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Quantum dynamical simulations of statistical ensembles pose a significant computational challenge due to
the fact that mixed states need to be represented. If the underlying dynamics is fully unitary, for example, in
ultrafast coherent control at finite temperatures, then one approach to approximate time-dependent observables
is to sample the density operator by solving the Schrödinger equation for a set of wave functions with
randomized phases. We show that, on average, random-phase wave functions perform well for ensembles with
high mixedness, whereas at higher purities a deterministic sampling of the energetically lowest-lying eigenstates
becomes superior. We prove that minimization of the worst-case error for computing arbitrary observables is
uniquely attained by eigenstate-based sampling. We show that this error can be used to form a qualitative estimate
of the set of ensemble purities for which the sampling performance of the eigenstate-based approach is superior
to random-phase wave functions. Furthermore, we present refinements to both schemes which remove redundant
information from the sampling procedure to accelerate their convergence. Finally, we point out how the structure
of low-rank observables can be exploited to further improve eigenstate-based sampling schemes.
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‘
I. INTRODUCTION

In many molecular- and condensed-matter systems the
efficient time propagation of statistical ensembles is crucial
to properly model quantum dynamics under realistic condi-
tions. Such incoherent states are most commonly described
by density matrices which incorporate the concept of classical
mixtures on top of quantum coherences [1]. However, the nu-
merical treatment of density matrices proves to be challenging
due to the requirement to store O(N2) complex numbers for
a general representation, where N is the underlying Hilbert
space dimension. Conversely, pure states in Hilbert space
only require the storage of at most O(N ) complex entries.
This issue is further exacerbated by the fact that, on top of
the increased memory requirements, the computational effort
is substantially larger, too. In the most general case, time
propagation via solving the Schrödinger equation for pure
states scales as O(N2) and grows to O(N4) when solving, e.g.,
the Liouville equation for density matrices.

A promising approach to reduce computational complexity
is to find an effective description in Hilbert space. Meth-
ods to treat dissipative systems on the level of coherent
states include, for example, Monte Carlo wave-function tech-
niques [2,3], Keldysh contour methods [4], and the so-called
surrogate Hamiltonian [5,6]. An interesting subclass of prob-
lems is given by mixed states which undergo coherent evo-
lution. If no dissipative processes are present on the timescale
of the dynamics, then solving the time-dependent Schrödinger
equation for a complete set of Hilbert space states yields an
exact representation of the system’s time evolution, reducing
the computational complexity from O(N4) to O(N3) [7].
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This raises the question whether a further reduction can be
achieved by preselecting an incomplete set of Hilbert space
states.

The search for approaches in which one only considers a
small subset of the total Hilbert space is motivated by the
so-called eigenstate thermalization hypothesis [8–10]. It states
that, under certain conditions, the behavior of a complete
statistical ensemble can be reproduced by individual energy
eigenstates. As such one can expect that ensemble observables
can already be approximated by considering only a small set
of initial wave functions. A popular idea in this direction is the
use of so-called random-phase thermal wave functions [11].
This method rests on the observation that while individual
Hilbert space states can properly represent populations of an
incoherent ensemble, they usually contain excess coherences.
However, by randomizing the phases of these coherences
through using a set of random-phase thermal wave functions
the superfluous contributions can be averaged out, thus restor-
ing a proper description of the initial state.

Such a stochastic approach has already been proven to
yield well-converged results with a comparatively small num-
ber of random-phase realizations in applications such as
photoassociation of Mg2 dimers [12–14] and laser-induced
rotation of SO2 molecules [15]. However, its asymptotic
behavior is rather poor, showing the well-known statistical
∼ 1√

K
tail where K is the number of realizations employed.

Moreover, in contrast to using an orthonormal basis of Hilbert
space, the initial ensemble is not fully reobtained even when
K is equal to the Hilbert space dimension. This poses the
question whether an approach using an orthogonal set of wave
functions is superior to random-phase thermal wave functions
in computing time-dependent expectation values.

Here we provide a theorem which uniquely identifies
the best set of Hilbert space states to limit the worst-case
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approximation error of arbitrary time-dependent observables
in mixed ensembles. In addition to the worst-case estimate,
we analyze the average behavior of this state sample for a set
of physical observables and compare it to the random-phase
approach. Finally, we show that prior information about an
observable, if it is available, may be used to design even
faster converging state sets to approximate the mixed-state
expectation value of this observable.

The paper is organized as follows. Section II introduces
the concept of wave-function sampling to simulate time-
dependent ensemble expectation values. Section III introduces
an error measure for the performance of a given sampling
scheme and presents our central theorem on how to mini-
mize the worst-case estimation error for arbitrary observables.
Section IV proposes two modifications to the previously in-
troduced sampling methods that lead to faster convergence
of the average error. In Sec. V we apply the two sampling
protocols to a one-dimensional spin chain and discuss how
they behave on average, with a particular emphasis on the
dependence on ensemble purity. Section VI explores how far
prior information can be used to further optimize the sampling
procedure. Finally, Sec. VII concludes.

II. RANDOM-PHASE THERMAL WAVE FUNCTIONS

A. Eigenstate-based sampling

We start by considering an initial state in thermal equilib-
rium, i.e., a canonical ensemble and generalize to arbitrary
mixed states in the following. The corresponding density
operator is given by

ρ̂β = e−βĤ0

Z
, (1)

where Z = tr[e−βĤ0 ] is the partition function, Ĥ0 ≡ Ĥ (t =
0) the system Hamiltonian at initial time, and β = 1/(kBT )
the inverse temperature. We denote the eigenbasis of Ĥ0 as
{|En〉}n=1,...,N with eigenenergies {En}n=1,...,N . This diagonal-
izes the density matrix,

ρ̂β = 1

Z

N∑
n=1

e−βEn |En〉 〈En| , (2)

with N the Hilbert space dimension. Assuming coherent
system dynamics, time propagation is mediated by the uni-
tary time evolution operator, Û (t ), generated by the time-
dependent Hamiltonian Ĥ (t ). As a consequence, expectation
values of observables at a certain time, 〈Â〉β , can be obtained
via solving the time-dependent Schrödinger equation (instead
of the time-dependent Liouville equation for the full density
matrix). Specifically, one can write

〈Â〉β = tr[ÂÛ (t )ρ̂βÛ †(t )] = tr[Û †(t )ÂÛ (t )ρ̂β]

= 1

Z

N∑
n=1

〈En| Û †(t )ÂÛ (t )e−βEn |En〉

=
N∑

n=1

pn 〈En| Û †(t )ÂÛ (t ) |En〉 , (3)

with pn ≡ 1
Z e−βEn . As a result, the expectation value of an

arbitrary observable can be computed exactly by Hilbert space
propagation of a complete orthonormal basis. However, for
systems with large Hilbert space dimension, this quickly
becomes infeasible. This phenomenon is called the curse of
dimensionality [16], leading to exponential scaling for each
additional degree of freedom. One approach to reduce the
numerical effort is truncation of Eq. (3) once the weights pn

become sufficiently small [7], i.e.,

〈Â〉β ≈
K∑

n=1

pn 〈En| Û †(t )ÂÛ (t ) |En〉 . (4)

This approach is sensible for very cold ensembles, where
the weights quickly drop off for excited states due to the
Boltzmann factor e−βEn . For moderately warm ensembles the
distribution broadens and, to our knowledge, no feasible way
to predict the incurred error in the observable for a given
cutoff point has been derived.

