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Time-optimal control of the purification of a qubit in contact with a structured environment
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We investigate the time-optimal control of the purification of a qubit interacting with a structured environment,
consisting of a strongly coupled two-level defect in interaction with a thermal bath. On the basis of a geometric
analysis, we show for weak and strong interaction strengths that the optimal control strategy corresponds to
a qubit in resonance with the reservoir mode. We investigate under which conditions qubit coherence and
correlation between the qubit and the environment can speed up the control process.
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I. INTRODUCTION

Controlling quantum systems with high efficiency in min-
imum time is of paramount importance for quantum tech-
nologies [1–5]. Since in any realistic process the system is
inevitably subject to an interaction with its environment, it is
therefore crucial to understand the fundamental mechanisms
allowing to manipulate open quantum systems. A key point
is the role that non-Markovianity (NM) [6,7] can play as
resource for control [8]. Several studies have recently pointed
out the beneficial role of NM, for instance, in the decrease
of quantum speed limit or in the protection of entanglement
properties [9–14].

Quantum optimal control theory (OCT) is nowadays a ma-
ture field with applications extending from molecular physics,
nuclear magnetic resonance, and quantum information pro-
cessing [2–4]. A variety of numerical optimization algorithms
have been developed so far to realize different tasks [15–21],
but also to account for experimental imperfections and con-
straints [22–26]. Originally applied to closed quantum sys-
tems, optimal control techniques have become a standard tool
for open systems, in both the Markovian and non-Markovian
regimes (see Refs. [3,8] and references therein). While OCT is
very efficient and generally applicable, it is often not straight-
forward to deduce the actual control mechanisms. In contrast,
geometric and analytic optimal control techniques yield typ-
ically more intuitive control solutions for low-dimensional
systems [27–29]. Recent studies have shown the potential
of such methods both for closed [30–37] and open quantum
systems [38–40]. In this direction, while the control of a
dissipative qubit in the Markovian regime is by now well
understood [41–44], very few studies have focused on the case
of a structured bath with a possibly non-Markovian dynamics
[14,45], due to the inherent complexity of such systems which
prevents a geometric analysis.
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In order to tackle this control problem, we consider a
minimal model of a controlled qubit coupled to a structured
environment [45]. The bath is composed of a well-defined
mode, a two-level quantum system (TLS), interacting with
a thermal reservoir, that can be described by a Markovian
master equation. We assume that the external control field
can only modify the effective energy splitting of the qubit.
The decisive advantage of this simple control scenario is
that a complete geometric and analytical description can be
carried out. We generalize Ref. [45], where optimal control
fields are designed numerically and a geometric description is
derived when the interaction between the reservoir mode and
the thermal bath is neglected. This study allows us to analyze
different configurations of the model system geometrically for
the whole range of parameters.

As an example control problem, we investigate the max-
imization of qubit purity in minimum time. Purification is a
prerequisite in many applications. Qubit reset has been shown
through the coupling with a thermal bath [46–49] but also
by other mechanisms [50–54]. A schematic description of
the purification process used here is given in Fig. 1. For the
model system under study, we analyze the interplay between
NM, quantum speed limit, and maximum available purity. We
show that the time-optimal reset protocol corresponds to a
resonant process for any coupling strength between the qubit
and the TLS and decay rate of the bath. We also discuss
the role of initial coherences and correlations between the
qubit and the bath mode, and we show that in some specific
cases they allow to speed up the control and improve the final
purity.

The remainder of this paper is organized as follows. The
model system is presented in Sec. II. A specific choice of
coordinates allowing to reduce the dimension of the control
problem is described. Section III is dedicated to the design
of the time-optimal solution for the qubit purification process.
The role of initial coherences and correlations is discussed in
Sec. IV. We conclude in Sec. V. Some technical formulas and
mathematical details are reported in Appendices A and B.
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FIG. 1. Schematic representation of the purification setup: A
qubit is coupled to an environmental TLS (with a coupling strength
J) which decays with the rate γ [defined in Eq. (11)] into a thermal
bath. In the weak coupling limit, which is identified to Markovian
dynamics, the state of maximum purity cannot be reached in finite
time (middle). If a strong coupling J is considered, then the qubit
can be directed to the state of maximum purity (bottom).

II. MODEL

We consider a system consisting of a qubit whose effective
energy splitting ωq can be modified by an external control field
ε(t ) [45]. The corresponding Hamiltonian reads

Hq(t ) = −ωq

2
σz

q − ε(t )

2
σz

q, (1)

where σx, σy, σz are the usual Pauli operators. The qubit
is possibly strongly coupled to a two-level system (TLS)
modeling a representative mode of the environment, giving
rise to non-Markovian dynamics. In practice, the model can
describe the dynamics of two superconducting qubits in a LC
circuit. The dissipation can for example be described by a
resistor [55] or by coupling one of superconducting qubits to
a lossy cavity [46]. We model the TLS and its interaction with
the qubit by the following Hamiltonians:

Htls = −ωtls

2
σz

tls, Hint = −Jσx
qσ

x
tls, (2)

where ωtls is the frequency of the bath mode and J the cou-
pling strength between the qubit and the TLS. The coupling
of the TLS to the rest of the environment is described by a
standard Markovian master equation,

i
d

dt
ρ(t ) = [H(t ), ρ(t )

