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Controlling ultracold p-wave collisions with nonresonant light: Predictions of an asymptotic model
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Interactions in a spin-polarized ultracold Fermi gas are governed by p-wave collisions and can be characterized
by the p-wave scattering volume. Control of these collisions by Feshbach resonances is hampered by huge
inelastic losses. Here, we suggest nonresonant light control of p-wave collisions, exploiting the anisotropic
coupling of nonresonant light to the polarizability of the atoms. The p-wave scattering volume can be controlled
by strong nonresonant light, in close analogy to the s-wave scattering length. For collision partners that are tightly
trapped, the nonresonant light induces an energy shift directly related to the scattering volume (as defined by A.
Crubellier, R. González-Férez, C. P. Koch, and E. Luc-Koenig, preceding paper, Phys. Rev. A 99, 032709 (2019).
This effect could be used to climb the ladder of the trap. We also show that controlling the scattering volume
implies control, at least roughly, over the orientation at short interatomic distances of the interparticle axis relative
to the polarization direction of the light. Our proposal is based on an asymptotic model that explicitly accounts
for the anisotropic dipole-dipole interaction which governs the ultracold collision dynamics at long range.

DOI: 10.1103/PhysRevA.99.032710

I. INTRODUCTION

Collisions of neutral atoms or molecules at very low tem-
peratures are universally described by a single parameter—the
s-wave scattering length for bosons and unpolarized fermions
or the p-wave scattering volume for spin-polarized fermions
[1]. This parameter is the central quantity of the pseudopo-
tential technique, where the interaction between two particles
is accounted for in an effective way through the introduc-
tion of contact potentials for each partial � wave [2,3]. The
effective interaction in an s-wave (resp., p-wave) collision
vanishes when the scattering length (resp., volume) goes to
zero, and likewise it becomes infinite when the scattering
parameter becomes infinite. The latter case corresponds to
the appearance of a bound state at threshold. The sign of the
scattering parameter renders the interaction to be effectively
attractive or repulsive, deciding, for example, the stability
of a Bose-Einstein condensate or a degenerate Fermi gas
against collapse at large densities. Given this prominence,
it is not surprising that controlling the scattering length or
scattering volume has long been a primary goal in quantum
gas experiments.

Initial proposals to control ultracold collisions of neutral
atoms focused on near-resonant optical manipulation of the
scattering length [4,5]. This type of control is universal since
it requires only a suitable optical transition. However, due
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to inevitable spontaneous emission losses in near-resonant
coupling schemes, magnetic field control of Fano-Feshbach
resonances has become the most widely employed method
of choice to control collisions, in particular for alkali-metal
atoms [6]. It requires presence of a hyperfine manifold and
sufficiently broad resonances. However, for p-wave collisions,
enormous inelastic losses were observed near Fano-Feshbach
resonances that can only be suppressed in specific geometries
[7–12]. Even more severely, species other than the alkali
metals, such as alkaline-earth atoms or mixtures of alkali and
alkaline-earth atoms, either do not possess Fano-Feshbach
resonances at all or their resonances are too narrow to be ex-
ploited in magnetic field control. These species are promising
candidates for important applications such as optical clocks
or quantum simulation. Near-resonant optical control schemes
have therefore been revisited [13–15], albeit with mixed suc-
cess due to spontaneous emission losses.

Spontaneous emission is minimized for nonresonant light
control [16,17]. Nonresonant light universally couples to the
polarizability of the atoms, independent of the frequency of
the light and the energy level structure of the atoms, as long
as the frequency remains far detuned from any resonance.
This interaction can be used to modify both shape and Fano-
Fesbach resonances [16–18]. Moreover, for sufficiently high
intensity, the nonresonant light coupling results in a variation
of the scattering length with the field intensity [17], similar to
the control of the scattering length by a magnetic field near a
Fano-Feshbach resonance [6]. This gives rise to nonresonant
light control of the scattering length [19]. In particular, the
scattering length diverges when, with increasing intensity, a
shape resonance crosses the threshold to become bound or
when the field-dressed potential becomes sufficiently deep-
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ened to accommodate an additional bound level [16,18]. It is
natural to ask whether this type of control can be extended to
p-wave collisions of spin-polarized fermions.

To answer this question, we employ an asymptotic model
which replaces the interaction potential by its asymptotic part
[20–25]. This approximation is well justified at ultralow tem-
peratures. When controlling a pair of atoms with nonresonant
light, the resulting asymptotic Hamiltonian [18,19] turns out
to be identical to the one describing the control of atom-atom
interaction by a static electric field [26] as well as that de-
scribing ultracold collisions of polar molecules [27,28]. These
problems have in common that they are all governed by the
anisotropic dipole-dipole interaction, which decreases with
the interatomic separation as 1/R3 and introduces a coupling
between all partial � waves of the same parity. The crucial pa-
rameter of the corresponding asymptotic model is the p-wave
scattering volume which may, on first glance, appear to be ill
defined in the presence of dipole-dipole interaction. However,
we have shown in the preceding paper of this issue, referred to
as Paper I [29], how to remedy this problem by suitably gen-
eralizing the definition of the scattering volume. We can thus
proceed now to examine nonresonant light control of the scat-
tering volume that involves exactly this type of interaction.

The present paper is organized as follows. Section II recalls
the asymptotic model for an interparticle interaction of dipole-
dipole type in Sec. II A and lists a few typical physical exam-
ples of this model in Sec. II B. We use the asymptotic model
to make general predictions for nonresonant light control of
the scattering volume in Sec. III, distinguishing between weak
and strong confinement in Secs. III A and III B. Section IV
analyzes the connection between controlling the scattering
volume and the orientation of the interparticle axis relative
to the polarization direction for the pure p-wave case in
Sec. IV A and for multiple channels in Sec. IV B. We conclude
in Sec. V.

II. MODEL

A. Hamiltonian and asymptotic Schrödinger equation

The model describing the relative motion of two dipoles
aligned along the laboratory Z axis and interacting via a
short-range potential is close to the one described in a previous
study [19]. For completeness, we briefly recall here the Hamil-
tonian and the reduced units that allow for a general treatment,
independent of the specific parameters of the particles. In the
Born-Oppenheimer approximation and employing spherical
coordinates, the Hamiltonian reads

H = TR + h̄2L2

2μR2
+ Vg(R) + D3 cos2 θ − 1

R3
, (1)

where R denotes the interparticle separation and θ is the angle
between �R and the Z axis. μ is the reduced mass, TR is
the radial kinetic energy, L is the orbital angular momentum
operator, and Vg(R) is the potential describing the short-range
interactions. For simplicity, Vg(R) is limited here to the van
der Waals potential, Vg(R) = −C6/R6, with C6 the van der
Waals coefficient. The last term in the Hamiltonian Eq. (1)
stands for the anisotropic dipole-dipole interaction governing
the scattering properties at large interparticle distance. This

interaction can be due to nonresonant light with intensity I
which is linearly polarized along the Z axis and couples to the
polarizability anisotropy of the particles. Equivalently, it can
represent the interactions between particles with permanent
electric or magnetic dipole moments aligned by an external
electric or magnetic field along the Z axis. The equivalence is
expressed in terms of the dipolar interaction strength D,

D ↔ 1

4πε0
d1d2 ↔ μ0

4π
m1m2 ↔ 4π I

c
α1α2, (2)

where d1,2 (m1,2) denotes the magnitude of the electric (mag-
netic) dipole moments, whereas α1,2 are the static polariz-
abilities of the two particles, with a dimension of volume
[18]. Here, c denotes the velocity of light, ε0 is the per-
mittivity of vacuum, and μ0 is the vacuum permeability.
Assuming electric dipole moments d1,2 = 1 D or magnetic
dipole moments m1,2 = 1 μB with μB being the Bohr magne-
ton, the dipolar interaction strength amounts to 241a5

0 s−2 kg
and 0.0207a5

0 s−2 kg, respectively. For particles with polar-
izability α1,2 = 100a3

0 with a0 being the Bohr radius, sub-
mitted to light with intensity I = 100 MW/cm2, D becomes
0.0222a5

0 s−2 kg. For typical systems, the electric dipolar in-
teraction is thus generally much larger than the magnetic
one, and a very high light intensity is required to obtain, for
nonresonant light, a dipolar coupling strength similar to that
of the magnetic dipole interaction.

The Hamiltonian Eq. (1) commutes with parity and with
LZ , the projection of the orbital angular momentum on the
laboratory Z axis. As a result, the projection quantum number
m is conserved. Nonresonant light control of the scattering
length concerning m = 0 and even-parity � states has been
discussed in Ref. [19]. Here, we consider odd-parity wave
functions with m = 0 or ±1.

A universal form of the Hamiltonian Eq. (1) is obtained by
introducing reduced units. These can be chosen to eliminate
the scaling factor of the rotational kinetic energy together with
the prefactor of either the dipole-dipole interaction or the van
der Waals term. In the latter case, hereafter referred to as “van
der Waals reduced units” (and denoted by r.u.), the reduced
units of length x, energy E , and nonresonant field intensity
I are, respectively, defined by R = σx, E − E0 = ε E , where
E0 denotes the shift of the dissociation limit induced by the
nonresonant light, and I = β I [18,25]. The corresponding
characteristic length σ , energy ε, and field intensity β are
equal to

σ =
(

2μC6

h̄2

)1/4

, (3a)

ε = h̄2

2μσ 2
, (3b)

β = c

12π

h̄3/2C1/4
6

α1α2(2μ)3/4
= cσ 3ε

12πα1α2
. (3c)

These unit conversion factors contain all the information
specific to the particle species, i.e., reduced mass μ, van der
Waals coefficient C6, and polarizabilities α1 and α2. With
these units, the asymptotic Schrödinger equation for the wave
function f (x, θ, φ), where φ denotes the azimuthal angle,
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TABLE I. Examples of atom pairs which are good candidates for collision control by nonresonant light together with their van der Waals
constant C6, atomic polarizabilities α1,2, taken from Ref. [30], and values for the reduced units of length σ , energy ε, and intensity β; cf.
Eq. (3). The proportionality coefficients that relate the interaction with nonresonant light of intensity I to the dipole-dipole interaction of a
pair with permanent magnetic m or electric d dipole moment [cf. Eq. (2)] are also given.