B. Thermal wave function sampling

Instead of using a truncated orthonormal eigenbasis, Gel-
man and Kosloff proposed random-phase thermal wave func-
tions to approximate ρ̂β and thereby compute time-dependent
observables 〈Â〉β [11]. In a first step, a set of K nonorthogonal
states, {|�k〉}k=1,...,K , is constructed from some orthonormal
basis {|φ j〉} j=1,...,N ,

|�k (�θ k )〉 = 1√
N

N∑
j=1

eiθ k
j |φ j〉 . (5)

Each |�k〉 uses randomly chosen phases θ k
j ∈ [0, 2π ]. The

dyadic product |�k〉 〈�k| is called realization,

|�k〉 〈�k| = 1

N

N∑
j, j′=1

ei(θ k
j −θ k

j′ ) |φ j〉 〈φ j′ | . (6)

By averaging an infinite number of realizations a resolution of
the identity, 1̂, is obtained,

1̂ = lim
K→∞

(
N

K

K∑
k=1

|�k〉 〈�k|
)

. (7)

Using Eq. (7), ρ̂β can be expressed in random-phase thermal
wave functions,

ρ̂β = 1

Z
e−(β/2)Ĥ0 1̂e−(β/2)Ĥ0

= lim
K→∞

N

ZK

K∑
k=1

e−(β/2)Ĥ0 |�k〉 〈�k| e−(β/2)Ĥ0

= lim
K→∞

N

K

K∑
k=1

∣∣∣∣�k

(
β

2
, �θ k

)〉〈
�k

(
β

2
, �θ k

)∣∣∣∣, (8)
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with un-normalized |�k ( β

2 , �θ k )〉 ≡ Z−1/2e−(β/2)Ĥ0 |�k〉. Sim-
ilarly to Eq. (3), the expectation value of an observable Â is
then obtained by

〈Â〉β = lim
K→∞

N

K

K∑
k=1

〈
�

(
β

2
, �θ k

)∣∣∣∣Û †(t )ÂÛ (t )

∣∣∣∣�
(

β

2
, �θ k

)〉
.

(9)

In practice, the limit in Eq. (9) cannot be evaluated and some
finite value of K needs to be chosen. Evidently, if K > N ,
then using an orthonormal basis and employing Eq. (3) while
propagating the full set of N energy eigenstates is always
preferable. For K < N the random-phase sampling approach
directly competes with truncated eigenstate sampling. In the
following we show that sampling from eigenstates is the
optimal approach to construct thermal wave functions if no
prior knowledge of the system dynamics is available and
arbitrary observables shall be computed. We then compare
this procedure to the random-phase approach in terms of
its average behavior instead of the worst-case behavior in
Sec. V A. Before we begin, we first define an error measure
to quantify how well a given sampling scheme performs
regarding the approximation of time-dependent expectation
values.

III. OPTIMAL SAMPLING FOR ARBITRARY
OBSERVABLES

A. Error measure

From this point onward, ρ̂true denotes the initial density
operator as given by Eq. (2) and ρ̂approx refers to any approx-
imation of the density matrix, e.g., the truncated versions of
Eq. (2) or Eq. (8). We define the error of expectation values
when using the approximated density matrix ρ̂approx as

ε = |tr[ÂÛ (t )ρ̂trueÛ
†(t )] − tr[ÂÛ (t )ρ̂approxÛ

†(t )]|. (10)

In the following we are interested in finding an upper bound
for this error. Since the error scales linearly with the norm
of the observable Â, we consider only observables with a
fixed Hilbert-Schmidt norm which we assume to be equal
to one without loss of generality. In particular, the error of
an arbitrary observable with unit Hilbert-Schmidt norm is
bounded from above in the following way:

ε � max
‖Â‖HS=1

|tr[ÂÛ (t )ρ̂trueÛ
†(t )] − tr[ÂÛ (t )ρ̂approxÛ

†(t )]|

= max
‖Â‖HS=1

|tr[Û †(t )ÂÛ (t )ρ̂error]|, (11)

where we have used the abbreviation

ρ̂error = ρ̂true − ρ̂approx. (12)

For observables with arbitrary Hilbert-Schmidt norm, the
error bound can simply be obtained by multiplication with
the norm’s value due to the error being a homogeneous
function of Â. Equation (11) can be reexpressed by evaluating
the trace using the eigenbasis of ρ̂error, which we denote

by {|ξi〉}i=1,...,N ,

ε � max
‖Â‖HS=1

|tr[Û †(t )ÂÛ (t )ρ̂error]|

= max
‖Â‖HS=1

∣∣∣∣∣
N∑

i=1

〈ξi| Â(t )ρ̂error |ξi〉
∣∣∣∣∣

= max
‖Â‖HS=1

∣∣∣∣∣∣
N∑

i=1

〈ξi| Â(t )
N∑

j=1

|ξ j〉 〈ξ j | ρ̂error |ξi〉
∣∣∣∣∣∣

= max
‖Â‖HS=1

∣∣∣∣∣
N∑

i=1

aii(t )λi

∣∣∣∣∣, (13)

where Â(t ) = Û †(t )ÂÛ (t ) and aii(t ) = 〈ξi| Â(t ) |ξi〉. Here we
have used completeness, 1̂ = ∑N

j=1 |ξ j〉 〈ξ j |, as well as the
relation 〈ξ j | ρ̂error |ξi〉 = λiδi j , where λi are the eigenvalues of
ρ̂error. Note that, due to the unitary invariance of the Hilbert-
Schmidt norm, the relation ‖Â‖HS = ‖Â(t )‖HS holds for all
times t . Then Eq. (13) can be interpreted as a scalar product
involving the vectorized quantities (�a)i = aii(t ) and (�λ)i = λi.
Thus, the Cauchy-Schwarz inequality is applicable and it
follows that

ε � max
|�a|�1

∣∣∣∣∣
N∑

i=1

aii(t )λi

∣∣∣∣∣
= max

|�a|�1
|�a · �λ| � max

|�a|�1
|�a| · |�λ| = |�λ| = ‖ρ̂error‖HS. (14)

We have replaced ‖Â‖HS = 1 by |�a| � 1 since |�a| =√∑
i a2

ii �
√∑

i, j a2
i j = ‖Â‖HS. Note that if Â and ρ̂error are

parallel, i.e., identical up to a scalar factor, then the inequali-
ties in Eq. (14) all become equalities. In conclusion, we obtain
for the approximation error ε the upper bound

ε � ‖ρ̂error‖HS =
√∑

i, j

[(ρ̂error)i j]2, (15)

which holds for arbitrary observables and arbitrary system
dynamics—knowledge of the initial state is entirely sufficient
to evaluate the error bound.

B. Optimal basis

The error bound in Eq. (15) is valid for any sampling
method for ρ̂approx. This raises the question of the optimal
sampling method. The following theorem yields the lowest
attainable worst-case error bound for Eq. (15) as well as the
corresponding sampling method which achieves this error:

Theorem 1. Let �̂ ∈ CN×N be an arbitrary Hermitian
N × N matrix. Then, for all M̂ ∈ CN×N with rank(M̂ ) � K ,
the inequality ‖�̂ − M̂‖2

HS � ∑N
i=K+1 |λi|2 holds, where

{λi}i=K+1, ... ,N is the set containing the N − K smallest eigen-
values of �̂. Equality is obtained if and only if M̂ = P̂�̂P̂,
where P̂ is a projector onto the eigenspace corresponding to
the eigenvalue set {λi}i=1, ... ,K .

Proof.

