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In continuous-variable quantum computing with qubits encoded in the infinite-dimensional Hilbert space of
bosonic modes, it is a difficult task to realize strong and on-demand interactions between the qubits. One option
is to engineer a beamsplitter interaction for photons in two superconducting cavities by driving an intermediate
superconducting circuit with two continuous-wave drives, as demonstrated in a recent experiment [Gao et al.,
Phys. Rev. X 8, 021073 (2018)]. Here we show how quantum optimal control theory (OCT) can be used in
a systematic way to improve the beamsplitter interaction between the two cavities. We find that replacing
the two-tone protocol by a three-tone protocol accelerates the effective beamsplitter rate between the two
cavities. The third tone’s amplitude and frequency are determined by gradient-free optimization and make use of
cavity-transmon sideband couplings. We show how to further improve the three-tone protocol via gradient-based
optimization while keeping the optimized drives experimentally feasible. Our work exemplifies how to use OCT
to systematically improve practical protocols in quantum information applications.
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I. INTRODUCTION

Quantum technologies [1] such as quantum computing [2],
quantum simulation [3], or quantum sensing [4] promise to
outperform their classical analogues by exploiting quantum
properties like coherence and entanglement. A high degree
of control over the underlying quantum systems is required
for their practical realization, since operating a quantum de-
vice implies the capability to steer the system’s dynamics in
the desired way. Electromagnetic fields, which interact with
the quantum system and which can be shaped in time, are
typical control knobs. Unfortunately, deriving suitable field
shapes quickly becomes nontrivial for increasing complexity
of either the quantum system or the control problem [5].
Optimal control theory (OCT) has developed around this non-
trivial task [6], providing tools to calculate the field shapes
needed to obtain a desired dynamics, e.g., with smallest error
or in shortest time. While OCT for quantum control was
first applied in the context of NMR [7,8] and molecular
dynamics [9–11], OCT has more recently been attracting at-
tention in the field of quantum technologies. This entailed
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significant method development, concerning both optimiza-
tion targets [12,13] and optimization algorithms [14–16] to
ease implementation of constraints ensuring experimental fea-
sibility. To this end, tailored optimization algorithms [14,17–
20] have been developed, which only explore a restricted
function space for solutions but yield smooth field shapes.
Alternatively, gradient-based optimization techniques [21,22]
can be used, which explore an unrestricted function space but
might require additional constraints [23,24] to keep the field
shapes smooth and feasible. A hybrid optimization approach
which combines gradient-free and gradient-based techniques
is another option combining advantages from both meth-
ods [15]. It pre-selects promising field shapes via gradient-free
optimization—exploring only a small function space—and
fine-tunes these fields afterwards via gradient-based methods.
By now OCT has become a versatile and reliable tool that
delivers solutions for the various control problems across sub-
disciplines of quantum physics [6,25].

The utility of OCT in the field of quantum technologies is
confirmed by successful application in various experiments,
for instance, to improve the performance of protocols for
quantum computing [26–30], quantum simulation [31] and
quantum sensing [32–35]. While these advances are impres-
sive, use of optimized pulses in experiment typically involves
significant seesaw of improving experimental calibration and
theoretical fine-tuning of the pulses. Lack of intelligibil-
ity of brute-force optimized pulses, as obtained from, e.g.,
gradient-based techniques, often further hampers this process.
A viable route from OCT to laboratory application is therefore
still missing. Here we argue that hybrid optimization [15]
provides a systematic way to design intelligible and experi-
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mentally feasible pulses, using a practical problem, relevant
for continuous-variable quantum computing as example. In
particular, preoptimization with a reduced number of control
parameters facilitates the derivation of intelligible control so-
lutions. These can then be brought to maximal performance in
the second stage of optimization.

Continuous-variable quantum computing [36,37] is a
promising approach for building a quantum computer [2],
harnessing the infinite-dimensional Hilbert spaces of bosonic
modes to encode and process quantum information [38]. This
may provide an advantage over quantum information plat-
forms with finite-dimensional Hilbert spaces when it comes
to quantum error correction [39]. While noise-protection is a
challenging task for traditional qubit platforms such as super-
conducting circuits [40], substantial progress has been made
in recent years in protecting bosonic modes [41]. This en-
compasses the proposal of new error-correction codes [42–44]
as well as recent experimental demonstrations [45–48] of
such codes, making bosonic modes an attractive platform to
achieve universal, error-corrected quantum computation.

The capability to entangle qubits on-demand is one im-
portant prerequisite—among others [49]—for any successful
quantum computing platform. It requires a controlled in-
teraction between the qubits. While the implementation of
entangling gates is nowadays carried out rather routinely
between, e.g., superconducting circuits [50,51] or trapped
ions [52,53], it is still a nontrivial task for qubits in
continuous-variable settings [54,55]. In recent years, hybrid
approaches to continuous-variable quantum computing which
combine elements like superconducting cavities [56], to host
the bosonic modes, with elements from circuit quantum elec-
trodynamics, have been investigated [39,57]. Interestingly,
these hybrid approaches reverse the roles of cavities and
circuits compared to the more traditional protocols employ-
ing superconducting circuits as qubits [58,59]. In contrast,
in the hybrid approach, the cavities are controlled via su-
perconducting circuits [57], e.g., by using optimized pulses
on the control circuits [28]. This allows for new ways to
let the cavities, i.e., the qubits, interact and thus realize en-
tangling gates. For the latter, however, it matters how the
qubits are encoded within each cavity. In other words, the
entangling protocol depends on how the qubit’s two logi-
cal basis states are encoded within the infinite-dimensional
Hilbert space of the bosonic modes. To take advantage of the
excellent error-correction capabilities of bosonic modes, the
two logical basis states are typically specifically selected to
be less susceptible to decoherence [42,43]. For two super-
conducting cavities interacting via an intermediate transmon
qubit, feasibility of entangling operations for specific encod-
ings has been demonstrated recently [60,61]. Using the same
setup, a codeword-agnostic solution, i.e., an entangling gate
that works for any encoding, has been demonstrated shortly
after [62]. This codeword-agnostic gate depends on an en-
gineered beamsplitter interaction between the two cavities
that can be activated on demand by driving the intermediate
transmon qubit by two continuous-wave drives [63].

Here we use the setup and protocol of Ref. [63] and
show how to enhance the engineered beamsplitter inter-
action between two cavities using the hybrid optimization
approach introduced in Ref. [15]. We demonstrate that

FIG. 1. Tripartite system consisting of two superconducting cav-
ities, labeled A and B, coupled via an intermediate (driven) transmon,
labeled C. The system interacts with its environment, modeled by
individual decay rates for each subsystem.

extending the protocol of Ref. [63]—in the following called
two-tone protocol—by a third continuous-wave drive—in the
following called three-tone protocol—leads to an increase
of the effective beamsplitter interaction strength. We ex-
plain how the choice of the third drive’s amplitude and
frequency—determined by gradient-free optimization—can
be understood. To this end, we show analytically that the
enhancement of the beamsplitter interaction comes from
the third drive’s frequency being chosen by the algorithm
such as to create near-resonant sideband couplings between
both cavities and the transmon. The two-tone and three-
tone protocols can be further improved using gradient-based
optimization—in the following called fine-tuned two- and
three-tone protocols—while keeping the optimized drives fea-
sible. We furthermore discuss the impact of decoherence on all
protocols and how the errors change as the coherence times
improve. Our work exemplifies how to use OCT to obtain
intelligible and feasible solutions to practical problems in
quantum technologies.

The paper is organized as follows. In Sec. II A we intro-
duce the physical model and the control strategy employed in
Ref. [63]. In the subsequent Secs. II B and II C we introduce
the control problem that we want to solve and give a brief
overview of the technical aspects of OCT. Section III presents
our main results. While in Secs. III A and III B we present
our control solution and how it can be found using numerical
methods, in Sec. III C we explain the physical mechanism be-
hind the solution using analytical tools. Section IV compares
the performance of our solution with that of Ref. [63] in the
presence of decoherence. Section V concludes.