C6 α1, α2 σ ε/kB β m/
√
I d/

√
I

Pair (units of a6
0) (units of a3

0) (units of a0) (μK) (GW cm−2) (μB) (Debye)

88Sr2 3248.97 186.25 151.053 86.365 0.6358 4.858 0.04506
86Sr–88Sr 3248.97 186.25 150.618 87.875 0.6413 4.879 0.04525
86Sr2 3248.97 186.25 150.188 89.393 0.6468 4.900 0.04545
87Sr2 3248.97 186.25 150.623 87.855 0.6412 4.879 0.04525
171Yb2 1932.0 142.0 156.639 41.303 0.5833 3.548 0.03290
172Yb2 1932.0 142.0 158.868 40.943 0.5807 3.540 0.03283
173Yb2 1932.0 142.0 157.096 40.588 0.5782 3.532 0.03276
174Yb2 1932.0 142.0 157.323 40.238 0.5757 3.525 0.03269
40K–87Rb 4106.5 292.88 309.88 142.284 156.282 0.3674 5.975 0.05541
7Li–133Cs 2933.8 163.98 402.20 91.885 1539.41 1.3416 9.731 0.09025
87Rb–133Cs 5284.9 309.98 402.20 178.379 51.802 0.1747 4.828 0.04478
52Cr2 733.0 78.0 91.2731 400.338 3.7071 4.913 0.04556
53Cr2 733.0 78.0 91.7093 389.047 3.6545 4.878 0.04524

becomes

[
− d2

dx2
− 1

x6
+ L2

x2
− I cos2 θ − 1/3

x3
− E

]
f (x, θ, φ) = 0,

(4)
where the van der Waals interaction is indeed described by
the universal term −1/x6. The nonresonant field intensity I
is a tunable parameter allowing to control the collision. For a
dipole-dipole interaction characterized by the strength D, the
reduced intensity is I = 3D/εσ 3.

A second set of reduced units, hereafter referred to as
“dipole-dipole units” [and denoted by r.u.(dd)] is better
adapted to the analysis of the aligned dipole-dipole interaction
[see Eq. (2)]. It is obtained by introducing the characteristic
length D and energy ED [28],

D = μ

h̄2 D, (5a)

ED = h̄2

μD2
= D

D3
, (5b)

such that R = Dx and E = EDE . In these reduced units, the
asymptotic Schrödinger equation reads

[
− d2

dx2 − c6

x6 + L2

x2 − 6
cos2 θ − 1/3

x3 − 2E
]

f (x, θ, ϕ) = 0,

(6)
where c6, the reduced strength of the van der Waals interac-
tion, is given by

c6 = 2μC6/(h̄2D4). (7)

Whereas in Eq. (4), the short-range van der Waals interaction
is described by a universal term, it is the long-range dipole-
dipole interaction which appears as universal in Eq. (6).
Converting the characteristic length and energy from one unit

set to the other depends only on I,

D = I
6

σ, (8a)

ED = 72

I2
ε, (8b)

whereas the nonuniversal system-dependent parameters c6

and I in Eqs. (6) are related by

c6 = σ 4

D4
= 64

I4
. (9)

B. Physical examples described by the asymptotic model

We summarize here the physical characteristics and scaling
factors for a few atoms and molecules to which our model
applies, either when they interact with a nonresonant field,
cf. Table I, or with each other via a permanent electric or
magnetic dipole moment, that we assume to be completely
oriented by an external electric or magnetic field, cf. Table II.
Tables I and II present the asymptotic physical properties for
the two types of interactions in the corresponding systems of
reduced units. This information needs to be complemented by
the characteristics of the short-range interactions for a given
species, such as the s-wave scattering length. The latter is
typically rather difficult to obtain, in both theory and exper-
iment. Here, in order to remain general, we characterize the
short-range part by the nodal parameter introduced in Paper
I [29], leaving it free to vary such that any actual setting will
be covered.

Table I presents our selection of good candidates for
control with nonresonant light out of the species that have
already experimentally been cooled down to temperatures in
the millikelvin or even nanokelvin range. While all atomic or
molecular collision partners are polarizable and thus interact
with nonresonant light, the field strengths required for control
are rather different. For the nonresonant light to significantly
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TABLE II. Examples of pairs of molecules and atoms with notable dipole moment, either magnetic m or electric d , and with polarizability
α taken from Ref. [30]. The reduced units of length D and energy ED are specific to the dipole-dipole interaction; see Eq. (5). The value of
the van der Waals constant is C6 given in atomic units and c6 in dipole-dipole reduced units [r.u.(dd)]; see Eq. (7). A nonresonant field of
intensity Ic in reduced units (r.u.) specific to the van der Waals interaction, with conversion factor β [see Eq. (3c)] would mimic the effect of
the permanent dipole moments; cf. Eq. (10).

C6 m d α D ED/kB c6 Ic β

Pair (units of a6
0 ) (μB) (Debye) (units of a3

0 ) (units of a0) (μK) [r.u.(dd)] (r.u.) (GW cm−2)

(40K–87Rb)2 15972.0 0.566 602.86 5734.14 83.0502 × 10−3 3.41677 × 10−6 139.556 0.06862
(39K–87Rb)2 15972.0 0.566 602.86 5688.93 85.0461 × 10−3 3.49889 × 10−6 138.73 0.06903
(7Li–133Cs)2 4585400 5.5 566.18 597139. 6.944 × 10−6 9.19856 × 10−12 3445.25 0.29758
(87Rb–133Cs)2 147260.0 1.23 712.17 46917.3 716.021 × 10−6 1.21779 × 10−8 571.161 0.05674
52Cr2 733.0 6.00696 78.0 22.7413 12897.6 259.46 1.4944 3.7071
53Cr2 733.0 6.00696 78.0 22.1792 12180.4 245.05 1.5165 3.6545
161Dy2 1890.0 10.0046 165.0 195.267 56.4625 0.381358 7.63516 0.44952
162Dy2 1890.0 10.0046 165.0 196.663 55.3203 0.372951 7.67783 0.44744
164Dy2 1890.0 10.0046 165.0 199.095 53.3178 0.35945 7.74893 0.44334
167Er2 1760.0 7.00732 153.0 99.3172 210.4070 5.5045 3.9172 0.49965
168Er2 1760.0 7.00732 153.0 99.9123 206.6690 5.4067 3.9348 0.49742
(168Er2)2 7040.0 14.0046 306.0 799.2990 1.61460 0.0105599 18.718 0.10457

alter the scattering properties, the field-induced term in the
Hamiltonian Eq. (1) needs to compete with the rotational
kinetic energy. In other words, large polarizabilities and re-
duced masses are favorable, explaining our choice of stron-
tium [31,32] and ytterbium [33–35]. For even isotopes, these
atoms have a closed-shell ground state 1S0 with vanishing total
angular momentum J = 0 and possess neither a permanent
magnetic dipole moment nor a hyperfine manifold. In addition
to the atomic homonuclear pairs with no permanent elec-
tric or magnetic dipole moment, we consider heteronuclear
dialkali-metal pairs with permanent electric dipole moment:
the smallest (KRb [36,37]), the largest (LiCs [38]), and an
intermediate example (RbCs [39]). Finally, we include the
pair of transition-metal atom Cr with atomic ground level
3d 54s 7S3, with a large permanent magnetic dipole moment.
For these pairs, the reduced length σ characterizing the range
of interatomic separation where the van der Waals interaction
prevails is of the order of 100 to 200 a0. The reduced energy
ε is in the microkelvin range. The reduced unit of nonreso-
nant light intensity, β, of the order of 1 GW/cm2, provides
an estimate for the intensity required to effectively control
the collisions. While such a high intensity is challenging
to realize experimentally, a tight focus is one way to reach
it, as discussed in Refs. [17,19] for the control of the s-
wave scattering length. Application of a nonresonant light of
reduced intensity I is identical to dipole-dipole interaction
in systems with a permanent electric d or magnetic m dipole
moment, increasing as

√
I and proportional to C1/8

6 /(αμ3/8);
see Eq. (2). For an intensity of I = 1 r.u., i.e., I = β GW/cm2

[with β evaluated from Eq. (3c)], the equivalent electric dipole
moments reported in Table I are about 0.03 to 0.1 D, whereas
the equivalent magnetic dipole moments are in the range
from 3.5 to 10 μB. The pair RbCs (Cr2) presents the largest
(smallest) value for the product of the polarizabilities α1α2 or,
equivalently, the smallest (largest) reduced unit for the field
intensity β. It is thus the most (least) favorable candidate for
control by nonresonant light. Note that the very large values of
the equivalent dipole moments for LiCs result from the very
small reduced mass μ.

Table II presents the reduced units of length D and energy
ED, cf. Eqs. (5), for collision partners with a permanent
electric or magnetic dipole moment, assumed to be aligned.
It starts with pairs of heteronuclear dialkali-metal molecules,
namely pairs of KRb, LiCs, and RbCs [40,41], in their lowest
rovibrational level. These molecules possess a large perma-
nent electric dipole moment varying from d = 0.56 D for
KRb up to 5.5 D for LiCs (see Table I of Ref. [42]). The
polarizability of the diatomic molecule is taken to be equal
to the sum of the polarizabilities of the two constituent atoms.
For these pairs, the van der Waals interaction in the lowest
rovibrational level is huge, three orders of magnitude larger
than in a pair of alkali atoms (see Table II of Ref. [42]).
However, the reduced strength of the van der Waals interaction
c6 decreases as μC6D−4; see Eq. (7). Since the unit of length
D ∝ μd2 is also very large, especially for LiCs (D ∼ 0.32 μm
due to large d) and for RbCs (D ∼ 0.25 μm due to large d and
μ), c6 takes values between 10−11 to 10−6 r.u. (dd). Therefore,
the van der Waals interaction is almost negligible, and the
dipole-dipole interaction governs the dynamics.