‖�̂ − M̂‖2
HS = 〈�̂ − M̂, �̂ − M̂〉HS

= ‖�̂‖2
HS + ‖M̂‖2

HS − 2Re〈�̂, M̂〉HS. (16)
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Since M̂ has at most rank K there exists a rank K projector P̂
such that M̂ = P̂M̂P̂. It follows that

Re〈�̂, M̂〉HS � |〈�̂, M̂〉HS| = |tr[�̂P̂M̂P̂]|
= |tr[P̂�̂P̂P̂M̂P̂]| = |〈P̂�̂P̂, P̂M̂P̂〉HS|
� ‖P̂�̂P̂‖HS ‖P̂M̂P̂‖HS. (17)

Here the projector property P̂ = P̂2, invariance under cyclic
permutation of the trace, and the Cauchy-Schwarz inequality
have been used. Minimizing Eq. (16) translates into maximiz-
ing Eq. (17), where the maximum, i.e., equality, is given only
if P̂M̂P̂ ‖ P̂�̂P̂ ⇔ P̂M̂P̂ = μP̂�̂P̂ with μ ∈ C. Inserting this
relation into Eq. (17), we obtain Re(μ) = |μ|, which implies
μ ∈ R+

0 . In the following we focus on determining P̂ such
that μ‖P̂�̂P̂‖2

HS is maximal. This is obtained by plugging this
parallelity condition into the final expression in Eq. (17).

Representing �̂ and P̂ in a basis {|i〉}i=1,...,N which diago-
nalizes P̂, i.e.,

P̂ =
K∑

i=1

|i〉 〈i| and �̂ =
N∑

i, j=1

�i j |i〉 〈 j| , (18)

it follows that

μ‖P̂�̂P̂‖2
HS = μ tr[P̂�̂P̂P̂�̂P̂]

= μ tr

⎡
⎣ K∑

i, j,k=1

�i j� jk |i〉 〈k|
⎤
⎦

= μ

K∑
i, j=1

�i j� ji = μ

K∑
i, j=1

�i j�
∗
i j

= μ

K∑
i, j=1

|�i j |2 = μ

K∑
i, j=1

|〈i|�̂| j〉|2.

Representing �̂ in its eigenbasis {|φk〉}k=1,...,N , i.e.,

�̂ =
N∑

k=1

λk |φk〉 〈φk| , (19)

with eigenvalues {λk}k=1,...,N sorted such that λ1 � · · · � λN ,
Eq. (19) translates into

μ

K∑
i, j=1

|〈i|�̂| j〉|2 = μ

K∑
i, j=1

N∑
k=1

|λk|2 |〈i|φk〉|2 |〈 j|φk〉|2

= μ

N∑
k=1

|λk|2
[

K∑
i=1

|〈i|φk〉|2
]2

. (20)

Now we define zk = ∑K
i=1 |〈i|φk〉|2. The inequality zk � 1

holds since
∑K

i=1 |〈i|φk〉|2 � ∑N
i=1 |〈i|φk〉|2 = 1 applies. It di-

rectly follows that z2
k � zk � 1 with z2

k = zk = 1 if and only
if |φk〉 ∈ im(P̂), with im(P̂) the image of P̂. Furthermore,∑N

k=1 z2
k � K holds with

N∑
k=1

z2
k = K ⇔ ∀ k: |φk〉 ∈ im(P̂), (21)

which can be seen as follows:
N∑

k=1

z2
k �

N∑
k=1

zk =
N∑

k=1

K∑
i=1

〈i|φk〉 〈φk|i〉 =
K∑

i=1

〈i|i〉 = K.

(22)

Equations (19) and (20) imply that

λ‖P̂�̂P̂‖2
HS = μ

N∑
k=1

|λk|2 z2
k � μ

K∑
k=1

|λk|2 , (23)

with equality if zk = 1 when k is an index belonging to a set
containing the K largest eigenvalues of �̂ and zk = 0 other-
wise. Thus im(P̂) needs to be spanned by a set of eigenvectors
corresponding to such an eigenvalue set.

Now we can finally rewrite Eq. (16),

‖�̂ − M̂‖2
HS = ‖�̂‖2

HS + ‖P̂M̂P̂‖2
HS − 2Re〈�̂, M̂〉HS

= ‖�̂‖2
HS + μ2‖P̂�̂P̂‖2

HS − 2Re〈�̂, M̂〉HS

� ‖�̂‖2
HS + μ2‖P̂�̂P̂‖2

HS − 2μ‖P̂�̂P̂‖2
HS, (24)

where we have used Eq. (17) in the final line. Searching for
the extremum of this expression with respect to μ,

0
!= ∂

∂μ
‖�̂ − M̂‖2

HS = (2μ − 2)‖P̂�̂P̂‖2
HS, (25)

we find that μ = 1 uniquely minimizes Eq. (24). Conse-
quently,

‖�̂ − M̂‖2
HS �

N∑
k=K+1

|λk|2 (26)

holds with equality if and only if M̂ = P̂�̂P̂ with im(P̂) being
spanned by the eigenvectors corresponding to the K largest
eigenvalues of �̂. This concludes the proof. �

Theorem 1 can be applied to sampling mixed states via a
set of pure states in the following way: Choose �̂ = ρ̂true and
M̂ = ρ̂approx. Then constructing the density matrix ρ̂approx in
the eigenbasis of ρ̂true,

(ρ̂β )i j =
{ 1

Z e−βEi if i = j and i < K
0 otherwise

, (27)

minimizes the worst case for the error ε, cf. Eq. (11), uniquely.
The first K diagonal entries of ρ̂approx are the largest eigenval-
ues of ρ̂true, and hence the worst-case error can be estimated
via

ε � ‖ρ̂true − ρ̂approx‖HS =
√√√√ N∑

i=K+1

|λi|2

=
√√√√ N∑

i=K+1

p2
i ≡ εbound(K ). (28)

This error bound only depends on the eigenvalues λi of ρ̂true.
It is particularly small if the initial density matrix possesses
a narrow population distribution. For thermal systems, this is
usually connected to low temperatures. Furthermore, the error
bound is independent of the actual system dynamics. As a
result, if no prior information is available and one aims to
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minimize the worst-case error for computing observables of
an ensemble, then propagating the eigenvectors of the initial
density matrix corresponding to the largest eigenvalues is the
uniquely optimal choice.

IV. ACCELERATING CONVERGENCE

In this section we will discuss two enhancements to the
random-phase wave function approach and eigenstate-based
sampling which substantially accelerate their convergence
in certain regimes. The fundamental idea underlying these
improvements is to eliminate redundant information from the
sampling procedures. Defining the traceless part of the density
matrix, ρ̂0 = ρ̂ − 1̂ · tr[ρ̂], we can expand the evolution of the
density matrix in the Schrödinger picture as follows,

ρ̂(t ) = Û †ρ̂(0)Û = Û †[1̂ · tr[ρ̂] + ρ̂0(0)]Û

= 1̂ · tr[ρ̂] + Û †ρ̂0(0)Û . (29)

A similar expansion in the Heisenberg picture leads to the
following result,

Â(t ) = Û †Â(0)Û = Û †[1̂ · tr[Â] + Â0(0)]Û

= 1̂ · tr[Â] + Û †Â0(0)Û , (30)

with Â0 = Â − 1̂ · tr[Â]. As a consequence Eqs. (29) and (30)
show that the identity component can be isolated on both the
operator and state level. Most notably, this contribution to
the state, respectively the observable, is independent of the
actual propagation. It is only the traceless part of the state,
respectively the observable, which is affected by the dynamics
and thus requires sampling. In the following, we investigate
how the redundant information corresponding to the identity
component is treated by the sampling protocols. This allows
us to formulate improved sampling schemes which systemat-
ically discard the identity components.

A. Shifting the spectrum of the observable

Shifting an observable Â by a constant λ1̂ merely shifts the
expectation value 〈Â〉 by λ due to linearity of the expectation
value and normalization of the states, cf. Eq. (3). Since for
random-phase sampling the diagonal entries of the initial
density matrix are faithfully represented, expectation values
are not affected by homogeneous spectral shifts. In particular,
the error incurred when approximating the expectation value
of an observable Â and the spectrally shifted observable Â +
λ1̂ is identical, i.e., ε(〈Â〉) = ε(〈Â + λ1̂〉) ∀λ. However, this
invariance does not hold for eigenstate-based sampling,

ε(〈Â + λ1̂〉) =
∣∣∣∣∣

N∑
n=K+1

pn 〈En| Û †(Â + λ1̂)Û |En〉
∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
N∑

n=K+1

pn 〈En| Û †ÂÛ |En〉︸ ︷︷ ︸
ε1

+ λ

N∑
n=K+1

pn︸ ︷︷ ︸
ε2

∣∣∣∣∣∣∣∣∣∣
�= |ε1| = ε(〈Â〉). (31)

Specifically, if the error contribution ε2 is much larger than
the error ε1, then the overall error will be dominated by a
component which is entirely caused by the nonvanishing trace
of the observable. As pointed out in the beginning of this
section such a component carries only redundant information
and thus can and should be removed from the sampling
procedure.