II. MODEL AND METHODS

A. Model

We consider a tripartite system, sketched in Fig. 1, con-
sisting of two superconducting cavities [56], labeled A and
B, which both couple to an intermediate transmon qubit [64],
labeled C. The cavity modes are modeled by harmonic oscilla-
tors while the transmon is given by an anharmonic oscillator.
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In the laboratory frame, the Hamiltonian reads [65]

H (t ) = ωaa†a + ωbb†b + ωcc†c − αc

2
c†c†cc

+ ga(ac† + a†c) + gb(bc† + b†c)

+
∑

k

[�k (t )e−iωkt c† + �∗
k (t )eiωkt c], (1)

where a, b, and c are the annihilation operators for the modes
of cavities A and B and transmon C, respectively. ωa and
ωb are the frequencies of the two cavity modes and ωc cor-
responds to the frequency difference between the ground
and first excited state of the transmon C. αc � ωc describes
the transmon’s anharmonicity for higher level splittings. ga

and gb are the static couplings between the cavities A and
B and transmon C, respectively. Note that doubly exciting
(de-exciting) terms like a†c† (ac) and b†c† (bc) have been
neglected. The last row in Eq. (1) describes the interaction
of a set of control fields with transmon C, with �k (t ) and
ωk the time-dependent amplitude and frequency of field k. In
addition, we account for the interaction of the tripartite system
with its environment and model the environment’s influence
via a Gorini-Kossakowski-Sudarshan-Lindblad master equa-
tion [66]:

d

dt
ρ(t ) = −i[H (t ), ρ(t )]

+
∑
p,x

�x
p

(
Lx

pρ(t )Lx†
p − 1

2
{Lx†

p Lx
p, ρ(t )}

)

= L(t )[ρ(t )]. (2)

The Lindblad operators Lx
p and their corresponding decay

rates �x
p are chosen such as to describe relaxation and pure

dephasing processes on each individual subsystem x = a, b, c:

La
1 = a, La

2 = a†a, �a
1 = 1

T a
1

, �a
2 = 2

T a
φ

,

Lb
1 = b, Lb

2 = b†b, �b
1 = 1

T b
1

, �b
2 = 2

T b
φ

,

Lc
1 = c, Lc

2 = c†c, �c
1 = 1

T c
1

, �c
2 = 2

T c
φ

, (3)

where T x
1 and T x

φ are the individual T1 relaxation and Tφ pure
dephasing times. Note that for numerical efficiency, we work
in a rotating frame, where Hamiltonian (1) becomes

H ′(t ) = −αc

2
c†c†cc + ga(e−iδat ac† + eiδat a†c)

+ gb(e−iδbt bc† + eiδbt b†c)

+
∑

k

[�k (t )e−iδkt c† + �∗
k (t )eiδkt c], (4)

with δa(b) = ωa(b) − ωc and δk = ωk − ωc.
In the following, we want to engineer a beamsplitter inter-

action between the two cavities by driving the intermediate
transmon appropriately [63], i.e., we want to engineer a
Hamiltonian of the form

HAB
BS (t ) = gBS(t )ab† + g∗

BS(t )a†b (5)

on the reduced system of the two cavities. Here gBS(t )
corresponds to the effective interaction strength, i.e., the
beamsplitter rate between cavities A and B. One way to realize
the interaction is to drive the transmon with two control fields,
�1(t ) and �2(t ), with constant frequencies, ω1 and ω2 [63].
The latter need to fulfill the resonance condition

ω̃b − ω̃a = ω2 − ω1, (6)

where ω̃a and ω̃b are the Stark-shifted versions of cavity fre-
quencies ωa and ωb, respectively. The individual Stark shifts
are induced by driving the transmon together with its small
but finite coupling to each cavity. Note that the Stark shifts are
determined primarily by the amplitudes �1(t ) and �2(t ) of the
two control fields and only weakly by their frequencies [65].
To ensure Eq. (6), the amplitudes should be kept constant—
except for a small ramping time τ at the beginning and end of
the protocol, in order to switch the fields on and off smoothly.
This can, for instance, be achieved by choosing

�k (t ) = �kS(t ) (7)

with the shape function

S(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2
(
π t

2τ

)
, t ∈ [0, τ ),

1, t ∈ [τ, T − τ ],

sin2
(
π T −t

2τ

)
, t ∈ (T − τ, T ],

0, else,

(8)

where T is the protocol’s total duration.
In the following, we examine whether it is possible to

increase the beamsplitter rate, |gBS(t )|, by using an additional
control field, respectively, more frequencies {ωk}, and by ex-
ploiting fully time-dependent amplitudes {�k (t )}. To answer
this question, i.e., to tackle this nontrivial control task, we
use quantum optimal control theory (OCT) to optimize {ωk}
and {�k (t )}. Briefly, quantum control assumes that a system
can be steered by a set of control fields to a desired target.
Let {Ek (t )} be the set of fields for illustration purposes. OCT
provides the tools to derive tailored, i.e., optimized, control
fields {Eopt

k (t )} realizing the corresponding dynamics, e.g.,
yielding the smallest error or shortest time [6]. We will specify
the physical aspects of the control problem in Sec. II B and the
technical details on how to find optimized versions of {ωk} and
{�k (t )} in Sec. II C.

B. Target operations and encodings

To tackle the control task of realizing a beamsplitter in-
teraction with the extended set of control fields, we must
be able to quantify how well the dynamics of the reduced
system of the two cavities matches the desired one generated
by the “target” Hamiltonian (5). This is technically challeng-
ing, since our “figure of interest” is not some accessible and
quantifiable feature of the dynamics but rather its generator.
An ideal measure would allow for a direct comparison of
the target Hamiltonian with the effective Hamiltonian for the
reduced system of the two cavities, given the current choice
of frequencies {ωk} and amplitudes {�k (t )}. Unfortunately,
it is not possible to derive such an expression for an effec-
tive Hamiltonian in the case of an arbitrary (yet unknown)
choice of {ωk} and {�k (t )}. However, we can compare the
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dynamics, which the target and actual Hamiltonian give rise
to, by means of comparing various time-evolved states and
quantifying their distance with respect to some desired out-
come. In detail, we compute the dynamical map Dtrgt

T,0 that
the desired Hamiltonian (5) gives rise to for any initial state
ρin and quantify the distance between the desired outcome
ρtrgt (T ) = Dtrgt

T,0[ρin] and the actual time-evolved state ρ(T ) =
DT,0[ρin]. The dynamical map DT,0 of the actual time evo-
lution depends on {ωk} and {�k (t )}. In practice, it is not
necessary to evaluate the distance for any ρin but only for
a set of basis states spanning the subspace within which we
require accurate execution of the protocol. This subspace will
be the logical two-qubit subspace in the following. To specify
the latter—and thus the set of states for which to evaluate
ρ(T ) = DT,0[ρin]—we first introduce {|na, nb, nc〉}, the eigen-
state basis of the field-free Hamiltonian (1). The nomenclature
of the eigenstate |na, nb, nc〉 is chosen identical to that of the
Fock state |na, nb, nc〉 with which it has the largest overlap.
Given the eigenstate basis, the target dynamical map Dtrgt

T,0
yields the time evolution

Dtrgt
T,0[|na, nb, 0〉 〈na, nb, 0|] = |nb, na, 0〉 〈nb, na, 0| (9)

for all na, nb = 0, 1, 2, . . . . In other words, Dtrgt
T,0 swaps (up

to some phase) the states of the two cavities, leaving the
transmon invariant.

We seek a DT,0 that yields the same outcome as in Eq. (9) if
the frequencies {ωk} and drive amplitudes {�k (t )} are chosen
appropriately. Let ρna,nb,nc = |na, nb, nc〉 〈na, nb, nc|. A mea-
sure that becomes zero if and only if DT,0 reproduces the
desired outcome of Eq. (9) and is strictly larger otherwise is
given by

ε = 1 − 1

M2

M−1∑
na,nb=0

〈〈ρnb,na,0|DT,0[ρna,nb,0]〉〉 (10)

with 〈〈A|B〉〉 = tr{A†B} and M the maximal photon number in
the cavities up to which the correct behavior of Eq. (9) is be-
ing checked. Note that the perfect beamsplitter interaction of
Eq. (5) always gives rise to a perfect swap of the cavity states,
i.e., ε = 0 holds in the case of DT,0 = Dtrgt

T,0 for arbitrarily
large M, i.e., arbitrary large photon numbers in the cavities.
Furthermore note that we assume the transmon to be initially
in its ground state and—since a perfect beamsplitter operation
would leave the transmon state unchanged—require DT,0 to
return the transmon to its ground state at time T .