Table II also presents homonuclear pairs of atoms, bosonic
or fermionic, with a large total angular momentum J and
therefore a large permanent magnetic moment: pairs of the
transition-metal atom Cr, with atomic ground level 3d54s 7S3

[43,44], and pairs of the lanthanide atoms Dy [45,46] and
Er [47,48], with respective atomic ground levels 4 f 106s2 5I8

and 4 f 126s2 6H6. In their lowest state, 2S+1LJ |MJ | = J , with
Landé factor gJ , these atoms possess a large permanent mag-
netic dipole moment m = μBgJJ , and two collision partners
strongly interact via magnetic dipole-dipole interaction. The
van der Waals coefficients for Er and Dy are taken from
Refs. [49] and [50], respectively. Finally, Table II considers
the collision between two Er2 molecules [48] oriented by an
external magnetic field. The total permanent magnetic dipole
moment of the molecule is taken to be equal to twice that of
a single atom. The van der Waals coefficient for the collision
between two Er2 molecules is taken equal to four times the van
der Waals coefficient between two Er atoms in their ground
level.
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For the examples with the strongest permanent dipole
moments d in Table II, the characteristic distance D is huge
and the energy ED is very small. For instance, the temperature
associated to ED varies from the nanokelvin range for KRb
down to the femtokelvin range for LiCs. Simultaneously,
the spatial range increases from a few micrometers up to a
few millimeters. For magnetic atoms interacting via dipole-
dipole interaction, the interaction length is smaller, a few hun-
dred nanometers, corresponding to much higher temperatures,
from ∼0.1 μK for Dy up to ∼0.1 mK for Cr, whereas for
molecular partners such as Er2 it corresponds to microkelvin.

For permanent dipoles, we introduce the critical laser
intensity Ic for which the strength of the nonresonant light
interaction becomes equal to the strength of the dipole-dipole
interaction. It is important to note that in reduced units the
value of the critical intensity does not depend on the polariz-
abilities,

Ic = 3 (2μ)3/4

h̄3/2C1/4
6

D. (10)

For collisions between aligned polar molecules, the critical
intensity Ic is rather large, equal to 140, 570, and 3440 r.u.

for KRb, RbCs, and LiCs respectively; see Table II. In con-
trast, for collisions of magnetic atoms, the critical intensity
is much smaller, equal to 1.5, 3.9, and 7.7 r.u. for Cr, Er,
and Dy atoms. Magnetic molecules represent an intermediate
case, with Ic = 19 r.u. for collisions between Er2 molecules.
These differences in Ic reflect the fact that the strength of
the magnetic dipole-dipole interaction between highly mag-
netic atoms, transition metals and lanthanides, is smaller than
the strength of the electric dipole-dipole interaction between
molecules with large permanent electric dipole moment.

With a number of good candidates at hand, we proceed to
analyze nonresonant light control of the scattering volume. To
this end, we need to account for how the particles are trapped.

III. CONTROL OF p-WAVE COLLISIONS

When atoms or molecules are confined in a magneto-
optical trap (MOT) with an extension of up to a few mil-
limeters, the confinement is very weak and the interparticle
distance can be considered to extend to infinity. It is then
possible to approximately assume the collision partners to
freely move in space. In this case, the asymptotic model
with universal nodal lines is used to determine the intensity
dependence of a quantity which captures the contributions of
the short-range interactions in the case of an asymptotic inter-
action decreasing as 1/R3, that we have defined in Paper I [29]
and that we simply call scattering volume in the following.

This quantity is determined (see Paper I [29] for more
details) by expanding f (x, θ, φ) in Eq. (4) into spherical har-
monics Y�m(θ, φ). A complete set of solutions of the resulting
coupled radial equations for a fixed m value is obtained at
threshold (E = 0) by inward integration as follows. We start
by calculating particular solutions, for which the asymptotic
behavior is accounted for in terms of the initial conditions
for the integration, with a nonvanishing component only in
a particular channel �, with either diverging or nondiverging
asymptotic behavior. These particular solutions do not satisfy
short-range boundary conditions and their number is twice the

number of physical solutions. For the latter, the short-range
boundary conditions are given by a vanishing of the solutions
on what we call the nodal lines. These consist in energy-, �-,
and intensity-dependent positions, characterized by a single
parameter that we call the nodal parameter. It captures the
influence of the short-range part of the molecular potential that
is not considered explicitly in the asymptotic model [51]. We
then isolate the physical solution which does not diverge in the
channel � = 1 only. The coefficient of the nondivergent � = 1
part of this solution depends on xmax, the starting point of the
integration, in a way which can be approximately predicted
by an analytical single channel model, as described in Paper
I [29]. Performing several calculations with different xmax

allows us to deduce the scattering volume in Paper I [29].
We present results obtained with this procedure in

Sec. III A, where we pay particular attention to identifying
intensities for which the scattering volume diverges. This
corresponds to the presence of a bound state at the dissociation
limit and of a shape resonance just above threshold. In con-
trast, for strong confinement, as realized in an optical dipole
trap or in optical lattices, it is no longer possible to consider
cold collisions in free space. We examine, in Sec. III B, the
case where the characteristic length of the trap (assumed to
be isotropic and harmonic) is larger than σ , limiting the non-
resonant field intensity to relatively small values, so that the
equivalent dipole length D = I σ/6, Eq. (8a), remains smaller
than the characteristic trap length. We adapt the asymptotic
model with universal nodal lines to the calculation of the
trap energy levels in the presence of both dipole-dipole and
short-range interactions. Finally, in Sec. III C, we show that
there is a close connection between cold collisions in free
space as discussed in Sec. III A and collisions in an isotropic
harmonic trap presented in Sec. III B. To this end, we relate the
energy shift of the � = 1 trap levels to the scattering volume.

A. Free particles or weak confinement

We first consider confinement of the colliding particles that
is so weak that it can, to a good approximation, be neglected
altogether. When using the asymptotic model with universal
nodal lines, a given pair of colliding atoms is characterized by
its field-free s-wave scattering length a or, equivalently, by the
nodal parameter x00, i.e., a node position of the corresponding
field-free s-wave threshold wave function [25]. This approach
is easily generalized to account for the presence of nonreso-
nant light with intensity I for both s-wave [18] and p-wave
collisions (cf. Paper I [29]), where a, respectively x00, deter-
mines the colliding species. A general picture of the behavior
of the scattering volume as a function of the nonresonant light
intensity for all pairs of particles is thus obtained in terms
of a contour plot, as shown in Fig. 1 for a single-channel
calculation with � = 1. The range chosen for x00 corresponds
to one quasiperiod of the field-free s-wave scattering length
varying from −∞ to +∞; cf. Paper I [29]. Two singularities
are observed in Fig. 1 for m = 0 and one for |m| = 1. These
are indicated by the thick red lines and correspond to infinitely
strong interactions between the colliding particles. For m = 0
and a nodal parameter 0.1495 r.u. � x00 � 0.1505 r.u. (corre-
sponding to a field-free s-wave scattering length in the range
0.9724–1.414 r.u.), less than about 2 r.u. or 2 GW/cm2 of
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FIG. 1. Scattering volume as a function of the nonresonant field
intensity I and the nodal parameter x00 for m = 0 (left) and m = 1
(right) in a single-channel calculation (� = 1). The gray contour lines
vary in 40 steps between −150 and 150 for m = 0 and −2 and 2
for m = 1 with the zero line labeled and the plus and minus signs
indicating the regions of positive and negative values of the scattering
volume. The red thick lines indicate the values of I and x00 for which
the field-dressed scattering volume diverges. Note that the absolute
value of the scattering volume is in general much larger for m = 0
than for |m| = 1, and that the width of the divergences is generally
also much larger, increasing with the light intensity for m = 0, while
decreasing for |m| = 1. Reduced units (r.u.) are used.

nonresonant light intensity is sufficient to effectuate a huge
change of the scattering volume. Such an s-wave scattering
length is found for a mixture of 7Li and 40K, colliding in the
lowest triplet state. Similarly, for |m| = 1, the lowest intensi-
ties to realize a divergence of the scattering volume are needed
for species characterized by a nodal parameter 0.1490 r.u. �
x00 � 0.1495 r.u. or, respectively, a field-free s-wave scat-
tering length in the range 0.8428–0.9724 r.u., such as the
interspecies triplet scattering length of 41K and 87Rb [52].

The picture in Fig. 1 is only of illustrative character due to
the single-channel approximation. A more quantitative picture
is obtained in multichannel calculations. Figure 2 shows, for
n = 9 coupled channels, the singularities of the scattering
volume as a function of the nonresonant light intensity and
the field-free s-wave scattering length (bottom), respectively
the nodal parameter (top). The left- and right-hand sides of
Fig. 2 correspond to m = 0 and |m| = 1, respectively. For
simplicity, only the singularities (corresponding to the red
thick lines in Fig. 1) are shown and the contours are omitted.
The bound states, whose occurrence at threshold causes the
singularity, are labeled by �̃, in reference to the � channel
with the largest weight in the field-dressed wave function.
For the lowest two values, �̃ = 1 and �̃ = 3, the singularity
curves vary rapidly and almost linearly as a function of
the nonresonant light intensity I, especially for �̃ = 1 and
m = 0 (left part of Fig. 2), where a very broad anticrossing
between the �̃ = 1 and �̃ = 3 singularity curves occurs for
I ∼ 10 r.u. In this case, the occurrence of a bound level at
threshold depends only to a limited extent on the s-wave
scattering length. Rather, it is essentially determined by the
nonresonant field intensity, i.e., the anisotropic long-range
interaction. For � = 1, |m| = 1 (top right part of Fig. 2), a
negative slope of the singularity curve is observed at low
intensity. This is caused by the repulsive character of the
effective adiabatic potential; cf. Table I in Paper I [29]. The

large differences between the single-channel results (Fig. 1,
right part) and multichannel results for I > 10 r.u. (Fig. 2,
right upper panel) are due to the coupling between � partial
waves. For an intensity higher than about 10 r.u., the coupling
of the � = 1 channel with the other ones becomes dominant,
turning the slope of the singularity curve positive, as for all
the other (�, m) values.

For the larger values of �̃, singularities appear for a
field-free s-wave scattering length approximately equal to
zero (or, equivalently, x00 = 0.149481 r.u.), for �̃ = 5, 9, 13,
and approximately equal to 0.96 r.u. (resp., x00 = 0.144652
r.u.) for �̃ = 7, 11, 15 1. These two values of the field-free
s-wave scattering length are close to those predicted by
the analytical model of Gao [53]. The corresponding
singularity curves of the p-wave scattering volume vary
only slowly with the light intensity. This indicates that
the corresponding field-dressed wave functions strongly
depend on the short-range interaction and almost not on the
anisotropic long-range interaction. It can be understood in
terms of the height of the rotational barrier which, being
proportional to ∝ �3, increases rapidly with � and is barely
modified by the nonresonant light at the studied intensities.