To this end, we modify the eigenbasis sampling presented
in Eq. (4) by separating the observable Â into its traceless
part, Â0, and a multiple of identity, λ01̂ = tr[Â]1̂, such that
Â = Â0 + λ01̂. This allows us to reexpress the approximated
expectation value as follows:

〈Â〉 ≈
K∑

n=1

pn 〈En| Û †(t )(Â0 + λ01̂)Û (t ) |En〉

=
K∑

n=1

pn 〈En| Û †(t )Â0Û (t ) |En〉︸ ︷︷ ︸
K→N= 〈Â0〉

+ λ0

K∑
n=1

pn︸ ︷︷ ︸
K→N= tr[Â]

, (32)

≈
K∑

n=1

pn 〈En| Û †(t )Â0Û (t ) |En〉 + λ0. (33)

Note that in the limit K → N the second contribution in
Eq. (32) is simply given by tr[Â], which is a property that is
known a priori since it depends neither on the initial ensemble
nor on the dynamics. Thus, a sampling of this quantity would
be redundant and could artificially inflate the error of the
protocol. Fortunately, this issue can be easily fixed in Eq. (33)
by replacing the observable with its traceless version and man-
ually adding the contribution from the trace in the very end.
As a side effect this adjustment also ensures that, just like the
random-phase approach, eigenstate-based sampling becomes
invariant with respect to homogeneous spectral shifts.

B. Removing the background

The issue of redundant information due to the contribution
of identity arises not only for the observables but also for the
initial ensemble. To elucidate this fact, we define the reduced
populations p′

n and the minimal population pmin as follows:

p′
n = pn − pmin, pmin = min(pn). (34)

This allows us to separate the identity component of a density
matrix, pmin · 1̂, from its positive remainder1 ρ̂ ′,

ρ̂ = ρ̂ ′ + pmin · 1̂. (35)

Since the identity component pmin · 1̂ is unaffected by time
evolution, it can be considered a redundant background and
should be removed from the dynamics beforehand. This be-
comes particularly clear when we express expectation values

1Note that in order to preserve positivity, we do not set the trace
of the adjusted density matrix to zero. To reflect on this change, we
distinguish the reduced density matrix ρ̂ ′ from the traceless density
matrix ρ̂0. It is an open question whether additional improvements
can be obtained by foregoing positivity which we leave up to future
work.
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FIG. 1. Population as a function of energy in a typical Boltzmann
distribution. The horizontal dotted line at pN distinguishes those
parts of the population for individual states which can change due to
unitary time evolution (blue) compared to the “background,” which
always remains unchanged (red).

in terms of the reduced populations and additionally separate
the identity component of the observable as explained above,

〈Â〉 =
N∑

n=1

(p′
n + pmin) 〈En| Û †(t )Â0Û (t ) |En〉 + λ0

=
N∑

n=1

p′
n 〈En| Û †(t )Â0Û (t ) |En〉 + λ0 + pmin tr[Â0]︸ ︷︷ ︸

=0

=
N∑

n=1

p′
n 〈En| Û †(t )Â0Û (t ) |En〉 + λ0. (36)

A visualization of this “background removal” is shown in
Fig. 1 for the example of a thermal ensemble. The background
(red) is proportional to the minimal population pmin. Only
the contribution due to the reduced coefficients p′

n (blue) is
affected by the dynamics and thus needs to be sampled, cf.
Eq. (36). Note that Theorem 1 still holds when sampling a
density matrix from which the minimal population component
is subtracted, i.e.,

εbound(K ) =
√√√√ N∑

i=K+1

p′
i
2
. (37)

This expression yields the worst-case error bound for the
eigenstate-based sampling scheme with the two improvements
discussed above. It is particularly evident how the removal
of the minimal population leads to decreased values for the
reduced populations p′

i = pi − pmin � pi and thus also to a
reduced approximation error.

Note that the removal of the background can also be
employed for the random-phase approach by constructing
the random-phase thermal wave functions using the reduced
populations,∣∣∣∣�k

(
β

2
, �θ k

)〉
= 1√

N

N∑
j=1

√
p′

je
iθ k

j |Ej〉 . (38)

For traceless observables, using these adjusted wave functions
still ensures convergence toward the exact expectation value
for N → ∞, following an argument analogous to the one for
the eigenstate-based approach presented above.

V. APPLICATION TO A SPIN CHAIN

A. General observables

Theorem 1 implies that randomized sampling using
random-phase thermal wave functions yields an inferior
worst-case error bound compared to deterministic sampling
using the lowest-lying eigenstates. However, it does not allow
us to make a statement on whether this relationship holds in a
typical setting, i.e., on average, since the average error might
behave rather differently from the worst-case bound. In order
to investigate this point we compare random-phase sampling
of thermal wave functions with eigenstate-based sampling us-
ing the averaged results of randomized simulations. Moreover,
we also compare the performance of these two methods when
employing the improvements discussed in Sec. IV.

To gain insight into the scaling of the average error with
Hilbert space dimension in a typical physical setting, we study
a one-dimensional thermal spin chain with nearest-neighbor
coupling, see, e.g., Refs. [17–19]. The corresponding Hamil-
tonian reads

Ĥ (t ) = −J
n−1∑
j=1

�̂σ j �̂σ j+1 − hz

n∑
j=1

σ̂ z
j + E (t )

n∑
j=1

σ̂ x
j , (39)

with J the coupling strength, n the number of spins, hz the
field strength of an external magnetic field in the z direction,
and E (t ) representing a time-dependent magnetic field in the
x direction with a truncated Gaussian envelope such that
E (t = 0) = 0. The vector operator �̂σ j = (σ̂ x

j , σ̂
y
j , σ̂

z
j ) contains

the Pauli matrices acting on spin j. Increasing the length of the
spin chain doubles the Hilbert space dimension, exemplifying
the curse of dimensionality present in almost all quantum
systems.

To address the question on how to properly simulate the
average error in practical applications we first motivate why
a straightforward approach of completely averaging over all
possible observables and dynamics is ill advised. Such a
complete averaging can be performed by using Haar-measure
randomly distributed unitaries [20] for both the unitary propa-
gator and the observable eigenbases. We performed reference
calculations which implemented such a full averaging proce-
dure. We observed that the corresponding results significantly
deviate from simulation results we obtain when only using
limited resources; however, we argue that the former aver-
aging process is not physically sensible. Using Haar-measure
random unitaries indiscriminately mixes all regions in Hilbert
space, which leads to a high degree of averaging such that
barely any structure remains. More specifically, we observed
that in combination with the sampling improvements outlined
in Sec. IV almost all expectation values become very close
to zero—an effect that is further amplified when the Hilbert
space dimension increases. Since the simulation of physical
observables is aimed at probing certain structures in physical
processes, we therefore think that using an approach based on
uniform drawing according to the Haar measure will not yield
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a fair assessment on the behavior of the sampling algorithms
in practical applications.