]+ LD(ρ),

LD(ρ) = iκ
∑

k=1,2

(
LkρL†

k − 1

2
{L†

kLk, ρ}
)

, (3)

where H(t ) = Hq(t ) + Htls + Hint is the full Hamiltonian of
the qubit and the TLS and Lk the Lindblad operators. In
what follows, we will refer to the two parameters J and κ

as coupling and rate, respectively, to point out their different
roles in the purification process, although formally they are
of the same nature. We assume the TLS and the bath to be

initially in thermal equilibrium characterized by

L1 = √
N + 1σ−

tls, L2 =
√

Nσ+
tls, (4)

with N = 1/(eβωtls − 1) and β = kBT, kB and T being, re-
spectively, the Boltzmann constant and the temperature of
the bath. σ− and σ+ are the standard lowering and raising
operators for two-level systems. The dynamics of the qubit
alone can be extracted as a partial trace over the TLS,

ρq = Trtls(ρ). (5)

The density matrix of the joint system, i.e., qubit and TLS, is
a 4 × 4 Hermitian matrix, which can be parameterized as

ρ =

⎛
⎜⎝

x1 x5 + ix6 x7 + ix8 x9 + ix10

x5 − ix6 x2 x11 + ix12 x13 + ix14

x7 − ix8 x11 − ix12 x3 x15 + ix16

x9 − ix10 x13 − ix14 x15 − ix16 x4

⎞
⎟⎠, (6)

where the xi are real coefficients and
∑4

i=1 xi = 1. The dynam-
ical space of the system therefore has 15 dimensions. After
applying the rotating wave approximation (RWA) (see Ap-
pendix A), the dynamics can be separated into four uncoupled
subspaces. Only two of these contribute to the qubit purity in
which we are interested; the other two are therefore neglected.
Technical details about the structure of the dynamical space
are given in Appendix B. The definition of the subspaces is
clarified by introducing a new set of parameters:

z1 = x1 + x2 − 1/2, z5 = x7 + x13,

z2 = x12, z6 = x6 − x16,

z3 = x11, z7 = x8 + x14,

z4 = −2x1 − x2 − x3, z8 = x5 − x15,

(7)

in which the qubit purity reads

Pq = 1
2 + 2

(
z2

1 + z2
5 + z2

7

)
. (8)

We denote the subspaces associated with the coordinates
(z1, z2, z3, z4) and (z5, z6, z7, z8) by S1 and S2. S1 describes the
population of the qubit and its correlation with the TLS, while
S2 contains information about the coherences of the qubit and
the TLS. The equations of motion on S1 and S2 are given by⎛

⎜⎝
ż1

ż2

ż3

ż4

⎞
⎟⎠ = 2J1

⎛
⎜⎜⎝

z2

−z1 − z4+1
2

0
0

⎞
⎟⎟⎠+ 2J2

⎛
⎜⎜⎝

z3

0
−z1 − z4+1

2
0

⎞
⎟⎟⎠

+ 2α

⎛
⎜⎝

0
−z3

z2

0

⎞
⎟⎠− γ

⎛
⎜⎜⎜⎝

0
z2
2
z3
2

γ1

γ
+ z1 + z4 + 1

2

⎞
⎟⎟⎟⎠ (9)

and ⎛
⎜⎝

ż5

ż6

ż7

ż8

⎞
⎟⎠ = J1

⎛
⎜⎝

z6

−z5

−z8

z7

⎞
⎟⎠+ J2

⎛
⎜⎝

−z8

z7

−z6

z5

⎞
⎟⎠

+ 2α

⎛
⎜⎝

z7

0
−z5

0

⎞
⎟⎠− γ

2

⎛
⎜⎝

0
z6

0
z8

⎞
⎟⎠, (10)
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where we have introduced

δ(t ) = ωq + ε(t ) − ωtls, α(t ) = t

2

dδ

dt
,

J1 = J cos (δt ), J2 = J sin (δt ),

γ1 = κ (N + 1), γ2 = κN,

with γ = γ1 + γ2.

(11)

From a geometric point of view, S1 is a two-dimensional
sphere in the space (z1, z2, z3) defined by

(z1 − c)2 + z2
2 + z2

3 = r(γ ) (12)

with its center c = −(z4 + 1)/2 moving along the z1 axis
and radius r decreasing with rate γ . S2 describes a three-
dimensional sphere in the space (z5, z6, z7, z8) given by

z2
5 + z2

6 + z2
7 + z2

8 = r′(γ ) (13)

with a fixed center at the origin and decreasing radius r′.
The initial state is constructed from the tensor product of

the two separate density matrices [45]

ρ = ρq ⊗ ρtls + ρcorr

=
(

aq μq + iνq

μq − iνq bq

)
⊗
(

atls 0
0 btls,

)

+

⎛
⎜⎝

0 0 0 0
0 0 iξ 0
0 −iξ ∗ 0 0
0 0 0 0

⎞
⎟⎠, (14)

where ak and bk are the ground- and exited-state populations
of qubit and TLS in thermal equilibrium, which are defined by
their respective energy level splittings ωk and the temperature.
They can be expressed explicitly as ak = eβωk /2

2 cosh (βωk/2) and
bk = 1 − ak . The parameters μq and νq are the coherences
in the reduced state of the qubit. We neglect coherences of
the TLS assuming that it is initially in a thermal state. Our
analysis could also be carried out for a nonthermal initial
qubit population. Furthermore, we artificially add coherences
between the qubit and the TLS with the extra term ρcorr.
Since coherences ξ give rise to correlations between the qubit
and the TLS, we refer to these coherences as correlations
throughout the paper.