It is the fact that a perfect beamsplitter interaction always
gives rise to a perfect swap of the cavity states that makes it
so appealing for continuous variable quantum computing. Any
protocol or gate would then work independent of the qubits’
encoding, i.e., independent of the states |0〉L and |1〉L chosen
to represent the two logical qubit levels. Instead of evaluating
Eq. (10) for large M, which requires the propagation of M2

initial states, we consider two different encodings and check
whether the desired dynamics can be observed in the corre-
sponding logical two-qubit subspace. To this end, we consider
an encoding of the logical qubit states in the cavity’s two
lowest Fock states, i.e., |0/1〉L = |0/1〉. The logical two-qubit
basis within the tripartite system of the two cavities and the

transmon is then given by

|0, 0, 0〉L ≡ |0, 0, 0〉 , |0, 1, 0〉L ≡ |0, 1, 0〉 ,

|1, 0, 0〉L ≡ |1, 0, 0〉 , |1, 1, 0〉L ≡ |1, 1, 0〉 . (11)

In contrast to this rather simple encoding, we also consider a
binomial encoding [43] in which case the logical qubit states
are given by

|0〉L = |0〉 + |4〉√
2

, |1〉L = |2〉 (12)

within each cavity. Thus, the logical two-qubit basis within
the tripartite system is given by

|0, 0, 0〉L ≡ |0, 0, 0〉 + |0, 4, 0〉 + |4, 0, 0〉 + |4, 4, 0〉
2

,

|0, 1, 0〉L ≡ |0, 2, 0〉 + |4, 2, 0〉√
2

,

|1, 0, 0〉L ≡ |2, 0, 0〉 + |2, 4, 0〉√
2

, |1, 1, 0〉L ≡ |2, 2, 0〉 .

(13)

To compute the error of the protocol, we evaluate

ε = 1 − 1

4

1∑
na,nb=0

〈〈
ρL

nb,na,0

∣∣DT,0
[
ρL

na,nb,0

]〉〉
, (14)

with ρL
na,nb,nc

= |na, nb, nc〉L 〈na, nb, nc|L for the two encod-
ings given in Eqs. (11) and (13).

C. Quantum optimal control theory

We now turn towards OCT, where a control problem is
typically converted into the minimization of a cost function.
The latter is given by the optimization functional

J[{Ek}, {ρl}] = ε[{ρl (T )}] +
∫ T

0
dt Jt [{Ek (t )}, {ρl (t )}, t],

(15)
consisting of the final-time functional ε[{ρl (T )}], which
quantifies how well the dynamics reaches a desired tar-
get at final time T , and an intermediate-time func-
tional Jt [{Ek (t )}, {ρl (t )}, t], which captures additional time-
dependent costs and constraints. {ρl (t )} is a set of time-
evolved states where the index l distinguishes different initial
states. The choice of J—with ε its most important part—
captures the goal of the control problem. Searching for the
control fields that minimize J , i.e., solve the control problem,
yields optimized fields {Eopt

k (t )} that implement the desired
dynamics best.

In the following, we use OCT in order to find optimized
control fields, i.e., time-dependent drive amplitudes {�opt

k (t )},
such that they minimize the error ε, Eq. (14). We achieve this
in two steps. In a first step, we consider time-independent am-
plitudes (up to the ramps) as in the original protocol [63] but
we add a third control field with amplitude �3 and frequency
ω3 to generate the desired dynamics, Eq. (9), in shorter time
T . In this case, ε becomes a function of �3 and ω3 as well as
the final time T . We use the gradient-free Nelder-Mead opti-
mization method [67] to search for an optimized set of these
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three parameters that minimizes ε. In a second step, we then
fix the frequencies ω1, ω2, ω3 of the three control fields as well
as the final time T and allow their amplitudes, �1(t ),�2(t ),
and �3(t ), to be fully time-dependent to minimize ε even
further. We use Krotov’s method for this purpose and briefly
summarize its main equations in the following.

Krotov’s method [68] is an iterative, gradient-based
optimization technique with guaranteed monotonic conver-
gence [69]. In order to obtain an update equation for each
field �k (t ) in Krotov’s method, it is necessary to define Jt and
formally minimize J; cf. Eq. (15). We take [70]

Jt [{�k (t )}] =
∑

k

λk

S(t )

[
�k (t ) − �ref

k (t )
]2

, (16)

where �ref
k (t ) is a reference field for each �k (t ), S(t ) the shape

function from Eq. (8) and λk a numerical parameter that con-
trols the magnitude of update in each iteration. By choosing
�ref

k (t ) to always be the respective field from the previous
iteration, Jt will vanish as the optimization converges [70].
Hence, minimizing J becomes identical to minimizing ε,
which is the important figure of merit that we seek to minimize
in the first place.

With Jt from Eq. (16), Krotov’s method yields the updated
equation[71,72]1

�
(i+1)
k (t )

= �
(i)
k (t )+ S(t )

λk
Re

{∑
l

〈〈
χ

(i)
l (t )

∣∣∣∣∂L(t )

∂�k

∣∣∣∣
{�(i+1)

k′ (t )}
ρ

(i+1)
l (t )

〉〉}
.

(17)

{ρ (i+1)
l (t )} are forward propagated initial states {ρl (0)}, i.e.,

solutions to the Lindblad master equation

d

dt
ρ

(i+1)
l (t ) = L(i+1)(t )

[
ρ

(i+1)
l (t )

]
(18)

under the new fields {�(i+1)
k (t )}. {χ (i)

l (t )} are so-called co-
states, which are solutions to the adjoint equation of motion

d

dt
χ

(i)
l (t ) = L(i)†(t )

[
χ

(i)
l (t )

]
(19)

under the old fields {�(i)
k (t )} with boundary condition

χ
(i)
l (T ) = − ∂ε

∂ρl (T )

∣∣∣∣
{ρ (i)

l′ (T )}
. (20)

The initial states {ρl (0)} are in our case given by the four log-
ical basis states from Eq. (11) or Eq. (13) depending on which
encoding we want to optimize for by minimizing Eq. (14).

1Note the self-consistent nature of Eq. (17) where the update of the
field �

(i+1)
k (t ) at time t on the left-hand side depends on the very

same field and time on the right-hand side. In practice, this is solved
by discretizing the time grid sufficiently fine such that for the update
at time step t = tn on the left-hand side the corresponding values for
fields (and states) at time step t = tn−1 on the right-hand side are a
good approximation. See Ref. [70] for further details.

TABLE I. Parameters for cavities A and B and transmon C, taken
from Ref. [63].

Frequency cavity A ωa/2π 5.554 GHz
Frequency cavity B ωb/2π 6.543 GHz
Base frequency transmon C ωc/2π 5.901 GHz
Anharmonicity transmon C αc/2π 74 MHz
Coupling between A and C ga/2π −19.921 MHz
Coupling between B and C gb/2π 28.417 MHz
Amplitude driving field 1 �1/2π 94.200 MHz
Amplitude driving field 2 �2/2π 229.725 MHz
Frequency driving field 1 ω1/2π 6058.000 MHz
Frequency driving field 2 ω2/2π 7049.624 MHz
Ramping time τ 50 ns
Relaxation of cavity A T a

1 1000 μs

Relaxation of cavity B T b
1 1000 μs

Relaxation of transmon C T c
1 50 μs

Dephasing of cavity A T a
φ ∞

Dephasing of cavity B T b
φ ∞

Dephasing of transmon C T c
φ 50 μs

We use the QDYN library [73] for solving all equations of
motion and for Krotov’s method. The NLopt library [74] is
used for the gradient-free optimizations.

III. ENGINEERING STRONG BEAMSPLITTER
INTERACTION VIA SIDEBAND TRANSITIONS

In this section, we demonstrate how to use OCT in order to
engineer a beamsplitter interaction between cavities A and B
that is stronger than the one presented in Ref. [63].

A. Two-tone vs three-tone protocol

We take the physical parameters as reported in Ref. [63]
(cf. Table I) and start by analyzing the original two-tone pro-
tocol. The two tones’ amplitudes, �1 and �2, and frequencies,
ω1 and ω2, are chosen to satisfy the resonance condition (6)
and therefore give rise to the desired beamsplitter interac-
tion; cf. Eq. (5). If we assume Fock encoding in Eq. (14),
the subspace for which to test the protocol is defined by
the four initial states |0, 0, 0〉 , |0, 1, 0〉 , |1, 0, 0〉 and |1, 1, 0〉.
Figure 2(a) shows the population dynamics for these initial
states under the original two-tone protocol [63]. As expected,
the dynamics swaps the initial states of cavity A and B for
|0, 1, 0〉 and |1, 0, 0〉 and leaves the states |0, 0, 0〉 and |1, 1, 0〉
invariant at final time T = 6780 ns. This invariance does not
hold at intermediate times; cf. the dynamics of |1, 1, 0〉. Note
that the transmon is only weakly excited [its time-averaged
ground state population is 0.73; cf. Eq. (C1)], which is in
agreement with the theory of the two-tone protocol [65].The
two tones are switched on and off smoothly by a ramp S(t ).
This transfers the transmon smoothly from its ground state
into an energetically low-lying Floquet state at intermediate
times and back to the ground state at final time. This is the
reason for the small but nonvanishing population in some
lower bare transmon levels seen in Fig. 2(a).