In the single-channel approximation, the width of the sin-
gularity as a function of either x00 or I can be deduced from
the results of Fig. 1. Let us define by w the width of a singular
function of the type y(x) = w/(x − xp) with a pole at x = xp.
Then, for instance, for m = 0 the width in I increases with
light intensity from about 12 r.u. at the bottom of the figure
up to about 220 r.u. at I = 20 r.u., whereas for |m| = 1 it
decreases from about 5.6 r.u. down to 0.5 r.u. at I = 20 r.u.
It is worth mentioning that the width of the singularity as
a function of intensity is not independent of the width as a
function x00. At a given point in the (I, x00) plane, the width
along the first axis is proportional to the width along the other
one, with the proportionality factor being equal to the opposite
of the slope of the singularity curve.

B. Strong confinement

If the pair of particles is confined in an isotropic 3D
harmonic potential of frequency ω, a term β4

ωx2 has to be
added in Eq. (4), describing the relative motion in van der
Waals reduced units, with

βω = σ

√
μω

h̄
= σ/aω, (11)

where aω (εω) is the trap reduced unit of length (energy)

εω = h̄ω = h̄2

μ(aω )2
= 2ε(βω )2. (12)

With the unit factors aω and εω, the length xω (resp., energy eω)
expressed in reduced units of the harmonic oscillator [r.u.(ω)]
is related to the corresponding value x (resp., E) in van
der Waals reduced units (r.u.) by xω = xβω [eω = E/(2β2

ω )].
When strongly confined in a trap, where at large distance the
trapping potential ∝ x2 prevails, the particles will explore only

1Note that it is necessary to introduce the channel �max (here �max =
17) to obtain converged results for the channels � � �max − 2.
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FIG. 2. Map of the singularities of the scattering volume (analogous to the red lines in Fig. 1) as a function of either the nodal parameter
x00 in reduced units (top panels) or the field-free s-wave scattering length a in reduced units r.u. (bottom panels) and of the nonresonant
light intensity in reduced units r.u., for m = 0 (left) and |m| = 1 (right). The scaling with the equivalent dipole length, D in Eq. (8a), for the
anisotropic interaction is also shown in the top horizontal axis in each panel. The singularities are obtained in terms of the appearance of a
zero-energy bound state and correspond to infinitely strong interaction between the particles. The calculations have been performed for odd
� values from 1 to 17 (n = 9 channels). The horizontal blue dashed lines in the top graphs indicate the values of the nodal parameter for
which the field-free s-wave scattering length is infinite. The curves corresponding to �̃ = 5, 9, 13 (resp. �̃ = 7, 11, 15) are grouped in a roughly
horizontal beam starting from an initial value of approximately x00 ∼ 0.15 r.u. (resp., x00 ∼ 0.145 r.u.) in the top graphs and from an initial
value a ∼ 1 r.u. (resp., a ∼ 0 r.u.) in the bottom ones. The data within the red box are shown in more detail in Fig. 3, and the red dashed lines
indicate the cases that will be examined in Figs. 4 and 5 (x00 = 0.1492 r.u., a = 0.891 r.u.).

a limited range of the dipole-dipole interaction potential. We
thus may expect that, in the lowest positive-energy states of
the trap, the behavior of the interparticle interaction will be
close to the one described by small kx or, equivalently, by the
threshold case, k = 0 (cf. Sec. II E of Paper I [29]), where
k denotes the wave number in van der Waals reduced units
(E = k2). Due to the trap, the spectrum possesses bound states
only. The study of the asymptotic phase shift of the scattering
wave functions is thus replaced by analysis of the bound-
state energy shift with respect to the m-independent energy
of the unperturbed trap states in harmonic oscillator reduced
units, eω(N�) = (2N + � + 3/2) r.u.(ω) (N � 0 integer). We
consider here only the case where aω is larger than σ and
we limit the nonresonant light intensity to relatively small
values, so that the characteristic length of the dipole-dipole
interaction D remains always much smaller than aω.

To calculate the energy E of the bound states, we adapt the
general procedure described in Ref. [25]. The wave function
satisfies boundary conditions both on the nodal lines and
at large distance xmax. The initial condition for the inward
integration of the particular solution f�(E, x) is given by
f �
�′ (E, xmax) = δ�,�′ exp(−β2

ωx2
max/2) in the channels �′. Writ-

ing the physical wave function z(E, x) as a linear combination
of the solutions f�(E, x) and requiring it to vanish on the nodal
lines yields the quantization condition for the energy.

The intensity dependence of the bound-state energies, cal-
culated with three odd � values, |m| = 1, and a trap potential
βω = 0.05 (i.e., a trap length aω = 20 σ ) is studied in two dif-
ferent intensity ranges. In both cases, the chosen nodal param-
eter is x00 = 0.1492 r.u. and the field-free s-wave scattering
length is equal to 0.891 r.u. For this choice of parameters, an
untrapped pair of particles subject to nonresonant light pos-
sesses two times a bound state with �̃ = 1, |m| = 1 at thresh-
old, as shown in Fig. 2, for a light intensity I equal to 1.36
and 9.01 r.u. The corresponding equivalent dipole lengths D,
cf. Eq. (8a), amount to 0.23 σ and 1.50 σ , as shown in Fig. 2.

The intensity regions around I = 1.36 and 9.01 r.u.
are explored separately in Figs. 4 and 5. The relevant
field-free |m| = 1 trap states correspond to N = 0, � = 1
[the lowest odd-� trap level, with eω = 5/2 r.u.(ω)], N = 0,
� = 3, and N = 1, � = 1 [the doublet of trap levels with
eω = 9/2 r.u.(ω)] in Fig. 4 and the triplet of trap levels with
eω = 13/2 r.u.(ω), N = 0, � = 5, N = 1, � = 3, and N = 2,
� = 1 in Fig. 5.
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FIG. 3. Inset of the bottom right part of Fig. 2, i.e., map of the
singularities of the scattering volume as a function of the field-free
s-wave scattering length (in r.u.) and nonresonant light intensity (in
r.u.) for |m| = 1. Horizontal gray line: field-free s-wave scattering
length equal to 0.891 r.u. (corresponding to x00 = 0.1492 r.u.), the
value used in Figs. 4 and 5; vertical gray line: predicted value of
the position of the singularity (the red circle simply marks their
intersection).

Two avoided crossings are observed in Fig. 4, around I =
1.4 and 1.43 r.u. They are due to the strong coupling that the
anisotropic interaction induces between each of the two � = 1
trap states (with N = 0 and N = 1) and the untrapped last
bound �̃ = 1 state together with its continuation as a �̃ = 1
shape resonance. The N = 0, � = 3 trap state is not noticeably
perturbed; see the essentially horizontal black line in Fig. 4.
The red curve displaying, for the untrapped pair, the intensity
dependence of the energy of the last molecular p state (for
negative energy) and of the p-wave shape resonance (for
positive energy) crosses the red dashed curves representing
the field-free � = 1 trap states at the position of the anticross-
ings. In addition, the red curve crosses the zero energy for
the intensity at which the scattering volume diverges. The
increase of the energy of the lowest bound p state with I in
Fig. 4 is related to the repulsive character of the anisotropic
interaction in the � = 1, |m| = 1 channel, as discussed in the
previous subsection and visible in the negative slope of the
�̃ = 1 curve at small I in Figs. 2 and 3.

In Fig. 5, the situation is similar to that in Fig. 4, but the
repulsive character of the dipolar interaction in the � = 1,
|m| = 1 channel is superseded by the coupling with the other
channels. As a consequence, and as is most generally the
case, close to the divergence of the scattering volume, the
energy of the lowest bound p state decreases with intensity
in Fig. 5, and the slope of the singularity curve with �̃ = 1 in
Fig. 2 is positive near I = 9 r.u. Note that while the N = 1,
� = 3 and N = 0, � = 5 trap states (black solid lines showing
avoided crossings in Fig. 5) are strongly mixed together in the
vicinity of the divergence of the scattering volume, they are
not noticeably mixed with the N = 2, � = 1 state (horizontal
black lines at eω = 13/2 r.u.(ω) in Fig. 5). The intensity
dependence of the trap state energies in Fig. 5 is similar to
the dependence of the energy of two aligned identical bosonic
dipoles colliding in s wave under external confinement with

FIG. 4. Trap state energy as a function of the nonresonant light
intensity I (black lines), compared to the energy of the field-free
trap states (red dashed lines), identified in the text. The scales are
reduced units (r.u.) of the van der Waals interaction (left), reduced
units [r.u.(ω)] of the harmonic oscillator (right), nonresonant light
intensity (in r.u.) (bottom), and ratio of the equivalent dipole length
D, Eq. (8a), to harmonic oscillator length aω (top). The light-induced
anticrossings of the field-free � = 1 trap states with the intensity-
dependent last bound p-state (for negative energies), respectively p-
wave shape resonance (for positive energies) for untrapped particles
(red solid line), are clearly observable. The calculation is performed
for βω = 0.05 in a three-channel model with � = 1, 3, 5, |m| = 1
with x00 = 0.1492 r.u., i.e., a field-free s-wave scattering length of
0.891 r.u. This intensity range corresponds to the first intersection
of the red dashed horizontal line in Fig. 2 with the black �̃ = 1
curve. The blue dashed line displays the intensity dependence of
the scattering volume, calculated under the same conditions (� = 1,
3, 5, |m| = 1, and x00 = 0.1492 r.u. but βω = 0) and multiplied for
convenience by the factor B (for N = 0) of Table III in Appendix A.

strength characterized by D/aω [54], where D is the equivalent
dipole length of Eq. (5a). Figure 2 of Ref. [54] shows the
energy of lowest trapped state of the pair to dive down to
negative energy close to the D/aω value at which the two-body
potential supports a new bound state. Moreover, the same
behavior is also predicted for identical fermions undergoing
p-wave collisions [55].