For this reason our results on the average performance
were not obtained using a complete mathematical average but
rather in the following way: First, a random observable is
constructed by building randomized linear combinations of
single- and two-particle observables. Second, different time
evolutions are sampled by constructing driving fields E (t )
formed by a Gaussian envelope using a set of randomly drawn
carrier frequencies with limited bandwith. Accounting for the
discretization of time in our numerical setup, the field E (t ) at
times tn with 0 � n < NT is given by

E (tn) ∼ E0e− (tn−t ′ )2

2τ2

NT∑
j=0

e−2π i j(tn−t ′ )
NT ā j, (40)

where NT represents the number of discrete time steps, E0

scales the field strength, t ′ is a constant shift in time, and τ is
the width of the Gaussian envelope. With this construction the
temporal profile is generated from randomly drawn frequency
amplitudes ā j by discrete Fourier transformation. In order
to obtain physically sensible pulses with a proper numerical
representation, only the smallest 5% of the frequencies that
can be realized on our time grid are allowed to be nonzero.

Our choice to restrict observables to linear combinations of
single- and two-particle operators is motivated by the fact that
many observables of physical interest are local. Furthermore
the bandwith restriction we employed on our driving fields
takes into account that in practical applications there are
usually physical limitations on energy and time resolution.
Our simulation parameters in atomic units are J = 1, hz =
0.002 and the envelope of the driving field E (t ) has a width
of τ = 170. E0 is chosen such that the pulse has a maximal
peak amplitude of Emax = 1.0. The initial state of the system
is chosen as a thermal canonical ensemble with temperature
T , which uniquely corresponds to a purity P.

A subtle issue is encountered when normalizing all observ-
ables with respect to the Hilbert-Schmidt norm as discussed in
Sec. III A. Using observables with unit Hilbert-Schmidt norm
leads to expectation values at final time that become ever
closer to zero when increasing the length of the spin chain,
i.e., the Hilbert space dimension. If left unaccounted for, then
this effect would severely impede our ability to analyze the
behavior of the average absolute error given by Eq. (10) as a
function of system size. To ensure comparability of average
errors obtained for arbitrary Hilbert space dimensions, we
thus aimed to enforce in our simulations that the standard
deviation of our randomly generated observables’ spectra
is constant. This translates to a dimensionally independent
spread of expectation values. Note that in our simulations the
mean expectation value is zero due to the tracelessness of our
observables, cf. Sec. IV A. This explains our observation of
decreasing expectation values when using normalized observ-
ables as discussed in Sec. III A. It can be shown that in order
to achieve such a constant spread one needs to rescale all
randomly generated observables to a Hilbert-Schmidt norm
of

√
N instead of 1. Note that this scaling of the observables

rescales all expectation values by the same amount but leaves
the sampling approaches otherwise unaffected. In particular it

does not change the relative performance of the two methods
in any way.

We also want to point out that the sampling enhancements
we introduce in Sec. IV alter the Hilbert-Schmidt norm of both
observable and initial density matrix. However, it is important
to note that we do not rescale these quantities uniformly.
Our enhancements achieve a reduction of the Hilbert-Schmidt
norm in such a way that we can still obtain an estimate for
the original expectation values involving the original Hilbert-
Schmidt norm for both observable and density matrix. In
particular, this goes beyond simply multiplying the observable
with a prefactor smaller than one to obtain a smaller error.
After all, such a manipulation would also decrease the expec-
tation values we aim to approximate. Even though a reduction
of the absolute errors could be achieved in that manner,
the relative errors would remain unchanged. In contrast, our
enhancements reduce both the absolute error as well as the
relative error of our estimates.

Finally, we decided in this work to consistently use the
energy eigenbasis to construct the random-phase wave func-
tions in order to obtain a fair comparison with the eigenstate-
based approach. Specifically, this choice removes any effects
originating from a different basis choice between the two
approaches which might obscure differences in convergence
behavior that are inherent to the two methods. Note that in
large systems, performing a full diagonalization to obtain
the eigenstates of the initial ensemble may pose an issue.
For the construction of random-phase thermal wave functions
it is possible to use an arbitrary orthonormal basis instead,
cf. Sec. II B. For the eigenstate-based approach there is
unfortunately no way around calculating the corresponding
eigenstates. However, in a practical application one should
expect the required amount of sampling states for a reasonable
sampling error to be much smaller than the total Hilbert
space dimension. In this case algorithms to determine a small
amount of eigenstates, e.g., the Arnoldi method [21], can be
employed.

We begin by analyzing the behavior of the sampling
algorithms when employing the enhancements proposed in
Sec. IV. Figure 2 compares the average absolute error, cf.
Eq. (10), obtained with eigenstate-based sampling (orange),
respectively random-phase sampling (blue), once without any
enhancements (short dashed lines) and once with removal of
the observable trace only (medium dashed lines). In addi-
tion to that, the performance when using both improvements
as discussed in Sec. IV is also shown (long dashed lines).
The data for Fig. 2 was obtained for nine spins and a sampling
size of K = 10 eigenstates, respectively K = 10 random-
phase wave functions. The absolute error in the expectation
value was averaged over a set of 150 random observables. We
performed our simulations using an initial thermal ensemble
for a wide range of different temperatures. To improve com-
parability for different physical systems, we decided to plot
this error against the purity of the ensemble instead of the
temperature. Note that the purity is a constant of motion in
the coherent dynamics we are simulating.

Not surprisingly, we observe that eigenstate-based sam-
pling performs particularly well for high purity, i.e., low
temperatures, whereas the random-phase approach performs
about equally well for most purities. The error drop toward
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FIG. 2. Average error for expectation values obtained for 150
randomized observables in the eigenstate-based approach (orange)
and using random-phase sampling (blue) for a spin chain with 9
spins using K = 10 states in the sampling. Short dashed lines refer
to sampling schemes with no adjustments, whereas medium dashed
lines include the improvement discussed in Sec. IV A. On top of this,
long dashed lines also show the performance when the removal of the
background in the initial ensemble has been additionally included, cf.
Sec. IV B. The average error for the random-phase sampling with
respect to no sampling adjustments and to sampling adjustments
following Sec. IV A coincide and are just represented by a single
short dashed line.

purities of P = 1 is due to the fact that, for a thermal ensemble
that is close to zero temperature, all random-phase wave
function become similar to the ground state of the system. As
a consequence, in the limit of purity P = 1 (or temperature
T = 0), only a single realization is required to obtain exact
results for the expectation values. Naturally, a similar argu-
ment can be made on the eigenstate-based approach, where
the sampling is progressively performed starting from the
energetically lowest-lying eigenstates. However, we observe
that the performance of the eigenstate-based sampling re-
mains stable for a much larger purity window around P = 1
compared to the random-phase approach.

When the ensemble purity decreases, i.e., the temperature
increases, the performance of the eigenstate-approach quickly
deteriorates and for purities around 10−2 it becomes compara-
ble to the random-phase sampling. At these temperatures the
adjustments we introduced above become relevant. With re-
spect to eigenstate-based sampling it is evident that removing
the trace of the observables we discussed in Sec. IV A leads to
a clear performance boost of the sampling scheme. The short
dashed lines in Fig. 2 represents the average error of expecta-
tion values obtained for nontraceless randomized observables.
In order to generate nontraceless random observables, we add
a multiple of identity to traceless random observables, with
the corresponding prefactor chosen in such a way that it has
the same order of magnitude as an average element of the
original observable. This ensures that the error we introduce
by homogeneously shifting the spectrum of the observable
is not arbitrarily large but remains within reasonable bounds
with respect to physical setups.