If not stated otherwise, the parameters are set to
ωq = 1, ωtls = 3, β = 1, and J = 0.1 throughout as in
Ref. [45], allowing for a qualitative comparison of the results,
but in principle the parameters can be chosen arbitrarily. The
only constraint on the frequencies is ωq < ωtls in order for the
qubit purity to be initially lower than the TLS purity. The cou-
pling strength J obeys J � ωq in order to satisfy the different
approximations made to establish the model system [45].

III. PURIFICATION OF A QUBIT IN A THERMAL STATE

In this section, we focus on the purification of a qubit in
a thermal state. This means, in particular, that the qubit has
no initial coherence (μq = νq = 0) and all variables z5, . . . , z8

and their time derivatives vanish; see Eqs. (7), (9), and (14).
Therefore, we need to consider only the dynamics in S1,

governed by Eq. (9), and neglect contributions from S2 for
now. As a consequence, maximizing the purity Pq [see Eq. (8)]
simplifies to maximizing z1. In this case, using the spherical
symmetry, the dynamics can be further simplified by introduc-
ing spherical coordinates,

c = − z4 + 1

2
, r sin (θ ) = z1 − c,

r cos (θ ) sin (ϕ) = z2, r cos (θ ) cos (ϕ) = z3.

(15)

Note that r is identical with the one in Eq. (12). The full dy-
namics of the qubit in these coordinates are then described by

ṙ = −γ

2
[r + (η − c) sin (θ )], (16a)

ċ = γ

2
[r sin (θ ) + (η − c)], (16b)

θ̇ = −γ

2

η − c

r
cos (θ ) + 2J cos (δt − ϕ), (16c)

ϕ̇ = 2α − J tan (θ ) sin (δt − ϕ), (16d)

where η = γ1/γ − 1/2 and the control field ε(t ) [see Eq. (1)]
is present in the quantities δ(t ) and α(t ).

Since we do not assume any initial coherence of the
qubit, the qubit’s purity Pq is completely determined by the
dynamics on S1. Using the spherical coordinates of Eq. (15),
it can be expressed as

Pq = 1
2 + 2[r sin(θ ) + c]2. (17)

Because ϕ does not enter into the purity, we can define a new
control,

u(t ) = δt − ϕ. (18)

Using Eq. (16d), we arrive at

δ = u̇ − J tan(θ ) sin(u). (19)

In this way we can first determine the optimal control strategy
for u(t ) and afterwards calculate the physical controls δ(t ),
respectively ε(t ).

The north pole of the S1 sphere defined by θ = π/2 is
the state of maximum purity, and we will denote its position
on the z1 axis by Z = r + c. In principle, the maximum
accessible purity can change over time since the radius r and
the center c of the sphere change. The time evolution of Z is
governed by

Ż = ṙ + ċ = −γ

2
(Z − η) [1 − sin(θ )]︸ ︷︷ ︸

�0

. (20)

Using Eqs. (11) and (14), it is straightforward to show that
η = atls − 1

2 . This quantity can be connected to the initial TLS
purity as Ptls(0) = 1

2 + 2η2. The behavior of Z is different
depending on whether qubit and TLS are initially correlated
or not. Hence, we examine both cases separately in the fol-
lowing.

A. Time-optimal control in the correlation-free case

If there is no initial correlation between qubit and TLS
(ξ = 0), we find the relation Z = atls − 1

2 = η by evaluating
the initial state given by Eq. (14) in terms of the coordinates
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of Eqs. (7) and (15). We therefore deduce from Eq. (20)
that Z , the north pole of S1, is a constant of motion for
correlation-free initial states. Moreover, this constant can be
used to simplify the differential system (16) even further by
replacing c = Z − r = η − r. Effectively, the dynamics can
then be described by only two equations:

ṙ = −γ

2
r[1 + sin(θ )], (21a)

θ̇ = −γ

2
cos(θ ) + 2J cos(u). (21b)

Without correlation (ξ = 0, implying z2 = z3 = 0), the initial
state of the system is the south pole (θ = −π/2) of S1 as can
be verified with Eq. (15). Since Z is a constant of motion,
the control strategy consists in performing a rotation to reach
the north pole (θ = π/2) of the sphere as fast as possible. In
the dissipation-free case (γ = 0), the radius becomes constant
and θ is rotating with velocity θ̇ = 2J cos u [see Eq. (21b)].
The maximum speed for the rotation is reached with u(t ) =
0, which corresponds to the resonant case δ(t ) = 0 [see
Eq. (19)]. This control strategy does not change if the dissipa-
tion is taken into account. However, the dissipative term slows
down the rotation, which can be seen by the relative opposite
signs of the two terms in Eq. (21b). Two scenarios can be en-
countered according to the relative weights of the two terms,
one in which the dissipation dominates and a second where it
can be viewed as a perturbation of the unitary dynamics.