Our calculations suggest that it should be possible to
control the formation of molecular bound states in p-wave
collisions by nonresonant light. This would be analogous to

FIG. 5. Same as Fig. 4 but for the second intersection of the red
dashed horizontal line (at x00 = 0.1492 r.u.) in Fig. 2 with the black
�̃ = 1 curve.
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using nonresonant light to create molecules from bosonic
atoms in s-wave collisions, as discussed in Ref. [16]: Slowly
increasing the light intensity around I = 9.01 r.u. would
transfer the particle pair at resonance from the lowest trap
state to the last molecular bound state. The same is true for the
situation depicted in Fig. 4, except that the intensity has to be
decreased around I = 1.36 r.u. The inverse process consisting
of climbing the trap ladder upward by a rapid variation of the
light intensity would also be possible. Making molecules with
nonresonant light this way would be a generalization of an
experiment carried out for s-wave collisions, in the vicinity
of a Feshbach resonance, of fermionic 40K atoms in various
hyperfine states confined in an optical three-dimensional (3D)
lattice [56]. Note that the experimental results of Ref. [56]
are reproduced by a model, also used below, describing the
short-range interaction by a pseudopotential with a scattering
length independent of energy [55,57,58]. Moreover, just as the
scattering behavior discussed above can be tuned with either
nonresonant light or dipole interaction strength, the forma-
tion of molecules also has its analog for colliding dipoles.
Specifically, the simultaneous variation of the lowest trap
state energy (black curve) and the scattering volume (blue
dashed curve) with the nonresonant light intensity in Fig. 5
is reminiscent of the dependence of energy and scattering
parameter on dipole coupling strength in Refs. [59,60]. In both
cases, the effective interaction is increasingly attractive and
the scattering parameter negative at the left of the resonance.
Conversely, the interaction is decreasingly repulsive and the
scattering parameter positive to the right of the resonance.
In both cases, at resonance, the pair is transferred from the
lowest trap state to the last molecular bound state. The main
difference lies in the existence, in the case of nonresonant light
control, of a small shift of the pole of the scattering volume
relative to the position of the lowest anticrossing of the trap
energies. This shift comes from the finite slope of the energy
as a function of intensity, cf. the red curve in Fig. 5, which
is due to the presence of the van der Waals potential and the
energy, �, and intensity dependences of the nodal lines.

C. Connecting p-wave scattering control with nonresonant light
in weak and strong confinement

For a pair of trapped particles subject to nonresonant light,
it is possible to connect the intensity dependence of the p-
wave scattering properties in the weak and strong confinement
case by studying the intensity dependence of either the field-
dressed scattering volume M0 or the trap state energy shifts.
As discussed in detail in Sec. III of Paper I [29], the field-
dressed scattering volume, M0, depends on the nodal param-
eter x00 that is characteristic of the short-range interactions
in the field-free untrapped pair and displays singularities, i.e.,
signatures of the appearance of �̃-bound states at threshold.
Moreover, for a given intensity, many singularities (for differ-
ent �̃) are found, cf. Fig. 2, whereas for a given nodal parame-
ter, i.e., for a given choice of particles, intensity intervals that
contain divergences have to be carefully selected. So we first
examine the x00 dependence of the trap state energy shifts for
a fixed light intensity I.

Without any interaction in the pair, the trap energy
for a state with quantum numbers N , � = 1, m is

FIG. 6. Trap state energy (thick gray curves) of m = 0 states as
a function of the nodal parameter x00 for I = 6 r.u. and βω = 0.05,
in van der Waals reduced units on the left-hand side and in harmonic
oscillator reduced units on the right-hand side for the lowest state
of the trap with N = 0, � = 1 (bottom), and the third state, i.e.,
the set of states with 2N + � = 5, whose threefold degeneracy is
removed by the dipolar interaction (top). The black dashed lines
display the x00 dependence of the field-dressed scattering volume
M0 of untrapped particles, multiplied by B = 1.35510−6 r.u. (B =
5.910−6 r.u.) and vertically shifted by 0.01233850 r.u. (0.03223315
r.u.), to fit the scale of the figure. This corresponds to a global shift of
A = −0.0001615 r.u. (A = −0.00026685 r.u.) of the first (third) trap
state. The interaction-free trap states are indicated by the thin dashed
gray lines. The calculations are performed in a three-channel model
(� = 1, 3, 5). Reduced units r.u. are used.

given by E (N�m) = 2(βω )2(2N + � + 3/2) r.u. in van
der Waals reduced units or, equivalently, eω(N�m) =
(2N + � + 3/2) r.u.(ω), in harmonic oscillator reduced units.
The interparticle interaction in the untrapped pair induces a
shift 
EN,�=1,m that will depend on the characteristics of this
interaction, i.e., the short-range interactions described by the
nodal parameter x00 (or equivalently the field-free scattering
length), the van der Waals asymptotic interaction −1/x6 in
reduced units, and the anisotropic dipolar interaction induced
by the light.

Figures 6 and 7 display x00 dependence of the energy of
the first (the lowest) and third trap state for a nonresonant
light intensity of I = 6 r.u. (D = σ ) and a trapping potential
with βω = 0.05 (aω = 20σ ). m = 0 in Fig. 6 and |m| = 1 in
Fig. 7. As everywhere in this paper, the x00 range is chosen
so that the corresponding field-free s-wave scattering length
varies once from −∞ to +∞. Note that the lowest trap state
is nondegenerate, whereas the third one is triply degenerate.
The short-range interaction of the particles and the coupling
to the nonresonant light produce an �-dependent energy shift
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FIG. 7. Same as Fig 6, but for |m| = 1 states. The scaling param-
eters for M0 are B = 1.5 × 10−6 r.u. (B = 5.9 × 10−6 r.u.) and shifts
of 0.0125725 r.u. (0.032611 r.u.), corresponding to a global shift of
A = 0.0000725 r.u. (resp. A = 0.000111 r.u.), of the first (third) state.
Reduced units (r.u.) are used.

that removes the degeneracy. Therefore, three separate gray
curves are observed in the top of Figs. 6 and 7. In the lowest
�̃ = 1 adiabatic potential, V�=1(x) ∼ −c3/x3, the interaction is
attractive with c3 > 0 for m = 0 (resp. repulsive with c3 < 0
for |m| = 1), and the trap state energy is shifted toward lower
(resp. higher) energy; cf. the difference between the thin
dashed gray lines corresponding to pure trap state and the
thick gray curve associated with the �̃ = 1 perturbed p-trap
state. This difference is essentially constant, except close to
a divergence. The adiabatic potentials �̃ � 3 are all attractive,
resulting in a negative energy shift of the trapped states �̃ = 3
and 5. The �̃ = 1 trap states show an x00 dependence of their
energy in the vicinity of the unperturbed trap state energy that
is quite similar to that of the field-dressed scattering volume
Mm

0 (x00). To visualize this in Figs. 6 and 7, we have scaled the
x00 dependence of the field-dressed scattering volume shown
in Fig. 2 of Paper I [29] to fit the energy range of the trap states
and included the resulting curves with black dashed lines. The
three resonances of Mm

0 (x00) observed in Fig. 6 for m = 0,
which are associated to the channels � = 1, 3, and 5, appear
at exactly the x00 value as those of the trap state energies. The
same is true for the |m| = 1 resonances in Fig. 7, except that
the resonance with � = 5, which is extremely narrow, is not
resolved in our calculations.

The ease with which the numerical results for the energies
in the trapped case and the scattering volume in the case of
free collisions in Figs. 6 and 7 can be connected suggests
a closer inspection of their relation. The x00 dependence of
the field-dressed scattering volume Mm

0 (x00) was deduced in
Sec. III A of Paper I [29]. Since it was only necessary to scale
and shift Mm

0 (x00) in order to display it together with the trap

state energy shifts as a function of x00, the simple ansatz for
the interaction-induced shift in energy,


EN,�=1,m(x00) = A + BMm
0 (x00), (13)

should be sufficient. The linear equation (13) is written for
BC2 reference functions, cf. Table I in Paper I [29], and
assuming that 
EN,�=1,m � 4(βω )2, i.e., the energy shift is
much smaller than the level spacing of interaction-free trap
levels. In Eq. (13), the parameters A and B depend on the
confinement βω and on the quantum numbers N , �, and m,
but are independent of the nodal parameter. For the lowest trap
level, i.e., N = 0, � = 1, it is possible to determine this depen-
dence. To this end, we calculate the energy related to the trap
potential for a wave function, fpert (x), which, for βωx � 1, has
the same behavior as the untrapped threshold p-wave function
u(x). While the trap wave function without any interaction
is proportional to x2 exp[−(βωx)2/2], in the presence of in-
teractions the ansatz fpert (x) = u(x) exp[−(βωx)2/2] = [x2 −
ax − b − c ln(x)/x − d/x − M0/x] exp[−(βωx)2/2] ensures
the correct behavior at long interparticle distances. In this
ansatz, a, b, . . . (cf. Eqs. (A7) and (A8) of Paper I [29])
depend on the m- and I-dependent parameters c3, c4, . . .,
which describe the asymptotic form of the effective potential
for p waves, cf. Table I of Paper I [29], while u(x) is reported
in Eq. (B7) of Paper I [29]. With this ansatz, the mean trap
potential energy becomes

Vpert =
∫

β4
ωx2 fpert (x)2dx∫

fpert (x)2dx
, (14)

where the integration runs from a small value to ∞. Using the
virial theorem for the harmonic oscillator, the total energy is
twice this value. Comparing the total energy of the trapped
interacting pair to the trap level without interaction, we find,
for the lowest trap level,

A = − 4c3

3
√

π
β3

ω, B = 8√
π

β5
ω. (15)

This is in good agreement with the numerical results that were
obtained for m = 0 and m = ±1 in both single-channel (� =
1) and multichannel (� = 1, 3, 5) calculations. For instance,
the estimates of A and B for the lowest m = 0 state shown
in Fig. 6 are 1.41 × 10−6 r.u. and −1.504 × 10−4 r.u., to
be compared with the values quoted in Fig. 6, i.e., 1.355 ×
10−6 r.u. and −1.615 × 10−4 r.u.. Similarly, for |m| = 1, i.e.,
Fig. 7, the estimates for A and B are 1.41 × 10−6 r.u. and
7.523 × 10−5 r.u., to be compared to 1.5 × 10−6 r.u. and
7.25 × 10−5 r.u.

This method is, however, not suitable to determine A and
B for higher trap states, since the ansatz fpert (x) is built upon
the (zero-energy) threshold wave function u(x). We therefore
resort to a more general procedure described in detail in
Appendix A. The parameter A is obtained from first-order
corrections to the energy of trap states due to the asymptotic
potential. For the evaluation of parameter B, the energy shift
of � = 1 states, equal to BMm

0 (x00), is obtained to first order
in a model where the short-range interactions are accounted
for by a contact potential and the energy of the perturbed
trapped states is evaluated analytically [54,55,57,58]. The
close connection between the cases of weak (or no) and strong
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confinement is thus explained by the important role of the
short-range interactions.