Comparing the original (short dashed blue line) to the
adjusted (medium dashed blue line) eigenstate-based sam-

pling we observe a performance improvement of up to one
order of magnitude at minimal purity. At high purities this
correction becomes less relevant. Yet, in the vicinity of min-
imal purity, i.e., when the initial ensemble is close to the
maximally mixed state, the removal of the background has
by far the strongest effect. Without this adjustment to the
sampling procedure, both eigenstate-based sampling and the
random-phase approach show a nonzero error at minimal
purity. Conversely, when background removal is employed
(long dashed lines), the performance of both methods can be
dramatically increased in the neighborhood of the maximally
mixed state. Most notably, at minimal purity, the error for both
methods goes exactly to zero which properly accounts for the
fact, that the maximally mixed state contains no structure and
as such all observable expectation values are known a priori
(they are equal to the observable’s trace) and do not need to be
sampled at all. Due to the clear success of our improvements
in accelerating convergence, we will in the following show ex-
clusively the results we obtained when using the two sampling
methods with both enhancements introduced in Sec. IV.

Using the enhanced sampling algorithms, we begin by
turning our study toward the sampling methods’ performance
with respect to the number of sampling elements K . The solid
lines in Fig. 3 show the average error for expectation values in
a spin chain with 10 spins for K corresponding to 5%, 10%,
and 20% of the Hilbert space size dimension N . The shaded
areas around these lines show the error region inside which
80% of our simulations with randomly drawn observables and
time evolutions fall. We chose this representation to illustrate
the variation in our results instead of a simple standard devia-
tion to account for the fact that the errors we obtain scatter
quite asymmetrically around the mean, particularly in the
regions near minimal and maximal purity. When increasing
the number of states in the sample, K , the performance of both
methods improves. Most notably, the random-phase approach
shows the characteristic statistical convergence ∼ 1√

K
which

is mostly independent of ensemble purity. This behavior is
reflected by the shape of the average error, which remains
almost invariant with increasing K and is merely subject
to a homogeneous downward shift. Conversely, we find for
eigenstate-based sampling that the average error decreases far
more strongly when taking larger sample sizes. In particular,
the error peak and the performance crossing point with the
random-phase approach move toward higher purities. This
behavior is intimately connected to the shift in the level occu-
pations of the Boltzmann distribution. Since the populations
decrease exponentially with increasing energy, the eigenbasis
approach can systematically reduce the error by sampling
more and more levels. In short, the random-phase approach
converges homogeneously with 1√

K
, whereas the convergence

of eigenstate-based sampling is strongly dependent on the
population distribution.

Next we examine the performance as a function of Hilbert
space dimension. In Fig. 4 we show the average error for
eigenstate-based sampling (orange) and the random-phase ap-
proach (blue) together with the analytical bound according to
Theorem 1 (orange, dashed) for a system of 7, 9, and 10 spins
(corresponding to a Hilbert space dimension of 128, 512, and
1024, respectively). For high purity (low temperatures), the
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FIG. 3. Average error for expectation values obtained for 200 randomized observables in the eigenstate-based approach (orange) and
using random-phase sampling (blue) for a spin chain with 10 spins (Hilbert space dimension N = 210 = 1024). Results were obtained using
K = 0.05N (a), K = 0.10N (b), and K = 0.20N (c) states in the samples. The shaded regions show the error range inside which 80% of all
performed simulations fall.

average approximation error when using the random-phase
approach appears to be roughly independent of Hilbert space
dimension. For low purities (high temperatures), however, the
average error actually decreases. This observation can be ex-
plained by the fact that, for large Hilbert spaces, convergence
of the statistical random-phase approach is aided by the law
of large numbers. For example, any two random-phase wave
functions will become increasingly orthogonal when the size
of Hilbert space increases, which automatically amends one
of the potential issues of the random-phase approach, namely,
the nonorthogonality of the sampled states. This effect is
particularly pronounced at low purities which agrees with
our observation that the performance of the random-phase
approach benefits from an increased Hilbert space dimension
in this regime. As such, the gap between the two approaches
closes2 which reinforces the notion that the random-phase ap-
proach is particularly suitable for large and thermally hot sys-
tems. In rather stark contrast to the random-phase approach,

2In fact, if T → ∞, then deterministically choosing the phases of
thermal wave functions such that they are elements of a mutually
unbiased basis [22] with respect to the energy eigenbasis is optimal.
In this case the thermal wave functions form an orthogonal set while
populations still remain perfectly described by any individual wave
function. In particular, if K = N , then an exact resolution of identity
is reobtained.

the performance of eigenstate-based sampling deteriorates
for all purities when the Hilbert space dimension increases
[cf. Figs. 4(a)–4(c)]. Another particularly striking feature is
given by the fact that the shape of the average error for the
eigenstate-based seems to follow the shape of the worst-case
error by Theorem 1 quite closely. Most notably, both curves
show a very similar plateau region on the logarithmic scale at
intermediate purities, which directly corresponds to the region
in which eigenstate-based sampling performs at its worst
compared to the random-phase approach. As a consequence,
one may determine this plateau for the analytical worst-case
error bound and use it as a rule of thumb to estimate the purity
regions in which the random-phase approach outperforms
eigenstate-based sampling.

Our results indicate that the analytical error bound is able
to make profound statements on the performance of the two
sampling approaches even with respect to the average error.
The error bound depends on the residual populations, i.e.,
the populations in states which are not being sampled. As a
consequence not only the purity can have a large effect on
the performance but also the spectrum of the Hamiltonian, or,
in other words, the density of states. In order to gain more
insight on the effect of different spectral densities, we adjusted
the parameters for the spin chain Hamiltonian in Eq. (39) to
generate a set of distinct spectral shapes, cf. the top panel
of Fig. 5. An aspect of particular importance in this context

FIG. 4. Average error for expectation values obtained for 200 randomized observables for a spin chain with Hilbert space dimension
(a) 27 = 128, (b) 29 = 512, and (c) 210 = 1024 using K = 10 states in the samples. In addition to eigenstate-based sampling (orange) and the
random-phase approach (blue), the analytical bound for the eigenstate-based approach according to Theorem 1 is also shown (orange, dashed).
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FIG. 5. Average error for expectation values of 150 randomized observables in the eigenstate-based approach (orange) and using random-
phase sampling (blue) for a system of nine spins using K = 51 � 0.10N sampling states. In each panel (a)–(c) the spin chain Hamiltonian
was set up with a different set of parameters, thereby producing the spectra shown in the top panel. The spectral energy scale is in arbitrary
units and chosen identically in all panels at the top. The vertical dotted line separates the part of the spectrum that was sampled by the
eigenstate-approach to the left from the remainder to the right.

is the density of states near the ground state, since these
states have the highest population contribution to the initial
ensemble and thus play a major role for the eigenstate-based
sampling. The lower panels of Fig. 5 show the average error
for three different spectra. The vertical dotted line shows the
spectral position of the truncation point of the sampling for
the eigenstate-based approach corresponding to K = 0.10N
elements in the sample. From left to right, the density of
states near the ground state decreases. For the random-phase
wave functions it is clearly visible that the form of the spec-
trum has barely any noticeable impact on the performance.
Conversely, the performance of eigenstate-based sampling
becomes noticeably worse at high purities when the density
of states near the ground state decreases. On first glance this
seems surprising since a low density of states implies that
the population in the first few excited states will quickly
drop off which should be beneficial for the eigenstate-based
approach.

In order to understand this feature we introduce the popu-
lation residuum pr ,

pr = 1 −
K∑

i=1

pi =
N∑

i=K+1

pi. (41)

This quantity reflects the population of the ensemble in states
which are not taken into account in the eigenstate-based ap-
proach using a sample size of K for a given purity P. In Fig. 6
we compare the population residua as a function of K for
the three spectra shown in Fig. 5 at purities of P = 1 × 10−2

(left), P = 5 × 10−2 (center), and P = 1 × 10−1 (right). The
vertical dotted line indicates the sample sizes employed to
obtain the data shown in Fig. 5. All three panels show that
for a small number of sampled states (K � 10) the spectrum
shown in Fig. 5(c), which yields the smallest density of states
near the ground state, has the smallest population residuum
compared to the other two spectra. Beyond that threshold,
however, the order of the population residua inverts for the
three spectra. For the sample size of K = 50 employed in
Fig. 5 the low density of states near the ground state actually
leads to a slower convergence of the population residuum to-
ward zero. We conclude that, roughly speaking, a low density
of states near the ground state is beneficial at small sample
sizes whereas for larger samples a high density of states is
beneficial.