We now add a third control field with amplitude �3 and
frequency ω3 with the purpose to realize the desired swap [cf.
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FIG. 2. Population dynamics for the three initial states
|0, 1, 0〉 , |1, 0, 0〉, and |1, 1, 0〉 with |0, 0, 0〉 omitted as it does not
give rise to any cavity excitations. (a) Dynamics under the original
two-tone protocol of Ref. [63] using the parameters from Table I.
(b) Dynamics as in (a) but for a three-tone protocol with optimized
but constant amplitude �3 and frequency ω3. Note the different
timescales. See main text for details. The term “levels” refers to the
bare Fock states |na〉 and |nb〉 in the case of cavities A and B and to
the anharmonic ladder states |nc〉 of the bare transmon in the case of
transmon C.

Eq. (9)] in a shorter total time T . As outlined in Sec. II C, we
use a gradient-free optimization to find optimized values for
the three parameters, i.e., �3, ω3, T . We kept the parameters
of the other two control fields, �1,�2, ω1, ω2, fixed to limit
the number of optimization parameters and thus ease the opti-
mization procedure. We find the optimized parameters for the
third drive to be

�3/2π = 271.093 MHz, ω3/2π = 6.749 GHz (21)

and the protocol duration T = 1492 ns, which is about five
times shorter than T = 6780 ns in the case of the two-tone
protocol. Figure 2(b) shows the corresponding population dy-
namics for the three-tone protocol. In comparison with the
dynamics of the original two-tone protocol [cf. Fig. 2(a)], the
dynamics of the three-tone protocol looks very similar but is
approximately five times faster. We find the coherent errors
to be ε2 = 0.5% for the two-tone protocol and ε3 = 2.6% for
the three-tone protocol. When decoherence is taken into ac-
count, the errors increase to ε2 = 8.6% and ε3 = 5.0% for the
two-tone and three-tone protocol, respectively. As expected,
the increase in error is much smaller for the significantly
faster three-tone protocol compared to the original two-tone
protocol and compensates the previously larger coherent error

FIG. 3. Mutual information I between all pairs of subsystems
A, B, and C. Panels (a) and (b) correspond to the two- and three-tone
protocols and the population dynamics shown in Figs. 2(a) and 2(b),
respectively. Panel (c) corresponds to the three-tone protocol that has
been further fine-tuned by a gradient-based optimization technique
(see main text for details).

of the three-tone protocol. We will analyze the impact of
decoherence in more detail in Sec. IV.

In order to understand the similarities and differences of
the two- and three-tone protocols, we inspect the correla-
tions between any two of the three subsystems of cavities A
and B and transmon C as a function of time. Figures 3(a)
and 3(b) show the mutual information I, as a measure for
the correlations between two subsystems [75], for the two-
and three-tone protocols, respectively. The mutual informa-
tion between two subsystems, for instance, cavities A and B,
is defined as

Iab = P (ρa ) + P (ρb) − P (ρab), (22)

with P (ρx) = −tr{ρx ln(ρx)} the von Neumann entropy of
state ρx and ρab = trc{ρ}, ρa = trb{ρab}, and ρb = tra{ρab}
the reduced states of subsystems AB, A, and B, respectively,
calculated from the state ρ = ρ(t ) of the full tripartite system.
As can be seen for the two-tone protocol [cf. Fig. 3(a)], only
the two cavities build up correlations over time, whereas the
transmon C stays uncorrelated with both at all times. At final
time T , both cavities are again uncorrelated. This behavior
changes for the three-tone protocol [cf. Fig. 3(b)], as it gives
rise to additional intermediate correlations between both cav-
ities and the transmon as well as remaining, nonvanishing
correlations at final time T . Closer inspection of the dynamics
for the initial state |1, 0, 0〉 (|0, 1, 0〉) reveals that, in the first
half of the protocol, cavity A (B) primarily correlates with
the transmon while in the second half primarily cavity B (A)
correlates with the transmon. In particular correlations that
are built up in the second half do not vanish at final time
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FIG. 4. Panel (a) shows the time-dependent amplitudes �k (t ) of the three-tone protocol (solid and dashed lines) and their fine-tuned
versions (dashed-dotted and dotted lines), while panels (b) and (c) show a close-up view. The coherent errors for the three-tone protocol and its
fine-tuned version are ε3 = 2.6% and ε3,grad = 0.2%, respectively. Panels (d)–(f) show the spectra (the absolute value of the Fourier transform)
of Re{�k (t )} and Im{�k (t )} for the three-tone protocol (solid lines) and its fine-tuned version (dashed-dotted and dotted lines), respectively.
Note that Im{�k (t )} is zero for the three-tone protocol, and hence its spectrum is omitted. The dashed-dotted and dotted lines are heavily
overlapping and are thus hard to distinguish visually. The base frequencies for the three tones are given in Table I and Eq. (21).

T . This is a reason for the larger coherent error ε3 of the
three-tone protocol. We show in Appendix A that, despite
the emerging correlations between cavities and transmon, the
three-tone protocol still engineers the intended beamsplitter
interaction (5).

B. Fine-tuned three-tone protocol

A possibility to reduce the coherent error ε3 of the three-
tone protocol is to fine-tune it further with gradient-based
optimization, as outlined in Sec. II C, using the constant
values of the three-tone protocol (up to ramping times) as
guess fields. While each field �k (t ) has its base frequency ωk

[cf. Eq. (1)], allowing for fully time-dependent and complex
�k (t ) introduces new frequencies, i.e., the protocol is strictly
speaking no longer a three-tone protocol. In order to prevent
the bandwidth of the amplitude modulations to become too
large and experimentally unfeasible, we truncate the spectrum
of Re{�k (t )} and Im{�k (t )} after each iteration of the opti-
mization by multiplying the spectrum with the spectral shape

function

Sbw(ω) =
⎧⎨
⎩

1, |ω| ∈ [0, ωco − �ωco]

sin2
(
π

|ω|−ωco

2�ωco

)
, |ω| ∈ (ωco − �ωco, ωco],

0, else,
(23)

where ωco is a cutoff frequency. Here �ωco is necessary to
truncate the spectra smoothly and guarantee a smooth shape
of �k (t ) in time domain.

Figures 4(a)–4(c) compare the real and imaginary parts
of �k (t ) for the three-tone protocol with the further fine-
tuned version. As can be seen, the gradient-based optimization
adapts the amplitudes slightly by adding minor oscillations.
Despite these apparently small differences, the coherent pro-
tocol error reduces from ε3 = 2.6% to ε3,grad = 0.2%. The
spectra of Re{�k (t )} and Im{�k (t )} of the three-tone protocol
and its further fine-tuned version are shown in Figs. 4(d)–4(f).
The three-tone protocol has a single dominant peak at modu-
lation frequency ω = 0 with only minor nonzero elements due
to the ramping. After optimization, new amplitude modulation
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frequencies up to ω/2π ∼ 400 MHz appear, reflecting our
choice of ωco/2π = 500 MHz and �ωco/2π = 100 MHz for
truncating the spectra. Compared to the spectral amplitude of
the central peak at ω = 0, these new frequencies have spectral
amplitudes that are at least two orders of magnitude smaller.
This is consistent with the amplitudes �k (t ) remaining al-
most constant in time with only small oscillations on top;
cf. Figs. 4(b) and 4(c). The effect of the modulations can be
seen in Fig. 3(c), which shows the mutual information be-
tween the three subsystems. While the overall structure of the
correlation dynamics is preserved compared to the three-tone
protocol in Fig. 3(b), the fine-tuned amplitudes �k (t ) erase all
correlations at final time T . This concerns especially those
correlations between cavities A and B and the transmon C
built up when starting in states |0, 1, 0〉 or |1, 0, 0〉 which do
not vanish at final time T under the non-fine-tuned three-tone
protocol. Despite the difference in the correlation dynamics
and final errors, the population dynamics for the fine-tuned
protocol is visually almost identical to the three-tone protocol
shown in Fig. 2(b) (data not shown).

Note that technically, it would also be possible to carry
out the optimization with a single field instead of optimizing
the three tones individually. Motivated by Eq. (4), one could
for instance define the effective field Eeff (t ) = ∑

k �k (t )e−iδkt

and optimize its real and imaginary part. This carries the
same information. However, an optimization with three in-
dividual tones allows for more flexibility when controlling
each field’s update, e.g., by truncating the spectra (as used
above) or by choosing which tones should be updated at
all.

It is of course possible to apply the gradient-based
optimization—including restricting the amplitude modulation
frequencies by spectral truncation—also to the two-tone pro-
tocol directly. This lowers the coherent error from ε2 = 0.5%
to ε2,grad < 0.1%. The changes to the amplitudes �k (t ) are
even smaller than the ones shown in Fig. 4 for the three-tone
protocol. However, for both the two- and three-tone protocols,
decoherence is the dominant source of error which increases
to ε2,grad = 9.2% and ε3,grad = 3.2%, respectively, once deco-
herence is taken into account.