In general, we observe that the radius decreases exponen-
tially while the position c of the center approaches asymptot-
ically the value η. These trajectories define the purity which
can be reached by setting the position of the north pole. On
the other hand, the angular differential equation (16c) gives
us information about the minimum time needed to reach the
state of maximum purity. For correlation-free initial states, the
angular equation [see Eq. (21b)] can be integrated analytically
leading to the minimum time Tmin, which is needed to reach
maximum purity on S1,

Tmin =
∫ π/2

−π/2

dθ

θ̇
=

8 arctan
(√

4J+γ

4J−γ

)
√

(4J + γ )(4J − γ )
. (22)

In the zero dissipation limit γ → 0, we recover the result
established in Ref. [45] of Tmin(γ = 0) = T0 = π

2J . From
Eq. (22) it can be seen that the case J � Jmin, with

Jmin = γ /4, (23)

is not well defined. This scenario corresponds to the already
mentioned case in which the dissipation dominates, which can
be attributed to the change from non-Markovian to Marko-
vian qubit dynamics. In the latter case, the dissipative term
becomes too large and a fixed point in θ , i.e., θ̇ = 0, given
by θf = arccos (4J/γ ) arises. At the fixed point, correlations
between the qubit and TLS, which build up during the process,
cannot be transformed into population anymore and therefore
do not further contribute to the purification. The north pole is
thus not accessible, and any gain in purification comes only
from the exponential decrease in r caused by the dissipation
into the heat bath; see Fig. 2(c). This is a remarkable feature,
because naively the decrease of r due to dissipation would
be connected to a loss of purity. Since the decrease in r

FIG. 2. Optimal trajectories (in black) of the qubit in the (z1, z3)
plane without (a) and with correlations (b) for non-Markovian dy-
namics. The initial and final states are represented, respectively, by
a dot and a cross. In panels (c) and (d), the asymptotic steady states
are indicated by circles. The blue (dark gray) and green (light gray)
circles are the projections onto (z1, z3) plane of S1 at the initial and
final times. The amount of correlations added is equal to the maxi-
mum possible value ξ = ξmax [see Eq. (24)] and J = 4 Jmin. (c) The
trajectory for the correlation-free Markovian case (J = Jmin/2) and
(d) the correlated case.

is maximized, in this case, for θ = θf, the optimal strategy
consists here again in applying a zero control field u(t ) = 0.
However, the final state cannot be reached in finite time. Using
a standard measure of non-Markovianity [56], we have also
verified that the different parameter regions can indeed be
identified with the Markovian (γ > 4J) and non-Markovian
regimes (γ < 4J).

The trajectories for the non-Markovian and Markovian
cases are plotted in Figs. 2(a) and 2(c). Figure 3 displays

FIG. 3. Normalized minimum time Tmin/T0 to reach the north
pole of S1 as a function of γ /J for the correlated (green or light
gray) and uncorrelated (purple or dark gray) initial states. T0 is the
purification time for γ = 0, and the parameter ξ is set to ξmax in the
correlated case.
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the dependence of the minimum time on the ratio γ /J for
correlated and uncorrelated initial states. The sharp transition
to the Markovian regime can be observed at γ = 4J , indicated
by the divergence of the purification time. Figure 3 shows that
the purification time for correlated initial states is lower than
for uncorrelated ones. As can be seen in Fig. 2(b), this is a
consequence of the position of the initial state, which is closer
to the equator of S1.

B. Time-optimal control with correlated states

Adding ξ correlations between qubit and TLS to the ini-
tial state (14) changes the dynamics because Z (0) �= η and
therefore Z is not constant anymore, as shown in Eq. (20).
Although it makes a difference whether ξ is real or imaginary,
we will consider only real ξ in what follows. This is because
a purely imaginary ξ modifies only the initial value of ϕ. The
control field can always be chosen so that it produces a short
and strong α-pulse in order to rotate ϕ to 0; see Eq. (16d) and
Ref. [45]. Since this rotation can be made arbitrarily fast (at
least theoretically), we focus on the time-optimal solution for
the remaining control problem which coincides with the case
of initially real ξ .

Arbitrarily large correlations cannot be introduced due to
the physical constraint of the density matrix being positive
semidefinite. An eigenvalue analysis reveals that the maxi-
mum amount of correlation is

ξmax = √aqatlsbqbtls. (24)

The dynamics of the maximal reachable purity depends on the
initial value of Z − η. Using the definition of the initial state
(14), we find

Z (0) − η =
√(

atls − aq

2

)2

+ ξ 2 − atls − aq

2
� 0, (25)

from which together with Eq. (20), we can conclude that
Ż � 0 and

Z (t ) − η = (Z (0) − η) exp

{
−γ

2

∫ t

0
[1 − sin (θ )] dt ′

}
.