IV. SCATTERING VOLUME AND ORIENTATION OF THE
INTERPARTICLE AXIS

We study in the following the interdependence of the
scattering volume and the orientation of the interparticle axis
relative to the direction of the two dipoles induced by the
nonresonant light. Remember that the dipoles are aligned
along the polarization of the light, the laboratory Z axis; cf.
Sec. II A. Our focus is on the orientation of the interparticle
axis relative to the direction of the dipoles. Particular attention
is paid to the case where the nonresonant light is used to
induce a divergence of the scattering volume. We recall that
this problem is formally identical to the case of permanent
dipoles, provided their direction is fixed. While it is chal-
lenging to solve the complete scattering dynamics, insight can
already be gained by examining the orientation as a function
of interparticle distance.

Because of the symmetry of the problem, the representa-
tion of the Hamiltonian in the basis of the spherical harmonics
is block diagonal in m and depends on the absolute value
of m only. In an experiment, it is impossible to select a
given value of m (except for very specific cases, such as
samples in the shape of a pancake or a needle). Therefore,
in general, the scattering states are a linear combination of
two solutions, one with m = 0 and one with m = ±1. There
is no mixing between the two m solutions but these solutions
evolve differently as a function of the interparticle distance.
This results in a variation of the orientation in the (x, z) or
(y, z) plane of the interparticle axis with respect to the dipole
direction. The orientation will thus in general be a function of
the interparticle distance.

We distinguish below between freely movable and geomet-
rically confined particles, the orientation of the dipoles being
always fixed. For freely movable particles, we first inspect
a single-channel model in Sec. IV A and generalize to the
multichannel case in Sec. IV B. The situation of particles that
are geometrically confined due to a specific shape of the trap
giving rise for instance to quasi-2D or 1D samples is discussed
in Sec. IV C.

A. Orientation of the interparticle axis at short internuclear
distance: Single � value

We start with the single-channel approximation (with � =
1) because of its simplicity and in order to gain some first
intuition. Because of the symmetry around the laboratory
fixed Z axis, it is sufficient to analyze the wave function in
the Z-X plane (φ = 0). This reduces the angular part to its
dependence on θ , the angle between the interparticle axis
and the laboratory fixed Z axis. The p-wave single-channel
threshold wave function with mixed m character can thus be
written as

φ(x, θ ) = cos(α)u0(x) cos(θ ) + sin(α)u1(x) sin(θ ), (16)

where u0(x) and u1(x) are threshold radial components of the
eigenfunctions of the two blocks

Hm = 〈Y�=1,m|H |Y�′=1,m 〉, (17)

FIG. 8. Dependence of the angle η(x), characterizing the main
orientation of the interparticle axis with respect to the field direction,
on interparticle distance x (in reduced units) for I = 6 r.u. and
x00 = 0.148 r.u. (which corresponds to an s-wave scattering length
of 0.651 r.u.). The vertical red dotted line indicates the position of
the repulsive wall x0(E = 0, � = 1, I ) (see text) and the blue one the
position of the value of x chosen in Fig. 9. The asymptotic value
of η(x) in this example is π/4. Calculations are performed in the
single-channel p-wave model.

with m = 0 and 1. They have the same asymptotic form
u|m|(x) ≡ x2 + . . .; cf. Paper I [29]. The angle α denotes the
orientation of the dipole moments relative to the interparticle
axis. More specifically, α determines the main orientation of
the interparticle axis at large distance, where u0(x) and u1(x)
are taken to be identical and equal to x2. One can separate the
function φ(x, θ ) into a radial part which depends only on the
interparticle distance x and is asymptotically equal to x2 and
an angular part,

φ(x, θ ) = [cos(α)2u0(x)2 + sin(α)2u1(x)2]1/2

×cos(α)u0(x) cos(θ ) + sin(α)u1(x) sin(θ )

[cos(α)2u0(x)2 + sin(α)2u1(x)2]1/2

= [cos(α)2u0(x)2 + sin(α)2u1(x)2]1/2

× cos[θ − η(x)], (18a)

where

tan[η(x)] = u1(x)/u0(x) × tan(α). (18b)

For a fixed interparticle distance x, the angle η(x) is the angle
for which the wave function presents the maximum proba-
bility, i.e., it corresponds to the main orientation of the in-
terparticle axis. In the asymptotic domain where u1(x)/u0(x)
is almost constant, η(x) varies slowly and converges regu-
larly toward its limit α. In contrast, at short distance (x <

0.5 r.u.) where the attractive −1/x6 potential dominates and
the radial functions um=0,±1(x) are highly oscillatory, η(x)
changes rapidly. This is illustrated in Fig. 8, which displays
η as a function of interparticle distance x. As x is decreased
and approaches the nodal line, η(x) approaches a value that
depends on α and x00, apart from sudden variations at the
nodes of the wave function. This value amounts to ∼0.33
radians in the example of Fig. 8.

The short-range behavior of η(x) is further analyzed in
Fig. 9, which shows the dependence of η(x00 + δx ) on the
nodal parameter x00 for various values of the asymptotic
angle η(xmax) = α (evaluated here at xmax = 200 r.u.), with α

032710-11



ANNE CRUBELLIER et al. PHYSICAL REVIEW A 99, 032710 (2019)

FIG. 9. Angle η(x00 + δx ), characterizing the main orientation
of the inter-particle axis with respect to the field direction at short
distance, as a function of the nodal parameter x00 (in reduced units)
for various values of the angle η(xmax) = α at large distance (xmax =
200 r.u.), with α varying from π/24 to 11π/24. The intensity is I =
6 r.u. and the value of δx , δx = 0.034 r.u., is chosen such that x00 + δx

is small and does not coincide with a node of the wave functions
um(x). For a nodal parameter corresponding to a bound state at
threshold with either m = 0 or |m| = 1, η(x00 + δx ) is independent
on the asymptotic orientation α and is equal to either 0 or ±π/2.
The two small open circles indicate the corresponding positions of
the divergences of the scattering volume for m = 0 (left) and |m| = 1
(right). Calculations are performed in the single-channel p-wave
model.

varying from π/24 to 11π/24. The value of δx is chosen such
that x00 + δx is small and does not coincide with a node of the
u0,±1(x) wave functions. The two constant cases correspond
to α = 0 and α = π/2. The short-range dependence of η(x)
on x00 can also obtained by calculating the slopes Dm(x0) =
u′

m(x0) of the two solutions at the position of their energy-,
intensity-, and �-dependent node x0(E, �, I ) with � = 1 and
E = 0. This is explained in Appendix B. A remarkable
observation can be made in the case when the scattering vol-
ume diverges, with the corresponding values of x00 indicated
by the open circles in Fig. 9. Then η(x00 + δx ) takes the same
value, independent of its asymptotic value α, as is evident
from all curves in Fig. 9 coinciding. This is in contrast to
the case when the scattering volume remains finite, in which
case the short-range value of η does depend on the asymptotic
value. Next, we will examine whether the special behavior of
the orientation of the interparticle axis relative to the dipole
moments in the case of a diverging scattering volume still
appears when the coupling between different partial waves is
properly accounted for.

B. Orientation of the interparticle axis at short internuclear
distance: Several channels

To analyze the role of the scattering volume for the ori-
entation of the interparticle axis in a multichannel treatment,
we consider a given asymptotic orientation and look at the
angular behavior of the corresponding wave function as x
decreases. This approach is motivated by the fact that any
actual situation can be described by a superposition of wave
functions with given asymptotic behavior. We start from the

FIG. 10. Polar plot of the asymptotic wave function Eq. (20), for
three channels with odd � values, θ0 = −0.3π and φ = 0. Dashed
black line: total wave function. Cyan, blue, and purple lines: partial
wave functions with � = 1, 3, and 5. Reduced units are used.

following general expression of the Dirac δ function:

δ(θ − θ0)

sin(θ0)
=

∞∑
�=0

�∑
m=−�

Y�,m(θ, φ)Y �
�,m(θ0, φ). (19)

At large distance, the wave function providing the best repre-
sentation of a given orientation θ0 of the interparticle axis with
respect to the laboratory fixed Z axis can be written as

fasym(θ, φ) =
�max∑

�=�min

�∑
m=−�

Y�,m(θ, φ)Y �
�,m(θ0, φ). (20)

We limit the sum over � to odd values and restrict φ to zero due
to symmetry, as in the previous subsection. Figure 10 shows
the asymptotic wave function for the example of θ0 = −0.3π ,
obtained by including in the calculation three values of � and
all corresponding m values. As expected, the wave function
points towards −0.3π and, as also expected, higher � waves
would be required to properly describe the orientation.

To study the x dependence of the angular behavior of the
wave function, we solve the Schrödinger equation for the three
values of � and all corresponding m values. We use the same
method of inward integration as described in Paper I [29] and
obtain a set of radial wave functions um

�,�′ (x), where � denotes
the channel associated to the physical solution and �′ refers to
the channel in which the integration starts. At large distance,
taken to be xmax, the interaction between the different channels
is small, and um

�,�′ (xmax) is taken as equal to a Kronecker δ�,�′ .
The complete wave function associated to given asymptotic
conditions is thus given by

f (x, θ, φ) =
�max∑

�=�min

�max∑
�′=�min

�∑
m=−�

um
�,�′ (x)

× Y�,m(θ, φ)Y �
�′,m(θ0, φ), (21)

where � takes odd values only. We calculate separately the
different � components of the wave function,

f�(x, θ, φ) =
�max∑

�′=�min

�∑
m=−�

Y�,m(θ, φ)Y �
�′,m(θ0, φ)um

�,�′ (x), (22)
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FIG. 11. Partial wave norms [cf. Eq. (23), cyan, blue, and purple
curves for � = 1, 3, 5] as a function of interparticle distance x in r.u.,
for θ0 = −0.3π , I = 6 r.u., and a nodal parameter that corresponds
to a scattering volume far from the �̃ = 1 poles (x00 = 0.147 r.u. or,
resp. a = 0.494623 r.u.). The insets show the angular behavior of the
scattering wave function for several x whose positions are indicated
by the vertical gray dashed lines. The angular behavior of the total
wave function, Eq. (21), is depicted in black, at the top. The polar
plots corresponding to the partial wave functions, Eq. (22), are also
shown at the bottom. The asymptotic polar plot is shown in Fig. 10.
For x smaller than about 2.5 r.u., the angle for which the probability
is maximum becomes roughly fixed, with a value depending on
the asymptotic orientation (here about −π/4). The calculation was
performed with three values of � and all corresponding m values.

and their norms,

N�(x, φ)2 =
�max∑

�′=�min

�∑
m=−�

∣∣Y�′,m(θ0, φ)um
�,�′ (x)

∣∣2
. (23)

The functions u are the radial parts of the solutions that
we calculate (with a separate calculation for each m) as an
intermediate to the complete solution. Their number depends
on m—for instance, in a three-channel calculation with � =
1, 3, 5, it is equal to 1 for |m| = 5, 4, equal to 2 for |m| = 3,
2, and equal to 3 for |m| = 0, 1.