A subtle but important fact can be noticed when comparing
the change between the coherent protocol errors under the
fine-tuned protocols, once decoherence is accounted for. In
detail, the increase due to decoherence is slightly larger for
the fine-tuned versions of the two- and three-tone protocols
compared to their non-fine-tuned versions despite unchanged
duration T . This is due to the fact that—for reasons to keep
the numerical costs manageable—the optimization itself is
carried out entirely in Hilbert space, i.e., without taking de-
coherence into account explicitly. Instead, we account for
it implicitly by penalizing control solutions that involve ex-
citation of higher transmon levels which suffer more from
decoherence. Although the dynamics under the fine-tuned
protocols does not utilize higher transmon excitations, it
exploits coherences between energetically low-lying but pop-
ulated levels—especially those between the transmon’s bare
ground and first excited state. Hence, any deviation from the
desired dynamics of the coherences due to decoherence causes
the protocol error to increase. In the case of the two-tone pro-
tocol, the increase for the fine-tuned version is larger than that

TABLE II. Protocol errors for the original two-tone protocol, ε2,
the three-tone protocol, ε3, and their respective fine-tuned versions,
ε2,grad and ε3,grad. The errors are given for both Fock and binomial
encoding; cf. Eq. (14). Decoherence times are as in Table I.

Coherent Error including
error decoherence Encoding

ε2 0.5% 8.6% Fock
ε2,grad < 0.1% 9.2% Fock
ε3 2.6% 5.0% Fock

ε3,grad 0.2% 3.2% Fock

εbinom
2 43.9% 53.9% Binomial

εbinom
2,grad 0.8% 35.3% Binomial

εbinom
3 58.7% 60.6% Binomial

εbinom
3,grad 2.0% 11.0% Binomial

of the original version, illustrating the fine-tuned protocol’s
somewhat increased sensitivity to decoherence.

So far we have discussed whether the engineered dynamics
behaves as intended when the qubit is encoded in the two
lowest Fock states of each cavity. However, as emphasized
earlier, it would be advantageous to have a protocol that works
in a codeword-agnostic way. Thus, as an alternative to the
qubit being encoded in the two lowest Fock states, we also
employ a binomial encoding [43]. In this case, the error—in
the following called εbinom—is still given by Eq. (14) but the
latter is evaluated for the logical basis states of Eq. (13). We
find coherent errors εbinom

2 = 43.9% and εbinom
3 = 58.7% for

the two-tone protocol of Ref. [63] and the three-tone protocol,
respectively. Taking these protocols again as starting point
for a gradient-based optimization—here without frequency
truncation—we find coherent errors of εbinom

2,grad = 0.8% and
εbinom

3,grad = 2.0%, respectively 2. While the two- and three-tone
protocols do not act as codeword-agnostic as desired, our
results indicate that it is possible to adapt each protocol for a
given encoding using OCT. Note that these errors are obtained
without taking decoherence in account. With decoherence,
they become εbinom

2 = 53.9% and εbinom
3 = 60.6% for the two-

and three-tone protocols, respectively, and εbinom
2,grad = 35.3%

and εbinom
3,grad = 11.0% for the fine-tuned versions. A summary

of all errors, with and without decoherence, is provided in
Table II.

C. Analysis of the beamsplitter interaction in the three-tone
protocol

We now seek to understand why a third tone gives rise to
significantly faster swaps, respectively, stronger beamsplitter
interaction. To this end, we first notice that the gradient-free
optimization chooses the third frequency ω3 [cf. Eq. (21)],
such as to give rise to near-resonant sideband couplings
between cavities A and B and transmon C. The sideband
couplings are induced by the beating between the third drive
and the first two drives. While satisfying Eq. (6) activates the

2The optimizations have been carried out without frequency trun-
cation in order to keep the number of iterations sufficiently small.
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beamsplitter interaction in the original two-tone protocol, we
can define a similar resonance condition that needs to be ful-
filled for activating the cavity-transmon sideband couplings. It
reads

ω̃a − ω̃c = ω3 − ω2 + �a,

ω̃b − ω̃c = ω3 − ω1 + �b, (24)

where ω̃c is the Stark-shifted version of ωc and �a and �b are
detunings from the corresponding perfect sideband couplings
between cavities A and B and transmon C, respectively. In
order to fulfill the beamsplitter resonance condition (6), we
need �a ≈ �b. We thus set �a = �b = �.

In the following, we use a similar approach as in Ref. [65],
where the effective beamsplitter Hamiltonian (5) was derived
analytically from the tripartite system, including the trans-
mon. The derivation just assumed a two-tone protocol with
both frequencies fulfilling the resonance condition (6). Here
we modify the approach of Ref. [65] to include the sideband
couplings. We also seek to derive an effective Hamiltonian
that describes the effective interaction of the two cavities.
In contrast to the two-tone protocol, our derivation needs to
capture both the cavity-cavity beamsplitter interaction, gen-
erated by fulfilling the resonance condition (6), as well as
the cavity-transmon sideband coupling, generated by fulfilling
Eq. (24) near-resonantly, i.e., with a small, but nonzero �. Our
derivation can thus be seen as an extension of the derivation
done in Ref. [65]. Ultimately, we will compare SWAP times
predicted analytically by our derivation (carried out in the fol-
lowing) and semi-analytically using a method from Ref. [65]
with numerically obtained ones.

First, we assume a weak transmon anharmonicity
αc� |ωa,b − ωc| and diagonalize the quadratic and field-free
part of Hamiltonian (1) to obtain the eigenmodes. The asso-
ciated lowering operators for the eigenmodes are A, B, and C.
For weak transmon-cavity couplings, one can identify A and B
as the “cavity-like” eigenmodes that have the largest overlap
with the bare cavity modes a and b and C is a “transmon-like”
eigenmode. Next, we express the bare transmon operator c as a
function of the eigenmodes of the quadratic, field-free Hamil-
tonian. In addition to the coupling-induced mode mixing of
the bare transmon modes, we also want to capture the effect of
the drives and express it in the eigenmode representation of c.
To this end, we exploit that for weakly anharmonic transmons
the major effect of the drives is to induce a linear displacement
of the transmon mode. Combining the coupling-induced mode
mixing and the drive-induced displacement of the mode, we
find

c → ξaA + ξbB + ξcC +
3∑

k=1

ξke−iωkt , (25)

where ξa(b) ≈ ga(b)/δa(b), ξc ≈ 1, and ξk = �k/δk for k =
1, 2, 3. By substituting Eq. (25) into Hamiltonian (1) and
transforming into a rotating frame—similar to that from
Hamiltonian (1) to Hamiltonian (4)—we arrive at

Heff,1(t ) = gABA†B+ g∗
ABAB† + gsb

a ei�t A†σ− + gsb∗
a e−i�t Aσ+

+ gsb
b ei�t B†σ− + gsb∗

b e−i�t Bσ+, (26)

where we have only kept resonant and near-resonant terms.
We also truncate the transmon Hilbert space to two levels,

replacing C and C† by σ− and σ+. The cavity-cavity coupling
gAB and transmon-cavity sideband couplings gsb

a and gsb
b are

given by

gAB = −2αcξ1ξ
∗
2 ξ ∗

a ξb, gsb
a = −2αcξ

∗
2 ξ3ξ

∗
a ξc,

gsb
b = −2αcξ

∗
1 ξ3ξ

∗
b ξc. (27)

In a further transformation, we move into a rotating frame
with respect to � where Eq. (26) becomes time-independent,

Heff,2 = �

2
σz + gABA†B + g∗

ABAB† + gsb
a A†σ− + gsb∗

a Aσ+

+ gsb
b B†σ− + gsb∗

b Bσ+. (28)

This Hamiltonian describes the dynamics of two degenerate
modes coupled to each other and to a detuned two-level sys-
tem. In the limit when |gsb

a |, |gsb
b | � |�| holds, Eq. (28) can

be diagonalized perturbatively in |gsb
a,b/�|. To second order,

we obtain

Heff,3 = gBSA†B + g∗
BSAB† (29a)

with

gBS = gAB1 − gsb
a gsb∗

b

�
σz. (29b)

Note that we neglect terms ∼A†A and ∼B†B since
they represent shifts of the cavity eigenmodes and can
be simply compensated by adapting the drive frequencies.
Equation (29a) resembles the desired beamsplitter interac-
tion [cf. Eq. (5)] but has a slightly more complex structure
of the operator gBS. It contains the “standard” beamsplitter
interaction—here given by the term scaling with gAB—that
originates from having two drives which fulfill the resonance
condition (6) and additionally the sideband-induced couplings
between cavities and transmon. The latter originate from the
third drive and effectively amplify the beamsplitter interac-
tion. This gives rise to the faster SWAP operation as observed
in Fig. 2.