(26)
Correlations therefore increase the initially accessible purity,
which then decays asymptotically to η, the same value as in
the uncorrelated case. This decay is caused by the decrease of
the radius r, which can be written as

ṙ = −γ

2

⎡
⎣Z − c︸ ︷︷ ︸

=r

+(η − c) sin(θ )

⎤
⎦. (27)

To prove that r is monotonically decreasing, we distinguish
two cases:

η − c � 0:
In this situation, together with Eq. (26), we can estimate

ṙ � −γ

2
(η − c)[1 + sin(θ )] � 0. (28)

η − c � 0:
From Eq. (16b), we can deduce the maximum of c during

the process as

cmax = r sin(θ ) + η � r + η. (29)

Using this relation, an upper limit for ṙ is given by

ṙ = −γ

2

⎛
⎝r + (η − c) sin(θ )︸ ︷︷ ︸

�−r

⎞
⎠ � 0. (30)

As before, we study the time needed to reach the state of
maximum purity by examining the angular dynamics which
are governed by [see Eq. (16c)]

θ̇ = γ

2

Z − η

r
cos(θ ) − γ

2
cos(θ ) + 2J cos(u). (31)

Equation (31) is similar to the correlation-free version (21b)
but added by a new term, which is always positive in the
region of interest θ ∈ [−π/2, π/2]. As before, the latter
driving term is strongest for u(t ) = 0. The purification time
is lower than in the uncorrelated case due to the additional
first positive term, which increases the effective driving speed.
In addition, correlations change the initial state for θ given
by θ (0) = arccos [ξ/r(0)], which leads to a shorter distance
towards the S1 north pole to be covered. In particular, the min-
imum time for γ = 0 is T0 = π/2−θ (0)

2J . The angular dynamics
(31) cannot be integrated analytically anymore, but Fig. 3
shows the numerically calculated times in comparison to the
analytical results in the correlation-free case. Interestingly
the same divergence for γ > 4J , which corresponds to the
transition between Markovian and non-Markovian behavior,
can be observed. Physically, this means that if the dissipation
becomes too large in comparison with the coupling J , the
dynamics become Markovian and purification takes an infinite
amount of time. The optimal trajectory for the Markovian
case is plotted in Fig. 2(d). Nevertheless, we observe that
the final state has a lower purity than the initial north pole
even in the case of non-Markovian dynamics. This is due to
the decrease of Z over time. However, the final purity is still
higher than in the correlation-free case, i.e., with ξ = 0. The
optimal trajectory for this situation is shown in Fig. 2(b).

C. Role of initial correlations for the existence of a fixed point

Despite being able to reach higher purity in a shorter time,
the non-Markovian regime has the drawback of the state of
maximal purity not being stable. Therefore, after reaching the
target state, qubit and TLS have to be decoupled or the purity
of the qubit will decrease. This is not the case for Markovian
dynamics as shown in Fig. 2(c). The angular fixed point is
reached, and the system tends continuously to the state of
maximum purity, which is in return never reached exactly in
finite time.

Figure 4 displays the dependence of the purification on
the inverse temperature for uncorrelated and correlated initial
states. For large β, we approach the same purification time in
the two situations because the amount of allowed correlations
goes to zero in this limit [see Eq. (24)]. The minimum
time Tmin is slightly larger than T0 due to the dissipation
terms, which are different from zero even at low temperature
[see Eq. (11)]:

lim
β→∞

γ = κ �= 0. (32)

Surprisingly, the dynamics have a different behavior for small
β. In Fig. 4(a) the transition to the Markovian regime is similar
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FIG. 4. Purification time as a function of the temperature. (a) The
correlation-free initial state in which we observe the same behavior
as in Fig. 3. For a specific threshold, the purification time diverges.
If correlations are added (b), then the angular fixed point is resolved,
and the target state can be reached in finite time. ξ = ξmax fixed, but
its value depends on β. The parameter T0 is chosen as T0(ξ = 0) in
panel (b) for the sake of comparison with panel (a).

to the one of Fig. 3 with a divergence of the purification time.
For correlated initial states [Fig. 4(b)], we observe that for low
temperatures, i.e., large β, the purification time decreases and
approaches zero. This suggests that the angular fixed point can
be resolved by adding correlations, as described below.

The following discussion describes the behavior of θ̇ = 0.
We will refer to the value of θ at which its derivative vanishes
as angular fixed point θf, although it is not a fixed point of the
full dynamics, i.e., a steady state.

For correlated initial states, the fixed point equation reads

θf = arccos

(
4J

γ

r

η − c

)
= arccos

(
4J

γ

Z − c

η − c

)
. (33)

Note that the value of θf depends on r and c and therefore can
change over time. It is only a fixed point in the sense that if
θ = θf is reached, it will not change its value anymore, even
though r and c will still continue to vary.