In general, when the absolute value of the scattering vol-
ume is not too large, the partial wave functions are elongated
according to the expected orientation at large distances and
the evolution of the orientation with decreasing x does not
present a spectacular behavior. This is illustrated in Fig. 11.
The only notable point is that the orientation becomes fixed at
short distance, with a direction that depends on the asymptotic
orientation, just as in the single-channel case.

The situation is quite different when the scattering volume
is close to one of its poles (for given �̃, m), cf. Fig. 12 for two
poles with � = 1. In this case, the partial wave norms, espe-
cially the one corresponding to the �, m value of the pole, have
a large maximum at short distance. Moreover, the orientation
of the interparticle axis takes a fixed direction at short range,
0 or π for m = 0 and ±π/2 for |m| = 1, not depending on the
asymptotic orientation. In the first case, the dipoles are head
to tail, whereas in the latter one, the interparticle axis becomes
roughly perpendicular to the dipoles.
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FIG. 12. Same as Fig. 11, but for a nodal parameter correspond-
ing to a scattering volume close to a pole with �̃ = 1. Top: pole with
m = 0, x00 = 0.142906 r.u. (s-wave scattering length a = −1.31436
r.u.), bottom: pole with |m| = 1, x00 = 0.149140 r.u. (a = 0.87585
r.u.). For x smaller than about 2.5 r.u., the angle for which the proba-
bility is maximum becomes more or less fixed, with the direction not
depending on the asymptotic orientation (0 for the divergence with
m = 0 and −π/2 for that with |m| = 1).

A similar behavior is observed for poles with other values
of �̃ but the resonance character of the wave function may
become even more pronounced. This is illustrated in Fig. 13,
which shows the example of a pole with �̃ = 5, |m| = 1. The
main direction at short distance is −π/2 as for the pole �̃ = 1,
|m| = 1; i.e., the dipoles are perpendicular to the interparticle
axis. However, the relative importance of the partial waves is
quite different and the maximum of the partial wave norms
with a larger � is higher and occurs at shorter distance, since
the rotational barrier for � = 5 is higher and located at a
smaller separation than the � = 1 barrier.

In conclusion, close to a singularity of the scattering
volume, the main orientation at short interparticle distance
is fixed, irrespective of the specific experimental conditions
(such as pancake or needle-shaped samples). So control-
ling the scattering volume, either by tuning nonresonant
light intensity or by choosing an effective dipole length for
aligned permanent dipoles, does not only affect the interaction
strength of the scattering partners but also their orientation.
While this is expected for collisions of polar molecules, it
is less obvious for scattering in the presence of nonresonant
light.
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FIG. 13. Same as Fig. 11, but for a nodal parameter correspond-
ing to a scattering volume close to a pole with �̃ = 5, |m| = 1
(x00 = 0.150116 r.u. or, resp., a = 1.19953 r.u.). For x smaller than
about 2.5 r.u., the average angle θ becomes more or less fixed at a
value close to −π/2, not depending on the asymptotic orientation.

C. Fixed orientation of the internuclear axis

We will now consider the situation where the direction of
the interparticle axis is fixed by geometrical constraints due
to the trap, such as those encountered in a disk or needle
sample. For a given orientation α of the interparticle axis with
respect to the common dipole direction, the Hamiltonian can
be written as

Hα = cos2(α) H0 + sin2(α) H1, (24)

where the m-dependent block Hamiltonians Hm are defined
in Eq. (17). Equation (24) results from the fact that there
is no mixing between solutions with m = 0 and m = ±1.
In a calculation accounting for n partial � waves, Hα is a
n × n matrix, and the diagonal matrix element for the p-wave
channel is equal to

2

x2
− 1

x6
− I 4 cos2(α) − 2 sin2(α)

15x3
. (25)

We analyze the behavior of the field-dressed scattering vol-
ume for four different values of α in Fig. 14. These values
correspond to the case of m = 0 and |m| = 1 states alone in
Figs. 14(a) and 14(b), respectively, to an equal mixture of m =
0 and |m| = 1 states in Fig. 14(c), and to the case in Fig. 14(d),
where α = αQL and the potential becomes quasi-long range
(QL) [26]. In this latter case, cos2(α) = 1/3, sin2(α) = 2/3.
This means that the 1/x3 term due to the nonresonant light (or
dipole-dipole interaction) disappears from the diagonal term
� = 1 of the Hamiltonian. The quasi-long-range character of
the interaction obtained in this case is analogous to that in the
problem of nonresonant light control of the s-wave scattering
length for even-parity states [19].

Each panel in Fig. 14 displays essentially two divergences
of the scattering volume, which can be labeled by �̃ = 1 and
�̃ = 3. While this is expected in the cases in Figs. 14(a) and
14(b) where there is no m mixing, it is more surprising in the
other cases. These divergences can in all cases be labeled by
�̃ = 1 and �̃ = 3 (the �̃ = 5 divergences, too narrow, are not
visible here). Note that the positions of the �̃ = 1 divergences
vary notably with α: The �̃ = 1 resonances of the two pure
cases (top part of Fig. 14) are located at very distant x00 values

FIG. 14. Dependence of the field-dressed scattering volume (in r.u.) on the nodal parameter x00 (in r.u.) for a fixed orientation of the
interparticle axis, with a fixed mixing of m = 0 and m = ±1 states characterized by the values of cos2 α and sin2 α in the Hamiltonian Eq.
(24). (a) α = 0, only m = 0; (b) α = π/2, only m = ±1; (c) α = π/4, equal mixing of the two values; (d) α = αQL , with [cos2(α), sin2(α)] =
(1/3, 2/3). The red open circles (green triangles) indicate the divergence of the scattering volume for pure m = 0 (|m| = 1) states. The vertical
gray lines indicate the x00 values corresponding to infinite field-free s-wave scattering length. The calculations are performed for three channels
and I = 6 r.u.
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FIG. 15. Dependence of the field-dressed scattering volume on
the light intensity I for a given orientation of the interparticle axis.
(a) α = 0, i.e., m = 0 alone; (b) α = π/2, i.e., m = ±1; and (c) α =
π/4, equal mixing of m = 0 and m = ±1 states. The calculations
are performed for x00 = 0.15 r.u., i.e., a field-free s-wave scattering
length equal to 1.16 r.u. (for instance, ground triplet of 41K87Rb
[25]), within a three-channel model. Reduced units (r.u.) are used.

so that the �̃ = 1 pole for mixed m [in Fig. 14(c)] lies between
the m = 0 pole and the |m| = 1 pole of the next interval of
x00 values (remember the quasiperiodicity of the nodal line
model with x00). For �̃ = 3, the two “pure” poles are very
close one to the other and are not appreciably displaced also
in the equal mixing case. Surprisingly, the quasi-long-range
case in Fig. 14(d) does not differ in any essential way from
the other three cases.

Figure 15 illustrates the dependence of the scattering vol-
ume on the nonresonant light intensity for three different
asymptotic orientations α. The calculations were performed
with three channels and for x00 = 0.15 r.u., i.e., for a field-free
s-wave scattering length equal to 1.16 r.u. These values have
been chosen in order to present � = 1 singularities for both m
values at an intensity that is not too high; cf. Fig. 2. For α = 0,
shown in Fig. 15(a), only the m = 0 term of the Hamiltonian
Eq. (24) contributes, and a singularity is observed at I =
1.35 r.u. with a width of 3.68 r.u. The second singularity in
Fig. 15(a) is a consequence of the quasiperiodicity of the
model. For α = π/2, only the |m| = 1 term in Eq. (24) comes
into play, and the singularity in Fig. 15(b) is found at much
higher intensity, I = 12.45 r.u. (with a width of 1.21 r.u.).
Whereas the position of the pole in the equal mixing case (α =
π/4), cf. Fig. 15(c), is intermediate between the positions in
the two pure-|m| cases, at I = 3.64 r.u., the dependence of the
width (equal to 7.08 r.u. in the mixed case) on orientation is
less obvious to explain. This is due to the strong dependence
of the width on the intensity, which is increasing for m = 0
and decreasing for |m| = 1 in the pure-|m| cases. All of the
singularities shown in Fig. 15 are characterized by �̃ = 1. The

poles for �̃ = 3 would appear for smaller s-wave scattering
lengths in the chosen intensity domain or at higher intensity
for the chosen s-wave scattering length, and those for �̃ = 5
are too narrow to have been resolved in the present calcula-
tion.

V. CONCLUSIONS

We have studied nonresonant light control of the p-wave
scattering volume characterizing collisions of identical spin-
polarized fermions at very low energy. To this end, we have
employed an asymptotic model [19,25] to describe the low-
energy collisions. This is justified by the predominance of
long-range forces at these energies. The short-range interac-
tions are represented by a single parameter, the nodal parame-
ter, in the asymptotic model. It can be fixed if the field-free
s-wave scattering length of the collision partners is known
[25]. Since the interaction with the nonresonant light scales
asymptotically as 1/R3 with the interparticle distance, it was
necessary to first generalize the definition of the scattering
volume; cf. Paper I [29].

For free particles or weak confinement, we have deter-
mined when singularities of the field-dressed scattering vol-
ume occur as a function of the nonresonant light intensity and
of either the field-free s-wave scattering length or the nodal
parameter, i.e., the specific colliding pair. The singularities
indicate the appearance of a bound state at threshold and cor-
respond to infinitely strong interactions between the identical
spin-polarized fermions, thus greatly enhancing the rates of
formation of molecules in all-optical association processes of
ultracold fermions. As a result, for a given pair of particles,
intensities close to a singularity offer the most efficient control
over the collisions. The necessary intensities are of the order
of 1 GW/cm2, with the lowest intensities required for strongly
polarizable particles with large reduced mass. Such intensities
are challenging but feasible with current experimental tech-
nology.

Our findings are quite similar to those of our earlier study
on using nonresonant light to control the s-wave scattering
length for identical bosons or nonpolarized fermions [19]. The
main difference is that, at least for certain species, various
efficient means to control the s-wave scattering length exist,
most notably magnetic field control of Feshbach resonances
[6]. In contrast, external field control of the p-wave scat-
tering volume has remained an open goal. This may make
the generation of the required nonresonant light intensities a
worthwhile experimental endeavor.

