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Reservoir-engineering shortcuts to adiabaticity
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We propose a protocol that achieves fast adiabatic transfer between two orthogonal states of a qubit by
coupling with an ancilla. The qubit undergoes Landau-Zener dynamics, whereas the coupling realizes a time-
dependent Hamiltonian, which is diagonal in the spin’s instantaneous Landau-Zener eigenstates. The ancilla
(or meter), in turn, couples to a thermal bath such that the overall dynamics is incoherent. We analyze the
protocol’s fidelity as a function of the strength of the coupling and of the relaxation rate of the meter. When the
meter’s decay rate is the largest frequency scale of the dynamics, the spin dynamics is encompassed by a master
equation describing dephasing of the spin in the instantaneous eigenbasis. In this regime, the fidelity of adiabatic
transfer improves as the bath temperature is increased. Surprisingly, the adiabatic transfer is significantly more
efficient in the opposite regime, where the timescale of the ancilla dynamics is comparable to the characteristic
spin timescale. Here, for low temperatures the coupling with the ancilla tends to suppress diabatic transitions via
effective cooling. The protocol can be efficiently implemented by means of a pulsed, stroboscopic coupling with
the ancilla and is robust against moderate fluctuations of the experimental parameters.
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I. INTRODUCTION

A powerful resource for quantum control is adiabatic
dynamics because of its robustness against parameter fluc-
tuations [1,2]. This comes at the cost of the operation time,
which shall be sufficiently long to preserve adiabaticity [3].
In closed and finite systems, the lower bound to the time
is set by the smallest frequency gap separating the target
state from the excitations. In realistic settings, detrimental
effects become increasingly important with time, such that
they effectively determine a finite time window, the optimal
processing time, in which the coherent adiabatic dynamics can
be implemented. This implies a lower bound to the processing
error [4,5].

A way to overcome this bottleneck is to develop protocols
for implementing relatively fast and efficient adiabatic trans-
formations. Strategies being discussed include the application
of optimal control theory [6] and the active use of projective
measurements [7,8]. The ultimate goal is to arbitrarily reduce
the error of protocols based on quantum adiabatic dynamics.
The formal equivalence of measurement and dissipative dy-
namics suggests the use of reservoir engineering.

Here, we discuss a protocol for implementing fast adiabatic
transfer by means of quantum reservoir engineering [9–13].
We start from the basic concept of quantum reservoir en-
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gineering, which tailors the coupling of a quantum system
with a reservoir for efficient quantum state preparation, and
we extend it with the objective of stabilizing the adiabatic
quantum trajectory. We consider a paradigmatic model of
quantum adiabatic dynamics, the Landau-Zener Hamiltonian
of a two-level system, and design the coupling with an
external bath. In our protocol, the spin couples to an an-
cilla by means of a time-dependent interaction or coupling
Hamiltonian that is diagonal in the instantaneous basis of
the Landau-Zener Hamiltonian. Irreversible dynamics is in-
troduced by means of a thermal bath with which the ancilla
thermalizes. The spin-ancilla coupling has the form of a
quantum nondemolition (QND) type of Hamiltonian [14–16],
where a measurement of the meter (ancilla) state projects
the qubit onto an energy eigenstate. Differing from a QND
measurement, however, the coupling is time dependent and
the coupling Hamiltonian is diagonal in the instantaneous
Landau-Zener eigenbasis. We characterize the fidelity of adi-
abatic transfer as a function of the coupling strength with
the ancilla, of the thermalization rate, and of the temperature
of the external bath, and identify the regimes in which the
coupling with the external bath leads to a significant gain in
adiabaticity or in adiabatic transfer fidelity with respect to
purely Hamiltonian dynamics.

The paper is organized as follows. In Sec. II, we shortly
review the properties of the adiabatic transfer probability of
Landau-Zener Hamiltonian dynamics and then introduce our
protocol based on quantum reservoir engineering. In Sec. III,
we determine the fidelity of the adiabatic transfer, taking into
account the full quantum dynamics of the meter. We then
investigate the role of nonadiabaticity and non-Markovianity
(NM) of the spin-ancilla coupling on the fidelity of adiabatic
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transfer. In Sec. IV, we analyze a stroboscopic, pulsed imple-
mentation of the protocol and simulate possible experimental
imperfections, showing that the protocol is robust against
moderate fluctuations of the experimental parameters. We
conclude in Sec. V and discuss perspectives of this paper. The
Appendices provide details of the derivation and the bench-
marking of the quantum adiabatic master equation for a weak
QND interaction.