This fixed point is defined only if 4J
γ

r
η−c > 1, otherwise

there is no solution to Eq. (33) and no fixed point occurs.
Recall that, for uncorrelated initial states, we found Z = η,
and therefore we recover J � γ

4 as the condition for the
existence of the fixed point. In general, as can be seen from
Eq. (25), the second term is always larger or equal to one,
and J >

γ

4 leads to fixed point-free dynamics. However, if
initial correlations between qubit and TLS are introduced, the
fixed point can be resolved for J <

γ

4 . From Eq. (33), we can
calculate the maximum amount of correlations for which the
fixed point is still defined:

ξfixed = ±atls − aq

2

√
1 −

( γ

4J

)2
. (34)

If more correlations are included, there is no fixed point
present initially. Nevertheless, a fixed point, into which the

FIG. 5. Time evolution (solid line) of the angle θ in the Marko-
vian regime J = 0.9 Jmin [see Eq. (23)]. The correlations are set
to ξ = 2 ξfixed and ξ = 5 ξfixed in panels (a) and (b), respectively.
The dashed green line in panel (a) depicts the position of the fixed
point θf.

dynamics may eventually run, can still occur during the time
evolution itself.

Figure 5 displays the dynamics of θ and the time evo-
lution of the value of θf. It can be seen that exceeding the
preceding bound (34) even further [i.e., comparing Figs. 5(a)
and 5(b)] prevents the fixed point from arising also during
the time evolution. The system can reach the angle θ = π/2
and therefore the state of maximum purity in finite time. In
contrast to correlation-free initial states, this conclusion is true
for any temperature with sufficient initial correlations. Note
that the limiting boundary for a valid density matrix has to be
satisfied.

In general, the dynamics of the system can be split into
different regimes, depending on the correlations, which are
shown in Fig. 6. The different zones describe the regime in

x

FIG. 6. Existence of an angular fixed point in θ as a function
of correlation and coupling strength (β = 0.1). In region A, a fixed
point is initially defined, while in region B there no fixed point
accessible initially, but during the time evolution of the system. Area
C corresponds to the parameter space in which no fixed point occurs
in the time in which the final state is reached.
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which no fixed point is present initially, the case where the
fixed point arises during the evolution and the region in which
no fixed point occurs during the whole purification process.
Interestingly, we can go from one regime to the other by
controlling the amount of correlations between the qubit and
the TLS. Although it is possible to purify the system in region
C in finite time, as it is in the non-Markovian regime, it is
important to point out that non-Markovianity is a feature of
the dynamical map, which does not depend on the initial state
[57–59].

IV. ROLE OF INITIAL COHERENCES AND
CORRELATIONS FOR THE CONTROL STRATEGY

We investigate in this section the joint influence of cor-
relations in the presence of initial qubit coherences, i.e.,
μq, νq �= 0, on the optimal strategy designed in Sec. III. In
particular, qubit coherences lead to a dynamics on S2 since z5

or z7 is not vanishing anymore; see Eqs. (7) and (10). Hence,
the qubit purity Pq now gets simultaneous contributions from
both spheres. Using Eq. (8), the purity can be split into two
different contributions. The terms proportional to z2

1 will be
called the contribution from S1, and the other terms will be
assigned to S2.

Therefore, it is interesting to study whether the dynamics
on S2 change the procedure to get the highest overall purity
Pq. For the resonant case, δ = α = 0, the equations on S2 are

ż5 = Jz6, (35a)

ż6 = −Jz5 − γ

2
z6, (35b)

ż7 = −Jz8, (35c)

ż8 = Jz7 − γ

2
z8, (35d)

with the initial conditions

z5(0) = μq, z7(0) = νq,

z6(0) = 0, z8(0) = 0. (36)

Because the equations for z5 and z7 are decoupled and only
their squared sum enters into the purity, it is sufficient to
consider z7 = 0 or equivalently only real coherences. The
equations of motion are identical to the ones of a damped
harmonic oscillator. The solution reads

z5(t ) = μq

√
1 +

( γ

4ω

)2
cos
[
ωt − arctan

( γ

4ω

)]
e− γ

4 t ,

(37)

with ω =
√

J2 − γ 2/16. This describes an oscillating behav-
ior damped by an exponential decay having its maximum
at t = 0. The purity contribution from S2 is therefore max-
imal in the initial state. As in Sec. III, we can identify the
Markovian limit γ � 4J in which the cosine function turns
into a hyperbolic cosine and z5 is monotonically decreasing.
We focus below only on the non-Markovian case. Caution
has to be made on the allowed range of parameters μq and
ξ . For vanishing coherences, the maximum value of ξ has
already been calculated in Eq. (24), and this computation
can be done for μq in a similar way. If both coherences

FIG. 7. Parameter space of the correlations ξ and coherences μq

for which the density matrix is defined. The color code indicates the
relative difference [Eq. (38)] between the maximum purity reached
during the evolution and the purity at θ = π/2 in percent.

and correlations are present, then the limits are determined
numerically. We compute the maximum value of μq for which
the density matrix for a given ξ has non-negative eigenvalues.
The allowed parameter region is plotted in Fig. 7.

At this point, we already know how to maximize the purity
contributions from S1 and S2 separately. It is however not clear
how the overall purity behaves. We again consider the cases
of correlated and uncorrelated initial states separately.