Our results for the random-phase approach qualitatively
agree with the work by Kallush and Fleischer, who investi-
gated the performance of random-phase wave functions for
describing orientation and alignment of a thermal ensemble
of SO2 molecules subject to a terahertz pulse [15]. For high
temperatures, they reported the required number of random-
phase thermal wave functions to be almost independent of
temperature. This is in good agreement with Fig. 2, where the
dependence of the error on the purity for the random-phase
approach is flat for low to moderate purities. In the low-
temperature (high-purity) regime they found the efficiency
of the random-phase approach to deteriorate, requiring an
ever-increasing amount of realizations to obtain accurate re-
sults. This matches the behavior of the average error we
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FIG. 6. Population residuum pr (K, P), cf. Eq. (41) for P = 1 × 10−2 (left), P = 5 × 10−2 (center), and P = 1 × 10−1 (right) using identical
parameters as in Fig. 5. The spectra correspond to the three panels of Fig. 5 as follows: blue curve [panel (a)], green curve [panel (b)], and
orange curve [panel (c)]. The vertical dotted line fulfils the same role as in Fig. 5

observe in Fig. 2 which does increase toward higher purities,
thereby requiring a higher sample size to keep the error in
check.

Kallush and Fleischer performed simulations investigating
two specific observables, namely orientation and alignment.
This leads us to the question how different the behavior of
specific observables can be from our analysis on an “average”
observable. We will investigate this question in more detail
in the following section and furthermore discuss which prop-
erties of observables can make them particularly suitable for
individual sampling approaches.

B. Specific observables

The different behavior we observe between average and
worst-case error indicates that specific observables can behave
quite differently from randomly drawn observables. In order
to exemplify this, we consider the total polarization Âz =∑n

j=1 σ̂ z
j of the spin chain described by the Hamiltonian in

Eq. (39).
Figure 7 shows the average error for a system of nine spins

(N = 512) with respect to the random-phase approach (blue
solid lines), eigenstate-based sampling (orange solid lines),
and the corresponding bound according to Theorem 1 (orange
dashed-dotted lines). The solid lines, the dashed-dotted lines,
and the shaded areas are analogous to those shown in Fig. 4.
In particular, the shaded areas indicate the error regions into
which 80% of the performed simulations fall. The error for
Âz, represented by dashed lines, is averaged with respect to
a set of randomized laser fields. All other parameters have
been kept fixed with respect to the results from the previous
sections, i.e., Âz follows the same rules as all observables
obtained in our randomized generation scheme.

Quite remarkably, most of the average errors for Âz lie
clearly outside the 80% error region obtained for randomized
observables. Specifically, both sampling approaches show a
worse performance at almost all purities, with the sole excep-
tion of the random-phase approach at low purities. Regarding
the eigenstate-based sampling we attribute this to our obser-
vation that the diagonal matrix elements 〈ψn(t )| Â |ψn(t )〉 in
Eq. (3) are ordered in such a way that—for the specific ob-
servable of total polarization—the first eigenstates all under-
estimate the true expectation value while the latter eigenstates

consistently overestimate it. Therefore a large number of
eigenstates needs to be sampled to compensate for the initial
systematic underestimation. Despite this fact, our analytical
error bound according to Theorem 1 continues to reproduce
the shape of the error curve as a function of purity rather well.
This further strengthens our claim, that the error bound can
be used to estimate the qualitative dependence of the average
error on purity, respectively temperature.

In order to improve our understanding of the performance
of the random-phase approach, we once again move to the
Heisenberg picture. Plugging Eq. (5) into Eq. (9) with |φ j〉 =
|Ej〉, i.e., constructing the random-phase wave function in the
energy eigenbasis, we obtain

〈Â(t )〉β = lim
K→∞

1

K

K∑
k=1

N∑
j, j′=1

√
p j p j′e

i(θ k
j −θ k

j′ )a j, j′ (t ), (42)

with a j, j′ (t ) = 〈Ej′ |Û †(t )ÂÛ (t )|Ej〉. Separating the diagonal

FIG. 7. Average error for a set of 150 random observables (solid)
and K = 100 sampling states for a nine-spin system using eigenstate-
based sampling (orange) and random-phase sampling (blue). Eighty
percent of all errors are within the shaded area and the error bound is
given for the eigenstate-based sampling (dashed-dotted). The simula-
tions performed for obtaining the error for the Âz operator subject to
150 different fields (dashed) were performed with otherwise identical
parameters to those used for the randomly drawn observables as
investigated in Sec. V A.
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FIG. 8. Average error for Âz subjected to fields with amplitudes
ranging from Emax = 1.0 to Emax = 0.001 using a sample size of K =
100 in a nine-spin system for eigenstate-based sampling (orange) and
the random-phase approach (blue). A longer dash length represent
higher field amplitude.

contribution yields

〈Â(t )〉β = lim
K→∞

1

K

K∑
k=1

N∑
j, j′ = 1
j �= j′

√
p j p j′e

i(θ k
j −θ k

j′ )a j, j′ (t )

+
N∑

j=1

p ja j, j (t ). (43)

Note that the second term in Eq. (43) does not depend on
the random phases and thereby does not carry any sampling
error. In particular, this implies that if the operator at final
time in the Heisenberg picture is close to diagonal in the en-
ergy eigenbasis, then thermal wave functions are particularly
suitable to sample the expectation value. This is because they
only need to converge the comparatively small off-diagonal
contributions, a j, j′ (t ), from the first summand in Eq. (43).
Generally speaking, when the observable at final time and the
ensemble at initial time are close to diagonal in the same basis,
i.e., the commutator [Âz(t = tfinal), Ĥ (t = 0)] is small, then
the random-phase approach according to Eq. (5) is particularly
suitable.

Applying this argument to our simulations of the total
polarization, we note that at initial time Âz is diagonal in
the energy eigenbasis, i.e., [Âz(t = 0), Ĥ (t = 0)] = 0. Thus,
ensemble and observable share an eigenbasis initially. This
property will be altered by the dynamics induced by the field
leading to off-diagonal contributions according to Eq. (43).
With respect to Fig. 7, this allows us to conclude that
the below-average performance of the random-phase wave-
function sampling of the observable Âz is due to large off-
diagonal contributions a j, j′ (t ) at final time.

In order to verify that these contributions are caused by the
introduction of off-diagonal contributions during to time evo-
lution, we show in Fig. 8 the average error for both sampling
methods for different field amplitudes, ranging from Emax =
0.001 to Emax = 1.0 with all other simulation parameters
identical to Fig. 7. We argue that the sensitivity of the random-
phase approach’s performance observed in Fig. 8 is due to the

fact that strong fields are more likely to destroys a significant
portion of the diagonal structure of the total polarization in the
energy eigenbasis. Conversely, for eigenstate-based sampling,
we observe only a minor dependency on Emax.

In summary, the structure of the observable in the Heisen-
berg picture can have a major impact on the convergence
behavior, specifically regarding the magnitude of its off-
diagonal matrix elements in the ensemble eigenbasis. Unfor-
tunately, the magnitude of these elements is typically hard to
estimate, since it requires full diagonalization to obtain all
eigenvectors. In addition, the dynamics will shift the balance
between diagonal and off-diagonal elements. However, such
effects need not be solely detrimental. Rather, they can also
be systematically exploited as we will demonstrate in the
following.