In order to analyze how well the effective theory of
Eqs. (29a) and (29b) describes the three-tone protocol shown
in Fig. 2(b), we calculate gBS for the parameters in Ta-
ble I and the third drive in Eq. (21). We find gAB/2π =
−0.045 MHz, gsb

a /2π = −0.54 MHz, gsb
b /2π = −1.26 MHz,

and �/2π ≈ −3 MHz. This gives rise to an effective beam-
splitter interaction of gBS/2π = −0.27 MHz3 and thus to a
SWAP time of T ≈ 924 ns. We conjecture that the discrep-
ancy of the analytically predicted SWAP time with respect
to the numerically observed one of T = 1492 ns is caused
by |gsb

a |, |gsb
b | � |�|—which needs to hold for an accurate

analytical predictions—not being fulfilled sufficiently well.
To verify this conjecture in more detail, we evaluate

Eq. (29b)—and the SWAP time it gives rise to—for further
three-tone protocols, where the respective choice of the third
frequency ω3 gives rise to larger |�| such that |gsb

a |, |gsb
b | �

|�| is better satisfied. This also allows one to investigate the
impact of |�| on emerging cavity-transmon correlations and
the protocol error, which is not evident from the analytical

3We assume the transmon to be in the ground state, thus replacing
σz by −1 in Eq. (29b).
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TABLE III. Further three-tone protocols, obtained via gradient-
free optimization, with all other parameters as given in Table I and
�3 as in Eq. (21).

ω2/2π (MHz) ω3/2π (MHz) T (ns) ε3

7049.654 6752.475 2180.4 0.8%
7049.673 6761.585 3391.8 0.7%
7049.699 6770.048 4158.8 1.9%
7049.665 6793.903 4715.0 0.7%

treatment so far. Possible sets of parameters for three-tone
protocols can easily be found using gradient-free optimization
as described in Sec. II C. In these optimizations, we allow
only ω2 and ω3 to change in addition to T and keep all three
amplitudes as well as ω1 fixed by their values in Table I and
Eq. (21). The reason behind this choice is that ω3 primarily
defines � while adapting ω2 is required to correct for potential
Stark shifts in Eq. (6). The latter was assumed to hold while
deriving Eqs. (29a) and (29b). Table III presents a few opti-
mization results. We now use Eq. (29b) to calculate gBS and
its corresponding SWAP time for each set of parameters. In
Fig. 5 we compare the calculated SWAP times (black, solid
line) with those obtained numerically (green dots) (cf. Ta-
ble III) and with the predictions of the semianalytical method
(red dots) developed in Ref. [65]. In the latter, the drives
are treated nonperturbatively using Floquet theory and the
cavity-transmon couplings are treated perturbatively using lin-
ear response theory. Appendix B summarizes the details of
this method. We observe a qualitative agreement between the
methods and attribute the small remaining discrepancies to the

FIG. 5. Comparison of the protocol times as obtained numeri-
cally (green dots) and from analytical calculations including one
from Floquet theory in the spirit of Ref. [65] (red dots) and one using
the effective theory from Eqs. (29a) and (29b) (black solid line). Note
that approximated versions of � and other Stark-shifted parameters
have been used here as the exact Stark shifts are not known analyti-
cally. This is reflected by the error bars for the Floquet theory and the
black dashed lines for the effective theory. The lower (upper) error
bars are obtained using a value of �/2π that is −(+)1 MHz away
from the value indicated on the horizontal axis.

approximations made within each method. Figure 5 suggests
that Eqs. (29a) and (29b) indeed provide the correct physical
intuition for the speed-up of the three-tone protocol compared
to the original two-tone protocol. In other words, the speed-up
is due to exploiting sideband couplings between the cavities
and the transmon.

This explanation is also in agreement with the correlations
emerging between cavities and transmon under the three-tone
protocol [cf. Fig. 3(b)], as these correlations are not present
under the original two-tone protocol; cf. Fig. 3(a). We ob-
serve a clear correspondence between the quantity � [cf.
Eq. (29b)] and the emergence of cavity-transmon correlations.
By comparing the correlation dynamics for all parameter sets
of Table III (data not shown), we see a smooth transition from
behavior as in Fig. 3(b) for the fastest three-tone protocol
with smallest |�|, to behavior as in Fig. 3(a) for the slowest
three-tone protocol with largest |�|. This is also evident when
inspecting the coherent errors ε3 of the three-tone protocols
in Table III. Almost all sets of parameters give rise to co-
herent protocol errors ε3 < 1% and are thus smaller than the
coherent error ε3 = 2.6% for three-tone protocol presented in
Fig. 3(b). We see this as evidence that the cavity-transmon
correlations are mainly responsible for the coherent error ε3

in the three-tone protocol and ultimately prevent to find even
faster protocol.

We conclude that, on one hand, small |�| is in general
advantageous for fast three-tone protocols, i.e., for |gBS| to
be large; cf. Eq. (29b). On the other hand, |�| should not
be chosen too small such as to keep the coherent error due
to nonvanishing correlations between cavities and transmon
at final time T at bay. From a coherent perspective, slower
protocols are thus favorable. However, once decoherence is
taken into account, protocols should typically be as fast as
possible. The optimal protocol balances coherent error and the
additional error from decoherence.

Finally, it should be mentioned that the calculations
employing Floquet and linear response theory—used to deter-
mine the red dots in Fig. 5 and detailed in Appendix B—also
provide an understanding of the emerging Kerr nonlineari-
ties caused by the third drive. These nonlinearities seem to
increase significantly (data not shown) compared to those
induced by the original two-tone protocol [63]. Since the
detrimental impact of such cavity nonlinearities for the SWAP
operations becomes larger for higher photonic states of the
cavities, this might provide an explanation for the observed
large coherent protocol errors in the case of qubit encodings
involving higher photon numbers. For a detailed study of
drive-induced nonlinearities of cavity modes see Ref. [76].

IV. PROSPECTS FOR HIGH-FIDELITY PROTOCOLS IN
THE PRESENCE OF NOISE

We now study how the protocols will perform once the
coherence times of transmons become better. So far we have
assumed the transmon relaxation and pure dephasing times to
be T c

1 = 50 μs and T c
φ = 50 μs. However, better devices exist

already with recently reported relaxation times up to T c
1 =

500 μs [77] and dephasing times up to T c
φ = 300 μs [78].

In order to investigate how the protocol errors change for
better transmon devices, we gradually increase both T c

1 and
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FIG. 6. Influence of decoherence on the error ε2 of the original
two-tone protocol (a) as well as its fine-tuned version (b) and the
error ε3 of the three-tone protocol (c) as well as its fine-tuned version
(d). Note that the relaxation times, T a

1 and T b
1 , and pure dephasing

times, T a
φ and T b

φ , for both cavities are fixed in all panels to those
values given in Table I and only the times for the transmon are varied.

T c
φ from 50 μs to 750 μs. While the latter times might still

be out of reach for current devices, we consider them here
to give some perspective for possible future improvement.
Figures 6(a) and 6(b) show how the errors ε2 and ε2,grad of the
original two-tone protocol and its fine-tuned version improve
when T c

1 and T c
φ increase. As can be seen, both errors show a

weak dependence on T c
1 (on the order of ∼0.1%) while they

rapidly decrease when increasing T c
φ . For the recently reported

values of T c
1 = 500 μs and T c

φ = 300 μs, we find ε2 = 2.5%
and ε2,grad = 2.2%, which is further lowered to ε2 = 1.8% and
ε2,grad = 1.3% for T c

1 = 750 μs and T c
φ = 750 μs.

In Figs. 6(c) and 6(d), we investigate how the errors ε3

and ε3,grad of the three-tone protocol and its fine-tuned version
scale. Similarly to the two-tone protocol, a weak dependence
on T c

1 is observed, while a larger T c
φ readily improves both ε3

and ε3,grad. For T c
1 = 500 μs and T c

φ = 300 μs, we find ε3 =
3.1% and ε3,grad = 0.8%, which is further lowered to ε3 =
2.8% and ε3,grad = 0.5% for T c

1 = 750 μs and T c
φ = 750 μs.

These results are to be understood as follows. The error of
the constant three-tone protocol is essentially given by the
remaining, relatively large coherent error of ε3 = 2.6%. It can
not be lowered below this value by solely improving coher-
ence times. In contrast, for the fine-tuned three-tone protocol
an error of <1% is achievable even for present day T c

1 and
T c

φ times of the transmon. To conclude, Fig. 6 indicates that
improving T c

φ yields the largest improvements in fidelity, in
particular for the fine-tuned protocols, while improving T c

1
has a rather small effect. This may be explained by the trans-
mon remaining in an energetically low-lying Floquet state
throughout the dynamics. This state is already very close

to the transmon’s bare ground state and can thus not decay
much further. Moreover, it resembles a coherent state, which
is naturally more resistant to energy relaxation.