In the uncorrelated situation, we combine Eqs. (22) and
(37) to observe that, at time Tmin, where the purity is maximum
on S1, the contribution of S2 vanishes, i.e., z5(Tmin) = 0. The
corresponding trajectory is plotted in Fig. 8(a). As shown in
Fig. 9(a), numerical simulations reveal that the dynamics on
S2 are not relevant at all since the maximum purity and the
time to reach it are the same as the ones on S1 for any value of
μq. In particular, the best final purity is limited by the initial
purity of the TLS.

However, this behavior changes if correlations are con-
sidered. As can be seen in Eq. (35), they do not affect the
dynamics on S2, but they reduce the time needed to reach
the north pole on S1 and therefore introduce a phase shift
between S1 and S2. Due to this shorter time, the contribution

0

0

(a)

z6

z 5

0

0

(b)

z6

z 5

FIG. 8. Optimal trajectories on S2 in the (z5, z6) plane without
(a) and with (b) initial correlations. The initial and final points are
represented, respectively, by a dot and a cross. The control time is
set to Tmin; see Eq. (22). Parameters are set to ξ = ξmax/2 and μq =
μq, max. Note that μq, max depends on ξ . The blue (dark gray) and green
(light gray) circles are the projections of S2 onto the (z5, z6) plane at
initial and final times.
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FIG. 9. Time evolution of the qubit purity Pq of the qubit for
uncorrelated (a) and correlated (b) initial states with different coher-
ences μq ∈ [0, μq,max], where μq,max is the maximum allowed value
of the coherence. The parameter ξ is set to 0 and ξmax/2 in panels
(a) and (b), respectively. The horizontal dashed lines depict the initial
purity of the TLS, Ptls(0), and the maximum value Pmax of Pq.

from S2 has not completely vanished yet and the overall purity
can increase; see Fig. 8(b). This maximum amount of purity,
which is reached during the purification process, is called
Pmax. The color code in Fig. 7 indicates

�P = Pmax

P(Tmin)
− 1. (38)

This corresponds to the relative purity, which is gained by
taking into account the combined dynamics of S1 and S2.
The numerical results of Fig. 9(b) demonstrate that, in case
of initial correlations, qubit coherences can be transformed
into an additional gain of population and therefore break the
limit of the TLS purity. Note that this is not possible with
correlation-free initial states as shown in Figs. 8(a) and 9(a).
Moreover, it can be seen in Fig. 9(b) that, while the maximally
accessible purity increases, the minimum time needed to reach
it decreases as coherences increase. In other words, qubit
coherences improve both total time and final purity of the

control scheme but require qubit and TLS to be initially
correlated.

V. CONCLUSIONS

We have investigated control of a qubit coupled to a
structured reservoir, which is composed of a well-defined
and strongly coupled mode and a thermal bath. This model
can be realized experimentally with superconducting qubits.
We assume that only the energy splitting of the qubit can
be changed by the external control field. Using a geometric
description of the control problem, we show that the time-
optimal protocol to purify the qubit is based on fulfilling
a resonance condition between the qubit and the reservoir
mode. This result is valid for any coupling strength between
the qubit and the environment and for any decay rate of the
thermal bath. Non-Markovianity of the qubit dynamics does
not modify the control strategy but reduces the time to reach
the state of maximum purity. Introducing strong correlations
between qubit and TLS accelerates the process even further.
The role of initial qubit coherences has been investigated as
well: Combined correlations and qubit coherences speed up
the control process and improve the final purity of the qubit
even more.

Our study and the possibility to describe geometrically
purification of a qubit in contact with a structured reservoir
pave the way to future investigations. In particular, it would be
interesting to generalize this model to more complex control
scenarios in which the external field can be applied also in
other directions. For instance, the qubit coherence can be
modified by a σx- control, which could be combined with the
σz control used here to enhance or speed up the purification
process. Another intriguing avenue is the application of this
approach to algorithmic cooling (AC) in which similar model
systems are considered [60–62]. To the best of our knowledge,
AC methods neglect the interaction between the bath and the
qubits during the first step of the cooling, i.e., the entropy ex-
change. This approximation could be avoided by generalizing
the results of this work to the case of n qubits (n > 1) and m
reset qubits or modes (m � 1).
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APPENDIX A: ROTATING WAVE APPROXIMATION

Starting from the Hamiltonian governing the dynamics of the model system,

H(t ) = −ωq + ε(t )

2
σz

q − ωtls

2
σz

tls︸ ︷︷ ︸
H0

−Jσx
qσ

x
tls, (A1)
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we can transform the Hamiltonian using the unitary transformation U(t ) = eiH0t to get

H′(t ) = U(t )H(t )U†(t ) − i U(t )
dU†(t )

dt
=

⎛
⎜⎜⎜⎜⎜⎝

t
2

dε(t )
dt 0 0 −Je−it[ωq+ωtls+ε(t )]

0 t
2

dε(t )
dt −Je−it[ωq−ωtls+ε(t )] 0

0 −Jeit[ωq−ωtls+ε(t )] − t
2

dε(t )
dt 0

−Jeit[ωq+ωtls+ε(t )] 0 0 − t
2

dε(t )
dt

⎞
⎟⎟⎟⎟⎟⎠.