We have also considered nonresonant light control of p-
wave collisions for strongly confined particles, assuming an
isotropic, harmonic 3D trap. In this case, the asymptotic phase
shift of the scattering wave function is replaced by an energy
shift of the trap states. The energy shift for the odd-� trap
states can be directly related to the scattering volume of free
collisions. The same is true for s-wave scattering where the
even-� trap state energy shift is correspondingly related to the
scattering length.

When the intensity of the nonresonant light is varied in a
range where we expect the field-dressed scattering volume
for free collisions to diverge, the trap states get strongly

032710-15



ANNE CRUBELLIER et al. PHYSICAL REVIEW A 99, 032710 (2019)

perturbed. The perturbation may be so strong as to permit
up- or downward climbing of the trap ladder. Under these
conditions, it will also be possible to create bound molecular
states by slowly varying the nonresonant light intensity. In the
vicinity of the divergences, the trap state energy shifts can
be directly related to the scattering volume. In contrast, away
from the resonance, the trap states keep their character.

Being of essentially � = 1 character (even in the presence
of nonresonant light), p-wave scattering implies a mixing of
the states with m = 0 and |m| = 1. The relative weights of
the m states fix the most probable relative orientation of light
polarization and interparticle axis. In a single-channel approx-
imation, the orientation for two particles at close range tends
to a more or less fixed value. This value generally depends on
the asymptotic orientation, except in the proximity of a diver-
gence of the scattering volume. In the latter case, the short-
range orientation is such that the particles are approximately
head to tail if the pole corresponds to an attractive interaction
(m = 0). Conversely, if the pole corresponds to a repulsive
interaction (|m| = 1), the interparticle axis becomes approx-
imately perpendicular to the light polarization. Coupled-
channel calculations with three values of � and all corre-
sponding m values have confirmed and amplified these results.
While in an experiment the orientation of the dipole moments
(induced or permanent) can be imposed by an external field, it
is in general nontrivial to fix the orientation of the interparticle
axis and thus the weights of the m states which determine the
anisotropic deformation of an expanding cloud [61].

In the present calculations, we have used “universal” nodal
lines with a single energy-, partial-wave-, and intensity-
dependent parameter, the nodal parameter, which in turn
only depends on the field-free s-wave scattering length [18].
Our predictions of the nonresonant light intensity required to
observe these phenomena could be made more precise by a
better account of the short-range interactions, using realistic
nodal lines adjusted to experimental data. This modification
will be important in particular for collisions at somewhat
higher energy, for example when studying shape resonances
[18,25,62].

The asymptotic model used here to describe the interaction
of polarizable particles with nonresonant light is not restricted
to this physical setting. Most importantly, collisions of aligned
polar particles at ultralow energies yield the same asymptotic
Hamiltonian. It is merely the meaning of the reduced units
that changes, and the anisotropic 1/R3 interaction is due to the
dipole moments of the colliding particles. As a consequence,
the calculations presented here also predict the p-wave scat-
tering volume (without any external field) as a function of the
dipole moments. Of course, in this case, the effective dipolar
interaction strength cannot as easily be tuned as in the case of
nonresonant light control.

Given the generality of the asymptotic model with
anisotropic 1/R3 interaction, a natural extension of the present
work would be to explore the dynamics of two interact-
ing ultracold dipoles confined in an only axially symmetric
harmonic potential. The investigation of eigenenergies and
eigenfunctions is possible for different geometries of the
trapping potential, from a pancake-shaped to a cigar-shaped
trap, all the way down to quasi-two-dimensional regimes.
The trap geometry is known to influence the stability and

TABLE III. Parameters A and B of Eq. (13). 
EN,�=1,m is the
energy shift from the unperturbed energy E0 = 2β2

ω(2N + 5/2) of a
trapped � = 1 state of a pair of particles submitted to a nonresonant
light of reduced intensity I and Mm

0 (x00) is the field-dressed scatter-
ing volume of the pair when untrapped. The m and I dependences
are those of the c3 coefficient of the adiabatic � = 1, m field-dressed
potential c3 = 4I/15 (−2I/15) for m = 0 (|m| = 1), cf. Table I in
Paper I [29]. All data are in reduced units.

N E0 A B

0 5β2
ω − 4β3

ωc3
3
√

π

8β5
ω√
π

1 9β2
ω − 26β3

ωc3
15

√
π

20β5
ω√

π

2 13β2
ω − 433β3

ωc3
210

√
π

35β5
ω√

π

excitations of dipolar gases [63,64]. In particular, one could
design sample shapes that impose a specific orientation, or in
other words, fix the weights of the m states. This is intriguing
in view of the different character of the p-wave scattering
volume singularities for m = 0 and |m| = 1 states that we
have observed here. A further extension would be to consider
anharmonic traps.
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APPENDIX A: SCALING PARAMETERS CONNECTING
TRAP ENERGY SHIFT AND SCATTERING VOLUME

We present here a general procedure to determine the
parameters of the linear transformation Eq. (13) connecting
the trap energy shift and field-dressed scattering volume dis-
cussed in Sec. III C.

Since A corresponds to a constant shift of the harmonic
oscillator levels due to the presence of the interactions, cf.
Eq. (13), it is natural to evaluate it by treating the long-
range interactions in the atom pair as perturbation of the
pure isotropic harmonic oscillator states. To first order, the
van der Waals interaction −1/x6 gives rise to a contribution
proportional to β6

ω, whereas the anisotropic term −c3/x3

results in the dominant contribution to the energy shift. It
is proportional to β3

ω and negative for � = 1, m = 0 or � �
3, |m| = 0, 1, when the adiabatic potential is attractive, and
positive for � = |m| = 1, when the potential is repulsive.
The expression of the dominant term of A is reported in
Table III. An analytical evaluation of the parameter B is
obtained by representing the short-range interactions for each
partial wave by a contact potential, with strength propor-
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tional to the energy-dependent scattering parameter S�(E ) =
[a�(E )]2�+1 for the corresponding �-wave collision [2,3]. In
the single-channel approximation, the energy of the trapped
bound levels is related to the scattering parameter S�(E )
by an implicit transcendental �-dependent equation involving
reduced units of the harmonic oscillator, cf. Eqs. (11) and (12),

S�(E )/(aω )2�+1 = f�(eω ), (A1)

where f�(eω ) is expressed analytically in terms of �functions
and depends only on the reduced energy eω [54,55,57,58].
Equation (A1) implicitly connects the trap state energy of the
particles, that interact via an energy-dependent short-range
interaction, to the scattering parameter. For scattering in tight
traps, it is essential to introduce energy-dependent scattering
parameters since the Wigner threshold law may not apply at a
given trap energy [58].

Equation (A1) has to be solved self-consistently for each
eigenenergy. If we consider, for example, S�=1(E ) = 0, which
corresponds to vanishing short-range interactions in the p
wave, Eq. (A1) possesses several roots EN,�=1,m, each one as-
sociated with a state of the unperturbed isotropic 3D harmonic
oscillator level eω = 2N + � + 3/2 r.u.(ω). A value of the
parameter B, which accounts for the short-range interaction to
first order in perturbation theory, is analytically obtained from
the derivative of the function f�(eω ) for a vanishing value of
the scattering parameter. In van der Waals reduced units, one
has

B = dE

d (S�=1(E ))

∣∣∣∣
S�=1(E )=0

= 2β 5
ω

deω

d ( f�=1(eω ))

∣∣∣∣
eω=2N+5/2

. (A2)

The values obtained for B, which vary as β 5
ω , are reported

in Table III. For the lowest trap level, the energy shift is
identical to Eq. (15). For N = 2 and all other parameters as
in Fig. 6 (resp., Fig. 7), the shift A becomes −0.0002327 r.u.
(resp., 0.0001163 r.u.), to be compared to −0.00026685 r.u.

(resp., 0.000111 r.u.) as quoted in the figure captions. The
multiplicative factor B = 6.17 × 10−6 r.u., which is the same
for m = 0 and |m| = 1, has to be compared to the value of
5.9 × 10−6 r.u. in the two figure captions.

APPENDIX B: DEPENDENCE OF THE RELATIVE
ORIENTATION AT SHORT RANGE ON THE NODAL

PARAMETER x00

The x00 dependence of the limit of η(x) for x → x00, shown
in Fig. 9 in Sec. IV, can be also understood by calculating the

FIG. 16. Dependence on the nodal parameter (in reduced units
r.u.) of D0(x0)/D1(x0), i.e., the ratio of the slopes of the m = 0 and
the |m| = 1 wave functions at the position of their repulsive wall
x0(E = 0, � = 1, I ) (in black), together with the x00 dependence of
the inverse ratio (in red). The intensity is I = 6 r.u. This ratio is
independent of the asymptotic main orientation α. The two small
open circles indicate the positions of the divergences of the scattering
volume for m = 0 (left) and |m| = 1 (right).

slopes Dm(x0) = u′
m(x0) of the two solutions um=0,±1 at the

position of their energy-, intensity-, and �-dependent repulsive
wall, x0(E = 0, �, I ) (defined in Appendix C.2 of Paper I [29]
and Ref. [18]). This is shown in Fig. 16, where the x00 depen-
dence of the ratio D0(x0)/D1(x0) and that of its inverse are
presented. These ratios are independent of α, the asymptotic
main orientation. A divergence of the ratio D0(x0)/D1(x0)
appears when the scattering volume diverges for m = 0. This
is due to the rapid variation of the amplitude of the oscillations
of u0 with x00 in the inner region, associated with a divergence
of D0(x0), the slope of the function u0(x) at the position x0

of the repulsive wall, and is a signature of the presence of
a bound state at threshold for m = 0. The normalized wave
function of this bound state has then a very large amplitude
in the inner region, as is the case for a shape resonance. This
agrees with the results of the Levy-Keller model using free
spherical partial p wave at threshold as reference functions,
cf. Paper I [29]. In this model, one has u(x) ∝ x2 − M(x)/x.
For small x, the 1/x contribution prevails and, when x00

varies, the short-range amplitude of u(x) and the scattering
volume M0 diverge for the same x00 value. Analogously,
and for similar reasons, a divergence in x00 of the ratio
D1(x0)/D0(x0) appears when the scattering volume M0 di-
verges for |m| = 1, associated with an |m| = 1–bound state at
threshold.
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