Our observation of the role of the Floquet state suggests a
further possibility to reduce the protocol’s sensitivity to deco-
herence. It is motivated by recognizing that the bare transmon
ground state is not affected by any relaxation or dephasing.
Thus, it should be possible to engineer two- or three-tone
protocols that are less susceptible to transmon decoherence by
staying even closer to its bare ground state. In Appendix C we
show that the ideal two-tone protocol that minimizes excita-
tion of the transmon—which in fact minimizes the protocol
error—is achieved if ξ1 ≈ ξ2 with ξk = �k/δk the normal-
ized amplitude and δk = ωk − ωc. Any deviation from ξ1 ≈
ξ2 leads to more excitation of the transmon and thus larger
protocol errors. This insight into the normalized amplitude
can serve as a guiding principle for the design of further
high-fidelity two- and three-tone protocols.

V. CONCLUSIONS AND OUTLOOK

For the practical problem of engineering a beamsplitter
interaction between two bosonic modes by appropriately driv-
ing an intermediate coupling element, we have shown how
to use quantum optimal control theory (OCT) to systemati-
cally improve performance and gain, at the same time, insight
into the control mechanism. Key was to combine a two-step
optimization with comprehensive analysis of the underlying
dynamics, exploiting several available numerical and analyti-
cal tools. In more detail, starting from an analytical two-tone
protocol [63] that utilizes two drives with constant amplitudes
and frequencies, we have shown how, in a first step, a simple
gradient-free optimization technique can be used to enhance
the beamsplitter strength by roughly a factor of five. The
increased strength originates from adding a third tone with
fixed amplitude and frequency. Our analysis revealed that the
third tone—with its parameters determined by gradient-free
optimization—induces and exploits near to resonant cavity-
transmon sideband couplings to strengthen the beamsplitter
rate. The ability of our approach to identify this rather non-
intuitive solution to the considered control problem already
exemplifies the utility of OCT.

In a second step, we have then used a gradient-based
optimization technique to further improve the three-tone pro-
tocol identified by the gradient-free optimization. This allows
us to further lower the protocol error. Remarkably, the so-
lutions identified this way are much simpler than solutions
obtained with gradient-based methods only. This is in ac-
cordance with Ref. [15] and emphasizes the advantage of a
hybrid optimization approach—combining both gradient-free
and gradient-based methods—compared to any of the two
alone.

The improved beamsplitter strength of the three-tone pro-
tocol, obtained by the gradient-free optimization, comes at
the expense of introducing correlations between cavities and
transmon. These correlations do not vanish at times where,
e.g., a SWAP gate should be implemented. The second step
in the hybrid optimization approach primarily acts to suppress
the correlations at final time. Other than that, it does not sig-
nificantly change the three-tone protocol identified in the first
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step of the hybrid optimization approach. The control fields
obtained this way are experimentally feasible at all stages of
the hybrid approach as the latter increases the complexity of
the control problem only stepwise and thus allows one to find
overall simpler solutions.

The error for a SWAP gate significantly decreases due to
the significant increase in beamsplitter strength which leads to
a reduction in protocol duration and, as another consequence,
diminished influence from decoherence. The reduction in
protocol time and error comes at the expense of making
the three-tone protocol more codeword-dependent than the
original two-tone protocol, i.e., dependent on the respective
encoding of the qubits in the cavity Hilbert space. Our find-
ings nevertheless suggest that it is always possible to identify
optimized drives for a given encoding, as we have shown
for the example of binomial encoding [43]. Whether a faster,
codeword-agnostic protocol exists, remains an open question.

Finally, the important interplay of OCT and the analytical
tools, used to identify and understand the obtained solutions,
needs to be stressed. Together with the analysis of the impact
of decoherence onto the two- and three-tone protocols it forms
an ideal starting point for further improvements of the proto-
cols. For example, the insight that a symmetric choice of the
normalized amplitudes makes the protocol less susceptible to
decoherence can be fed back into the optimization to obtain
even better protocols.

To summarize, we have shown how a specific protocol—
relevant in the context of continuous-variable quantum
computing—can be accelerated and its error minimized by
means of OCT. This study therefore serves as a demonstration
of how OCT can be used systematically in order to solve
or improve a given control problem. In a first optimization
step, a gradient-free optimization allows us to identify intel-
ligible control strategies. They can be fine-tuned afterwards
by a gradient-based method in a second step to yield highly
performant solutions, while keeping the field shapes feasible.
Since all OCT tools are readily available [22,74], application
of this procedure to other problems of interest should be
straightforward. Our analysis of the optimization results and
finding of a clear physical explanation for the speed-up opens
new avenues for further improvements of the beamsplitter
protocol.
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APPENDIX A: CONSTRUCTING AN EFFECTIVE
HAMILTONIAN FOR THE TWO CAVITIES

In this Appendix we reconstruct—based on the numerical
data shown in Fig. 2—an effective Hamiltonian that correctly
describes the dynamics of the reduced subsystem of the two
cavities. As we will show, this Hamiltonian works for both
the two- and three-tone protocols confirming once more that
adding the third drive indeed gives rise to a stronger beam-
splitter interaction. This is particularly remarkable given the
differences in the correlation dynamics between Figs. 3(a)
and 3(b). The two-tone protocol gives rise to almost unitary
dynamics in the reduced subsystem of the two cavities since
the transmon stays uncorrelated at all times. In contrast, the
three-tone protocol gives rise to correlations between cavities
and transmon (cf. Fig. 3) and thus indicates nonunitary dy-
namics of the reduced subsystem of the cavities.

In the following, we inspect the reduced dynamics of
the two cavities. To this end, we introduce the generalized
Bloch vector r(t ) = (r1(t ), . . . , rM2−1(t ))� of the reduced
state ρAB(t ) = trc{ρ(t )} of cavities A and B,

ρAB(t ) = 1

M
1M + r(t ) · Â, (A1)

where M = dim{Ha ⊗ Hb} and Â = (A1, . . . , AM2−1)�. Here
{A1, . . . , AM2−1} is a basis of traceless, Hermitian M × M
matrices satisfying 〈Ai, Aj〉 = δi, j . We choose the generalized
Gell-Mann matrices for this basis and order them according to
their presentation in Ref. [79]. For the numerical simulations
presented in Fig. 2, we have M = 25, hence the generalized
Bloch vector r(t ) has 252 − 1 = 624 components. For the
effective beamsplitter interaction of the two-tone protocol
[cf. Fig. 2(a)], many of these components are constant or
almost constant and only a small fraction shows a significant
time dependence. The opaque, solid lines in Figs. 7(a)–7(c)
show the dynamics of those “relevant” components for the
initial states |ψ in

AB〉 ∈ {|0, 1, 0〉 , |1, 0, 0〉 , |1, 1, 0〉} in the bare
basis. Figures 7(d) and 7(e) show the same components for
the three-tone protocol; cf. Fig. 2(b). As can be seen, the
slowly changing components in Figs. 7(d) and 7(e) follow
a slightly more complex version than their counterparts in
Figs. 7(a)–7(c) but are identical in shape. In contrast, the
rapidly oscillating components follow the same envelope in
both cases but their oscillations differ. Note the different
timescales of the dynamics. The rapid oscillations have ac-
tually the same frequency for both the two- and three-tone
protocols.

Since there is no immediate procedure to derive an ef-
fective Hamiltonian for the subsystem of cavities A and B,
we numerically find an effective Hamiltonian that fits the
dynamics observed in Fig. 7. The effective Hamiltonian reads

HAB
eff (t ) = −gBS(e−iωzt ab† + eiωzt a†b) − ωz

2
(a†a − b†b).