II. LANDAU-ZENER HAMILTONIAN
AND QND MEASUREMENT

In this section, we first review salient properties of the
Landau-Zener dynamics. We then introduce the model at
the center of our study, where the qubit, undergoing the
Landau-Zener dynamics, is also coupled to a second quantum
system, acting as an environment. The coupling Hamiltonian
is time dependent; at each instant of time, it commutes with
the Landau-Zener Hamiltonian and implements a dynamics
which is reminiscent of QND measurements.

A. Landau-Zener Hamiltonian

The Landau-Zener model [17,18] is an example of exactly
solvable dynamics and a workhorse of studies on adiabaticity
[3,19]. It describes the dynamics of a two-level system with
the algebra of a spin 1/2, whose Schrödinger equation is
governed by the time-dependent Hamiltonian

ĤS (t ) = εt

2
σ̂z + g

2
σ̂x ,

= 1

2

(
εt g
g −εt

)
, (1)

where the matrix is reported in the eigenbasis of the Pauli
matrix σ̂z, |↑〉 ≡ (1, 0), |↓〉 ≡ (0, 1). Here, the parameter ε

is a positive constant that determines the sweeping rate of
the Hamiltonian. As for g, it couples the energy levels and
lifts the degeneracy observed at the crossing point t = 0. For
convenience, we have set h̄ = 1.

Hamiltonian Eq. (1) is diagonal in the so-called adiabatic
eigenbasis |±〉t , which is connected to the σz eigenbasis by
the relations

|+〉t = + cos(θ (t )/2)|↑〉 + sin(θ (t )/2)|↓〉 ,

|−〉t = − sin(θ (t )/2)|↑〉 + cos(θ (t )/2)|↓〉,
with tan θ (t ) = g/εt [20]. The corresponding instantaneous
eigenenergies E±(t ) = ±

√
g2 + ε2t2/2 are displayed in Fig. 1

as a function of t . The lower branch is associated with state
|−〉t , corresponding to |↑〉 at t1 → −∞ and to |↓〉 at t2 →
+∞. The opposite holds for the state |+〉t in the upper branch.

The dynamics of the Landau-Zener model is governed by
a time-dependent Schrödinger equation, which admits an an-
alytical solution in terms of parabolic cylinder functions [21].
A quantity relevant to our study is the probability P(t1, t2) of
a diabatic transfer from state |−〉t1 to state |+〉t2 ,

P(t1, t2) = |t1〈+|Û (t1, t2)|−〉t2 |2 , (2)

where Û (t1, t2) is the evolution operator solving the
Schrödinger equation with the time-dependent Hamiltonian

FIG. 1. Instantaneous eigenenergies of the Landau-Zener
Hamiltonian Eq. (1) as a function of time (in units of g/ε). The blue
curves correspond to the energies in units of g, which determines to
the gap at the anticrossing t = 0. The dashed lines correspond to the
eigenenergies for g = 0.

Eq. (1). The probability P quantifies the deviation from adi-
abaticity and thus provides the error, or the infidelity, of the
operation. We define the infidelity T as the limit of P when
t1 → −∞ and t2 → +∞. In this limit, it takes the well-
known form [17,18]

T ≡ lim
t1→−∞
t2→+∞

P(t1, t2) = exp(−πg2/2ε) , (3)

which shows that the infidelity is controlled by the ratio be-
tween the energy gap g at the avoided crossing point and
the sweeping rate ε. One typically distinguishes two extremal
behaviors: (i) For g 	 √

ε, the gap is sufficiently wide to pe-
nalize the transition, enabling the system to evolve smoothly
from |−〉−∞ = |↑〉 to |−〉+∞ = |↓〉. (ii) On the other hand, if
g � √

ε, the system does not have time to adjust to the change
of parameters and the state gets promoted from the low-energy
branch to the high-energy one.

For a finite time window, the transition probability is dom-
inated by the term [3]

P(t1, t2) � ε2

16g4

(
g6

(
g2 + ε2t2

1

)3 + g6

(
g2 + ε2t2

2

)3

)
, (4)

and thus scales algebraically with ε/g2. Equation (4) is re-
ported to be valid for sufficiently long times t2, for which
the oscillations are damped out, and neglects higher-order
corrections. We note that the latter also include the terms de-
termining the asymptotic behavior of Eq. (3) for t2, |t1| → ∞.