(A2)

The terms Je±it[ωq+ωtls+ε(t )] are oscillating fast and average to zero on a short timescale. Therefore we neglect these terms and
obtain the Hamiltonian after the rotating wave approximation (RWA) as

Hrwa(t ) =

⎛
⎜⎜⎜⎜⎜⎝

t
2

dε(t )
dt 0 0 0

0 t
2

dε(t )
dt −Je−it[ωq−ωtls+ε(t )] 0

0 −Jeit[ωq−ωtls+ε(t )] − t
2

dε(t )
dt 0

0 0 0 − t
2

dε(t )
dt

⎞
⎟⎟⎟⎟⎟⎠. (A3)

The Lindblad operators L1/2 = √
γ1/2σ

±
tls have to be transformed in the same manner resulting in Lrwa

1/2 = e−iωtlst L1/2. We can
analyze the dynamics of the transformed system using the Lindblad equation:

d

dt
ρrwa(t ) = −i[Hrwa(t ), ρrwa] +

∑
k=1,2

(
Lrwa

k ρrwaLrwa
k

† − 1

2

{
Lrwa

k
†Lrwa

k , ρrwa
})

. (A4)

APPENDIX B: COORDINATE TRANSFORMATION

We consider a Hamiltonian of the form (A3)

H =

⎛
⎜⎜⎝

α 0 0 0
0 α −Je−iδt 0
0 −Jeiδt −α 0
0 0 0 −α

⎞
⎟⎟⎠ (B1)

and parametrize the full density matrix as

ρ =

⎛
⎜⎜⎝

x1 x5 + ix6 x7 + ix8 x9 + ix10

x5 − ix6 x2 x11 + ix12 x13 + ix14

x7 − ix8 x11 − ix12 x3 x15 + ix16

x9 − ix10 x13 − ix14 x15 − ix16 x4

⎞
⎟⎟⎠. (B2)

Then the Markovian master equation

i
d

dt
ρ(t ) = [H(t ), ρ(t )] + i

∑
k=1,2

(
LkρL†

k − 1

2
{L†

kLk, ρ}
)

, (B3)

with the Lindblad operators

L1 = √
γ1σ

−
tls, L2 = √

γ2σ
+
tls, (B4)

gives us a set of differential equations for the parameters xxx = (x1, . . . , x16). These equations can be written in the form

ẋxx = f0(xxx) + J1 f1(xxx) + J2 f2(xxx) + α f3(xxx), (B5)

033410-9



FISCHER, BASILEWITSCH, KOCH, AND SUGNY PHYSICAL REVIEW A 99, 033410 (2019)

with J1 = J cos (δt ), J2 = J sin (δt ), and

f0(xxx) = γ1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

−x2

x4

−x4

−x5/2
−x6/2

x13

x14

−x9/2
−x10/2
−x11/2
−x12/2
−x13

−x14

−x15/2
−x16/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ γ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x1

x1

−x3

x3

−x5/2
−x6/2
−x7

−x8

−x9/2
−x10/2
−x11/2
−x12/2
−x7

−x8

−x15/2
−x16/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f1(xxx) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2x12

−2x12

0
x8

−x7

x6

−x5

0
0
0

x3 − x2

−x16

x15

−x14

x13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f2(xxx) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2x11

−2x11

0
x7

x8

−x5

−x6

0
0

x3 − x2

0
x15

x16

−x13

−x14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f3(xxx) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

−2x8

2x7

−2x10

2x9

−2x12

2x11

−2x14

2x13

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

If the purity of the qubit is calculated in these coordinates, it turns out to be

Pq = 1
2 + 2

(
x1 + x2 − 1

2

)2 + 2(x7 + x13)2 + 2(x8 + x14)2. (B7)

This motivates a new choice of coordinates resulting from the transformation (7):

z1 = x1 + x2 − 1
2 , z5 = x7 + x13,

z2 = x12, z6 = x6 − x16,

z3 = x11, z7 = x8 + x14,

z4 = −2x1 − x2 − x3, z8 = x5 − x15,

(B8)

in which the purity simplifies to

Pq = 1
2 + 2

(
z2

1 + z2
5 + z2

7

)
. (B9)

Note that we are left with only eight parameters instead of the original sixteen. In principle it is possible to consider the complete
dynamics by defining additional parameters z9, . . . , z16, but since the dynamics of zzz = (z1, . . . , z8) turn out to be closed and we
are interested only in the evolution of the qubit, the other subspace will not be investigated. The differential equations for the
new coordinates read

żzz = γ1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−z2/2
−z3/2

−z1 − z4 − 3/2
0

−z6/2
0

−z8/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ γ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−z2/2
−z3/2

−z1 − z4 − 1/2
0

−z6/2
0

−z8/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ J1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2z2

−2z1 − z4 − 1
0
0
z6

−z5

−z8

z7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ J2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2z3

0
−2z1 − z4 − 1

0
−z8

z7

−z6

z5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−2z3

2z2

0
2z7

0
−2z5

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B10)

A closer look reveals that the dynamics decouple even further since the subspaces (z1, . . . , z4) and (z5, . . . , z8) are
independent. The latter subspace describes the evolution of the coherences of qubit and TLS, while the first one contains the
information about the population of the qubit and its correlations with the TLS.
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