Table II. In other words, the
asymptotic form in this channel is ϕ(x) ∝ x� j+1 for f j

+,� j
(x)

or ψ (x) ∝ 1/x� j for f j
−,� j

(x), whereas the components in the

other channels f j
±,�(x), � �= � j , are vanishingly small. Thus,

the asymptotic form of this solution in the � = 1 channel has
to satisfy [cf. Eqs. (14) and (15) of Ref. [14]]

z j=1
�=1 (x) = f j=1

+,�=1(x) −
n∑

j′=1

M
j=1
j′ (x00, xmax) f j′

−,�=1(x), (B1)

where f j=1
+,�=1(x) increases asymptotically as x2, whereas

f j′
−,�=1(x) vanishes at least as 1/x3 for j′ � 2 and as 1/x for

j′ = 1, i.e., they satisfy either the BC2 or the BC23 boundary
conditions at xmax specified in Table II. For the boundary
condition BC23, the potential Vf (x) = −|c3|/x3 is used to
determine the initial value for the inward interaction of the
pair f j=1

±,�=1(xmax), the adiabatic potential for p-wave being at-
tractive (respectively repulsive) for m = 0 (respectively |m| =
1) (see Table I).

The coefficients M
j=1
j′ (x00, xmax) in Eq. (B1) are deter-

mined by imposing to each radial � component of z j=1(x)
to vanish at short range on what we call the nodal line x00.
The nodal line technique [18] replaces the interaction at very
small distances x < x00 by a repulsive wall in each channel
at x0 ≡ x0(E, �, I ) with x00 = x0(0, 0, 0) [35,36]. This nodal
parameter x00 determines the position of �-, energy-, and
intensity-dependent repulsive walls x0(E, �, I ) in all channels,
and thus contains in an effective way all information on the
short-range interaction up to the nodal line. For more details
on the choice of x0(E, �, I ), the reader is referred to Ref. [14].

The terms M
j=1
j′ (x00, xmax) are x-independent constants,

and depend on xmax, the starting point of the inward inte-
gration, on the nodal parameter x00 and on the boundary
conditions BC2 or BC23. At x = xmax, we write

z j=1
�=1 (xmax) ≈ f j=1

+,�=1(xmax) − M(xmax) f j=1
−,�=1(xmax),

(B2)
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replacing M
j=1
j′=1(x00, xmax) by M(xmax). If we identify

f j=1
+,�=1(xmax) = ϕ(xmax),

f j=1
−,�=1(xmax) = ψ (xmax), (B3)

Eq. (B2) resembles the function u(x)/A(x) of the single-
channel approximation (8), suggesting that M(xmax) plays a
role similar to the tangent of the local phase shift in the p wave
at the position xmax.

2. Fits of the numerical M(xmax ) to the Levy-Keller expansions

The coefficients of the terms x2, x, ln(x), 1, ln(x)/x, and
1/x [see Eq. (12)] in the expression of M(x) obtained from
a fit of numerical multichannel calculations of M(xmax) for
a large number of xmax values are presented in Table III. The
analytical ones, obtained with the Levy-Keller approach using
the asymptotic effective potential V m

nad (x) in the p wave (see
Table I), are also presented. For fixed m, I, and boundary
conditions BC, the numerical and analytical coefficients are
shown in the upper and lower lines, respectively, of the same
cell in Table III.

We encounter coefficients independent of x00, their numer-
ical values are specified in Table III, whereas others depend on
x00. The coefficients of the constant and 1/x terms, labeled by
the symbols vm(I, x00) and ηm(I, x00), respectively, depend
on x00 with a shape presenting several divergences (see Fig. 2).
Note that for BC23 and m = 0, ηm(I, x00) is independent of
x00, and its value is given in Table III.

For given m and I, the vm(I, x00) of the BC2 and BC23
boundary conditions differ by a constant, which is indepen-
dent of x00 and is listed in the first line of a BC23 cell in
column 7. The corresponding analytical difference can be
expressed in terms of c3 and c3 f and its numerical value is
reported in the second line of the same cell. The multichannel
numerical values agree well with the estimates obtained in the
single-channel approximation in Eq. (11). Similarly, for given
m and I, the coefficients vm(I, x00) and ηm(I, x00) are related

by a linear transformation η(I, x00) = v(I, x00)α − β, with
the α and β coefficients reported in cells of columns 10 and
11 of Table III. Here, we also find a good agreement between
the fitted and single-channel approximation results reported in
the same cell in the upper and lower lines, respectively.

The intensity dependence of the coefficients in the
M(xmax) expansion are obtained from the single-channel
formulas and the expansion of V m

ad (x). This dependence, in-
dicated in the second line of the top cells of Table III, is repro-
duced by the numerical fits. At low intensity, the I/x2

max con-
tribution prevails (column 4), whereas for increasing intensity
the contribution of higher orders such as I4 × ln(xmax)/xmax

(column 8) becomes important. The difference M0
BC23 −

M0
BC2 varies as aI3 + b ln(I ) (column 7). For BC32 and

m = 0, the coefficient of 1/xmax varies as 1/3 + b′I4 (column
9), the first term arising from the van der Waals interaction.
The same dependence occurs for the factor β (column 11).

The numerical values obtained by fitting the multichannel
(n = 3) results agree well with the single-channel (p-wave)
approximation coefficients derived using an adiabatic poten-
tial (cf. upper and lower lines in each cell of Table III). In
particular, both calculations reproduce the classification of
the coefficients into two types: the first one characteristic
of the asymptotic p-wave potential, the other one accounting
for the interactions at short distances. In addition, we em-
phasize that the values of M0 corresponding to the BC2 and
BC23 boundary conditions are equivalent and are related by a
general expression depending only on the asymptotic potential
[see Eq. (11)].

The results from Table III justify the extraction from the
multichannel calculations, or more precisely from the ex-
pansion of the divergent M(xmax) into powers of 1/xmax, a
term independent of xmax, vm(I, x00). This quantity plays the
same role as M0 in the single-channel approximation. Thus,
as in the single-channel approximation, we introduce in the
multichannel model a scattering volume given by vm(I, x00),
which characterizes low-energy collisions when the dynamics
is governed by an anisotropic 1/x3 interaction.
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