VI. OPTIMAL SAMPLING FOR LOW RANK
OBSERVABLES

For density matrices with high purity, such as thermal
states at low temperatures, it is sufficient to propagate only
few energy eigenstates, as evidenced by Eq. (3). For ensem-
bles with low purity, to keep the error in check the required
fraction of states for eigenstate-based sampling can become
quite large, cf. Theorem 1. Furthermore, the structure of the
observable in conjunction with the structure of the initial
density matrix can play a major role, as evidenced by our
findings in Sec. V B. We show in the following that, by swap-
ping the treatment of observable and initial density matrix for
eigenstate-based sampling, we are able to apply Theorem 1
to exploit structural effects on the level of the observable.
Specifically, we devise an efficient sampling scheme for low-
rank observables, which are rather naturally obtained when
considering projectors. For example, simulations of thermal
systems that require the measurement of populations in a
set of bound states on specific electronic surfaces [13,14]
naturally give rise to such operators. The projector rank is
equal to the number of bound states, which is typically much
smaller than the total Hilbert space dimension.

We make use of the fact that the roles of initial density
matrix and observable are interchangeable when calculating
expectation values due to cyclic invariance of the trace,

tr[ÂÛ (t )ρ̂βÛ †(t )] = tr[Û †(t )ÂÛ (t )ρ̂β]. (44)

Using this relation, expectation values can be calculated via

〈Â〉β (t ) = tr[Û †(t )ÂÛ (t )ρ̂β]

=
N∑

n,m=1

〈Am| Û †(t )an |An〉 〈An| Û (t )ρ̂β |Am〉

=
N∑

n,m=1

an 〈An| Û (t )ρ̂β |Am〉 〈Am| Û †(t ) |An〉

=
N∑

n=1

an 〈An| Û (t )ρ̂β Û †(t ) |An〉︸ ︷︷ ︸
|An(t )〉

=
K∑

n=1

an 〈An(t )| ρ̂β |An(t )〉 , (45)
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where Â = ∑N
n=1 an |An〉 〈An| with eigenvalues {an}n=1,...,N

and eigenvectors {|An〉}n=1,...,N . Note that each |An(t )〉 =
Û †(t ) |An〉 can be interpreted as a backward-propagated eigen-
state of the observable. The low rank of Â is important
since any particular propagated eigenstate |An(t )〉 will not
contribute to the sum in Eq. (45) if the corresponding eigen-
value an is zero. Since low rank operators possess a large
number of vanishing eigenvalues, only a small amount of
states need to be propagated. More generally, propagating the
first K eigenstates corresponding to the K eigenvalues with
the largest modulus leads to the following approximation of
the observable Â (represented in its eigenbasis),

(ÂApprox)i j =
{

ai if i = j < K
0 otherwise , (46)

which, by Theorem 1, yields the smallest attainable worst-
case error bound for arbitrary initial ensembles of

ε �

√√√√ N∑
i=K+1

|ai|2, (47)

with ε being defined as in Eq. (10). In particular, if Â is of
rank K and the corresponding K eigenstates are employed,
then ÂApprox = Â and therefore ε will vanish, too. Note that
the error bound does not depend on the system dynamics
or on any features of the initial ensemble. In particular, the
performance is not negatively affected by high temperatures
or low purity.

To improve the sampling performance, it is even possible to
use the enhancements introduced in Sec. IV for the observable
sampling presented in this section, i.e., convergence can be
improved by removing the identity component, respectively
the trace, of the density matrix, respectively the observable.
The only drawback of observable-based sampling is that the
set of states that need to be propagated is tailored to the
specific observable. Even though expectation values for arbi-
trary initial states can be approximated with the resulting set
of propagated states, repeating the simulation for a different
observable would require, in the worst case, the propagation
of a completely different set of states. In short, sampling
the observable is appropriate if one is interested in a single
physical quantity for different initial states, whereas sampling
different observables for the same initial state is more suitably
performed with the approach from Sec. III.

VII. CONCLUSIONS

We have considered the approximation of time-dependent
observables in a quantum system described by a statistical
ensemble undergoing coherent time evolution. We have shown
that, with respect to minimizing the worst-case error, there
is an optimal approach to compute arbitrary time-dependent
observables via pure-state sampling. It consists of using the
lowest-lying energy eigenstates. The corresponding error is
bounded by the summed eigenvalues of those eigenstates
which are not included in the sampling. Eigenstate-based
sampling is the uniquely optimal choice in this case. In
particular, the worst-case sampling error is smaller than
in any randomized sampling approach. Nevertheless the

performance regarding the average error in a particular system
for a set of observables is only superior to random-phase
sampling if the ensemble purity is relatively high or, in the
language of thermal systems, the ensemble is cold. This can
be attributed to the fact that eigenstate-based sampling is con-
structed hierarchically, starting from the energetically lowest-
lying states. Thus, it might easily miss important contribution
from high-lying states which start to play an important role
once mixedness increases. For low purities, a randomized
approach provides on average a much more suitable coverage
of Hilbert space.

While our analytical error bound, cf. Theorem 1, is not
suitable to quantitatively estimate the average error of the
eigenstate-based approach, it still allows to make predic-
tions on the general dependence of its performance on, e.g.,
ensemble purity. We found that the spectrum of the initial
ensemble, which for thermal systems is directly correlated
with the density of states, has a noticeable impact on the
sampling performance - a low density of states near the
ground state coincides with favourable scaling at small sample
sizes, whereas a high density of states is beneficial for larger
samples. Furthermore, we found that it is still possible to
make concrete qualitative statements on the eigenstate-based
approach’s peformance from the analytical bound in a wide
variety of situations, even when the average error instead of
the worst-case error is considered.

Furthermore, we have shown that convergence of the two
methods can be accelerated by avoiding to include quantities
in the sampling which are known a priori. This can be
achieved by removing the identity component of both the
observable and the density matrix. This implies that sampling
should always be performed with traceless observables. While
for eigenstate-based sampling, both enhancements proved to
be generally beneficial, the random-phase approach benefits
from these corrections primarily at low ensemble purities.
In the limit of very low purities, the removal of the identity
components can reduce the average error by several orders of
magnitude.

If one is only interested in specific physical quantities,
then prior information about the structure of the correspond-
ing observables can be exploited to refine the sampling
scheme. Most notably, if the rank of the observable of in-
terest is low, then it is possible to propagate the eigenstates
corresponding to the largest eigenvalues of the observable
of interest backward in time. Then, one can compute the
overlap of this backward-propagated observable with the
initial state at t = 0 to obtain the corresponding expecta-
tion value. This works particularly well for low-dimensional
projectors. For the special case of one-dimensional projec-
tors, it implies that propagation of a single wave function
is sufficient to compute the expectation values for arbitrary
ensembles.

Although our notation and our examples were inspired by
thermal states, we have made no assumptions on the particular
physical nature of the initial state. Our main theorem and
the methods of random-phase and eigenstate-based sampling
can be employed for arbitrary density matrices. The relevant
eigenstates and eigenenergies in the general case are those
of the initial density matrix instead of the Hamiltonian. We
therefore expect our findings to be applicable not only to
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thermal states but also to different types of mixed states as
encountered, for example, in mixed-state quantum comput-
ing [23,24].

Finally, our results regarding the use of prior information
on the observable or initial state immediately raise the ques-
tion whether it is also possible to exploit prior information
on the system dynamics. For example, one could make use
of the fact that all mixed states possess no coherences in
their eigenbasis. If the evolution does not introduce significant
coherences and the observable is diagonal in this basis, then
a single Hilbert space state is sufficient as long as it correctly
reproduces the populations at t = 0. Saving numerical effort
by adaptively focusing on only the most relevant part of
Hilbert space is also at the core of many modern approaches

in quantum chemistry, see, e.g., Refs. [25,26], and condensed
matter physics, see, e.g., Refs. [27,28]. We expect that gaining
more insight into the question of how to best perform such
truncations will open up further avenues to fight the curse of
dimensionality in quantum dynamics.
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