(A2)

For the original two-tone protocol, the two parameters of
the effective Hamiltonian (A2) are gBS/2π = 36.9 kHz and
ωz/2π = 2.625 MHz. For the three-tone protocol, the two
parameters are gBS/2π = 165 kHz and ωz/2π = 2.625 MHz.
In both cases, the parameters are obtained by fitting the
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FIG. 7. Bloch trajectories for the reduced state of cavities A and B. Only those components rk (t ) = 〈Ak〉ρAB(t ) in the generalized Bloch
vectors are depicted that show significant changes in time. The opaque, solid lines correspond to the Bloch vector trajectories of ρAB(t )
obtained by tracing out transmon C for the dynamics under the two-tone protocol (left column) and the three-tone protocol (right column) as
shown in Fig. 2. The dotted lines correspond to the Bloch vector trajectories obtained for a dynamics with the effective Hamiltonian (A2),
which is defined only on the reduced system of the two cavities.

effective, analytical curves generated by Hamiltonian (A2)
to the numerical curves of Fig. 7. As expected, the effective
beamsplitter interaction gBS is larger for the three-tone proto-
col. It increases by a factor 4.47 which roughly matches the
decrease in protocol duration (factor 4.54). Interestingly, the
rapidly oscillating components in Fig. 7 can be reproduced by
the same frequency ωz/2π = 2.625 MHz for both protocols.
It exactly matches the relative Stark shift for ωa and ωb in the
original two-tone protocol, which can be calculated from the
parameters in Table I and Eq. (6) via

(ω2 − ω1) − (ωb − ωa ) = 2.625 MHz. (A3)

This readily explains the difference between Eq. (5) and
Eq. (A2), as the latter describes the dynamics in the frame
set by Hamiltonian (4), i.e., in a rotating frame where both
cavities A and B have vanishing level splittings ωa and ωb.
However, this frame does not capture the Stark shifts ωa → ω̃a

and ωb → ω̃b induced by the drives on the transmon. In conse-
quence, both cavities have still nonvanishing level splittings in
the rotating frame and hence the nonvanishing ωz in Eq. (A2).

The fact that ωz is identical for the two- and three-tone
protocols is surprising, since the third drive could, in principle,
give rise to different individual Stark shifts of ωa and ωb.
However, the relative Stark shift is identical for both proto-
cols. This might be viewed as another numerical confirmation
of the effective theory presented in Eqs. (29a) and (29b),

namely that the first two tones are exclusively responsible
for activating the beamsplitter interaction via Eq. (6) while
the third tone exclusively adds the cavity-transmon sideband
transitions.

APPENDIX B: FLOQUET CALCULATION OF THE
BEAMSPLITTER RATE

The Floquet results shown in Fig. 5 were obtained by
using the method developed in Ref. [65], which we briefly
describe here. Note that the following Floquet treatment is an
approximate method to estimate the beamsplitter rate.

As a first step, we start from the Hamiltonian in Eq. (1)
and switch to the rotating frame at the frequency ω1 of driving
field 1. This leads to the Hamiltonian

H (t ) = Hc(t ) + (ωa − ω1)a†a + (ωb − ω1)b†b

+ ga(ac† + a†c) + gb(bc† + b†c), (B1)

Hc(t ) = (ωc − ω1)c†c − αc

2
c†c†cc

+ (�1 + �2e−iω21t + �3e−iω31t )c†

+ (�∗
1 + �∗

2eiω21t + �∗
3eiω31t )c. (B2)
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Here we consider time-independent drive amplitudes �1,2,3,
and we define ω21 and ω31 to be ω21 = ω2 − ω1, ω31 =
ω3 − ω1.

The key idea of the method is to treat the cavity-transmon
couplings in Eq. (B1) above perturbatively, but treat the drives
nonperturbatively using Floquet theory. To apply Floquet the-
ory, we require ω21 to be commensurate with ω31. In practice,
this is done by keeping finite number of digits for the numer-
ical values of the drive frequencies. In the results shown in
Fig. 5, we round the drive frequencies in unit of MHz to the
closest integer. For instance, ω2/2π is rounded to 7050 MHz.
After this, we find the smallest positive integers p and q such
that the ratio of ω21 and ω31 is given by p/q. Then the trans-
mon Hamiltonian Hc in Eq. (B2) is time-periodic, namely,

Hc(t + 2π/ωH) = Hc(t ), ωH = ω21/p = ω31/q. (B3)

Because Hc(t ) is periodic in time, by the Floquet theorem,
there is a set of Floquet eigenstates associated with Hc(t )—
analog to stationary eigenstates for static Hamiltonians. These
Floquet states can be written in the form

ψm(t ) = e−iεmt um(t ), (B4)

where εm is the quasienergy and um is called the Floquet
mode, which has the same periodicity as the Hamiltonian, i.e.,
um(t + 2π/ωH) = um(t ).

As derived in Ref. [65], to leading order in the coupling
strengths ga, gb, the cavity-cavity beamsplitter rate when the
transmon is in the mth Floquet state is given by the following
formula:

gBS,m = g∗
agb

∑
n

∑
K

[
cmn,K+1(c†)nm,−K

ωb − ω1 + KωH + εmn

+ (c†)mn,−K cnm,K+1

−ωb + ω1 − KωH + εmn

]
, (B5)

where εmn = εm − εn and where cmn,K is the K th Fourier
component of the matrix element of the transmon operator c
between its Floquet modes um and un,

cmn,K = ωH

2π

∫ 2π/ωH

0
〈um(t )|c|un(t )〉e−iKωHt dt . (B6)

To obtain the Floquet results in Fig. 5, we set m = 0 in
Eq. (B5), which corresponds to the Floquet state that adia-
batically connects to the transmon ground state without the
drive. Near the sideband resonance, we find that using the
dressed frequency of cavity B—approximately given by ωb +
g2

b/(ωb − ωc)—in place of bare frequency ωb in Eq. (B5)
produces a better agreement with the time-domain numerical
results. To obtain the error bars in Fig. 5, we simply shift
ωb/2π by ±1 MHz. This allows us to explore the sensitivity
of the beamsplitter rate on the distance to the sideband reso-
nance.

APPENDIX C: CONSTRUCTING TWO- AND THREE-TONE
PROTOCOLS WITH MINIMAL TRANSMON EXCITATION

In this Appendix, we examine how to engineer two- and
three-tone protocols with minimal excitation of the transmon.
While one might suppose that this only helps in improving ro-
bustness with respect to T c

1 , recall that with fewer excitations

FIG. 8. Error analysis for various two-tone protocols based on
the difference ξ1 − ξ2 of the normalized amplitudes ξ1 and ξ2 but
conditioned by ξ1ξ2 = 0.126. Panel (a) shows the average bare
ground state population of the transmon (without decoherence) for
the respective protocol; cf. Eq. (C1). Panel (b) shows the protocol
error ε2 with and without decoherence, while panel (c) shows the
corresponding protocol duration T .

in higher transmon levels, also fewer coherences with respect
to these levels occur. To identify such protocols, we need to
find drive parameters for which the Floquet state—to which
the transmon is dynamically transferred by switching the drive
on and off—is closest to the bare ground state. To this end,
we compare various two-tone protocols under the constraint
of identical |ξ1ξ2|, where ξk = �k/δk is the normalized am-
plitude and δk = ωk − ωc a detuning. Note that despite |ξ1ξ2|
being the main quantity that defines the beamsplitter rate gBS

[cf. Eq. (5)], and thus the protocol duration T , the individual
physical amplitudes �1 and �2, and the individual normalized
amplitudes ξ1 and ξ2 can still be chosen differently.

Figure 8(a) shows the average bare ground state population
of the transmon, defined via

1

T M2

M−1∑
na,nb=0

∫ T

0
dt

〈〈
|0〉 〈0|

∣∣∣∣trab{Dt,0[ρna,nb,0]}
〉〉

, (C1)

as a function of the difference ξ1 − ξ2 for the two-tone pro-
tocol. As can be seen, the average transmon ground state
population is maximal if ξ1 − ξ2 ≈ 0, i.e., both drives have
roughly the same normalized amplitude. All these two-tone
protocols have coherent errors <0.6%; see dashed line in
Fig. 8(b). Once decoherence is taken into account, the pro-
tocols with larger average transmon ground state population
have smaller protocol errors ε2 (solid line). The minimal error
roughly occurs for ξ1 − ξ2 = 0. Due to the constraint of iden-
tical |ξ1ξ2|, the protocol durations T are very similar (albeit
not identical); cf. Fig. 8(c).

While Fig. 8 shows results for one particular choice of
|ξ1ξ2|, one might conjecture that weaker values—and thus
longer protocol durations—lead to larger average transmon
ground state population and hence more robustness with re-
spect to transmon decoherence. However, our observations
indicate that being faster is always advantageous. Thus, in

023054-14



ENGINEERING STRONG BEAMSPLITTER INTERACTION … PHYSICAL REVIEW RESEARCH 4, 023054 (2022)

order to find the protocol with best resistance against decoher-
ence, the primary goal should be to be fast and the secondary
goal should be to stay on average as close as possible to the
bare transmon ground state. This statement should hold for
any three-tone protocol as well, since the average bare ground

state population decreases only slightly once the third drive
is turned on, decreasing, for instance, from 0.73 to 0.70 for
the protocols discussed in Fig. 2. Figure 8 thus represents a
good starting point to find suitable two-tone protocols that can
subsequently be turned into high-fidelity three-tone protocols.
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