B. Quantum nondemolition measurement in the adiabatic basis

Projective measurements are an essential ingredient of
quantum mechanics. They are physically implemented by
coupling the system of interest to a second physical system,
acting as a meter for the quantity to measure [22]. As a result,
the effective dynamics of the system is generally incoherent,
since the measurement destroys quantum superpositions be-
tween eigenstates at different eigenvalues. At the same time,
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the incoherent dynamics due to the meter can suppress tran-
sitions to states outside the target Hilbert space, realizing an
effective quantum Zeno dynamics [23].

In this paper, we propose to design the coupling to the me-
ter such that it suppresses diabatic transitions by performing
a measurement in the instantaneous Landau-Zener eigenba-
sis in the spirit of quantum reservoir engineering [9–13].
This is done by coupling the spin with an ancilla by means
of the Hamiltonian ĤSM(t ) defined in the Hilbert space of
qubit and ancilla (which we here and below also denote
by meter),

ĤSM(t ) = ĤS (t ) + ĤM + ĤQND(t ) , (5)

where ĤM is the meter’s Hamiltonian in the absence of the
coupling and ĤQND(t ) is the qubit-meter coupling. The latter
is time dependent and takes the form

ĤQND(t ) = ĤS (t ) ⊗ X̂M , (6)

with ĤS (t ) given in Eq. (1) and X̂M an operator acting on
the Hilbert space of the meter (ancilla). Hamiltonian ĤQND

commutes with ĤS at each instant of time. For ε = 0 (no time
dependence), it realizes a QND measurement: there is no en-
ergy exchange between meter and qubit and the measurement
of the meter (ancilla) allows one to measure the energy of the
qubit with arbitrary precision [14–16].

QND-type dynamics have been realized in several setups.
In most cases, the system and meter are the qubit and har-
monic oscillator with interchangeable roles. In microwave
cavity QED, for instance, the system is a high-finesse mode
of the cavity, the meter a Rydberg transition of atoms flying
through the cavity [24]. QND is at the basis of spin-squeezing
protocols using the mode of a resonator as a meter [25].
Most recently, a QND-based protocol has been proposed
for determining the spectrum of a spin chain by using the
common vibrational mode as meter [26]. With respect to
these examples, the peculiarity of Eq. (6) is that ĤQND(t )
is time dependent and specifically diagonal in the adiabatic
eigenbasis.

We note that here the analogy with the measurement re-
quires that the ancilla state is instantaneously reset after the
interaction [10,12,13,27], such that the correlations between
ancilla and system generated by the interactions are destroyed
by projecting the ancilla onto the initial state. In our dynamics,
this occurs on a finite timescale and is realized by the coupling
of the ancilla with a thermal bath, with which the ancilla equi-
librates. We will show that this timescale is indeed relevant
and that the protocol works most efficiently when retardation
effects are important.

In the rest of this paper, we discuss the qubit’s effective
dynamics generated by the QND coupling of Hamiltonian
ĤQND, Eq. (6), assuming that the meter is a damped harmonic
oscillator.

III. CASE STUDY: QUBIT COUPLED
TO A CAVITY ANCILLA

We now analyze the dynamics governed by the meter-
qubit Hamiltonian with the QND coupling as in Eq. (6). We
specifically investigate whether and under which conditions
the QND coupling suppresses diabatic transitions. In what

follows, we assume that the meter (ancilla) is a damped
oscillator. We describe the meter’s damping by means of a
Liouvillian and numerically determine the infidelity of the
adiabatic transfer as a function of the parameters character-
izing the ancilla’s dynamics.

A. Continuous QND coupling to a damped oscillator

Let now HM = ωcâ†â be the Hamiltonian of a harmonic
oscillator, where â† and â create and annihilate, respectively,
a quantum of energy ωc. The operator X̂M of the QND
Hamiltonian, Eq. (6), is taken to be

X̂M = x0(â + â†) ,

where x0 is a dimensionless parameter scaling the QND cou-
pling. The oscillator, moreover, couples to a thermal bath,
which we assume to be Markovian. The resulting dynamics
is governed by the Lindblad equation

∂

∂t
ρ̂ = −i[ĤSM(t ), ρ̂] + κ (n + 1)

(
âρ̂â† − 1

2
{â†â, ρ̂}

)

+ κn

(
â†ρ̂â − 1

2
{ââ†, ρ̂}

)
, (7)

where κ is the oscillator’s damping and

n = 1/(exp(βωc) − 1)

is the mean occupancy of the cavity imposed by the bath with
inverse temperature β.

Using Eq. (7), we numerically determine the transfer
probability integrating over a finite time interval [−t, t]. Ex-
emplary dynamics of the transition probability as a function
of time are depicted in the inset of Fig. 2(b): In general, the
coupling to the meter tends to damp the typical oscillations of
the Landau-Zener dynamics and leads to a faster relaxation to-
ward the asymptotic value. In Fig. 2, the infidelity is analyzed
as a function of the damping rate κ , of the coupling amplitude
x0, and of the average occupancy n. We start with the depen-
dence on κ and first note that in the limit κ → ∞ the oscillator
instantaneously relaxes to the thermal state. For large but finite
κ , the oscillator is in a coherent state, namely, a right eigen-
state of operator â. Denoting the coherent state by |α〉, such
that â|α〉 = α|α〉, then the amplitude α is determined by the
Landau-Zener Hamiltonian: This is the limit of a projective
measurement, the state of the qubit is inferred by measuring
the oscillator amplitude. Figure 2(a) displays the infidelity as
a function of the damping rate κ and for different values of x0.
For small κ , the infidelity decreases down to a local minimum
that lies below the Landau-Zener prediction. In Sec. III C, we
will show that this limit is described by a quantum adiabatic
master equation, where the qubit undergoes dephasing in the
instantaneous eigenbasis of the Landau-Zener Hamiltonian.

Increasing x0 at fixed κ , on the other hand, is analogous
to increasing the importance of retardation (or memory) ef-
fects on the dynamics. In Fig. 2(b), the infidelity is displayed
as a function of x0: For increasing values of x0, the infi-
delity decreases down to a nonvanishing asymptotic value.
This behavior is due to transitions between the instantaneous
eigenstates. At large x0 (and vanishing temperatures), these
transitions mainly consist of decay from the upper to the lower
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FIG. 2. Infidelity T as a function of (a) the damping rate κ , computed for fixed parameters ωc = g, and β = 10/ωc (n ∼ 4 × 10−5), (b) the
qubit-meter coupling amplitude x0, for ωc = g, κ = ωc, and β = 10/ωc, and (c) the average occupancy n = 1/(exp(βωc ) − 1) of the boson
bath, for ωc = g and x0 = 1. In all panels, the adiabaticity parameter is g2/ε = 1, i.e., nonadiabatic effects in the bare dynamics of the qubit
are expected to be sizable. The inset of subplot (b) displays the evolution of the transfer probability P for some values of x0. All results are
obtained by numerically solving Eq. (7) for an oscillator of maximum occupancy nmax = 50.

energy branch, thus cooling the qubit into the instantaneous
lower eigenstate and thereby correcting for the unwanted dia-
batic transitions. This behavior can substantially change when
increasing the temperature (correspondingly, increasing n), as
visible in Fig. 2(c). Here, the initial monotonous increase of
the infidelity as a function of the thermal occupation n is due
to an increasing number of diabatic transitions from the lower
to the upper branch. Remarkably, this tendency is reverted for
large values of κ , where the qubit dynamics is described by
a quantum adiabatic master equation (Sec. III C). Here, the
dephasing induced by the coupling with the ancilla tends to
preserve adiabaticity and has a rate proportional to the thermal
occupation n, thus increasing with the temperature. As a re-
sult, in this limit the fidelity improves as the bath temperature
is increased. We here remark that similar features have been
discussed in Refs. [28,29] for a different implementation of
the spin master equation.

B. Memory effects and instantaneous gap

The analysis of the infidelity of our protocol exhibits a
rich variety of behaviors and regimes. In some cases, we
observe an improvement of the adiabaticity compared to the
Landau-Zener prediction. Particularly striking is that increas-
ing qubit-cavity coupling leads to decreasing the infidelity,
suggesting that memory effects could help the adiabatic trans-
fer. To better understand whether there is a connection, we
analyze NM in the qubit’s dynamics. NM in the evolution of
a density matrix can be probed by several types of measures
[30]. In the following, we quantify non-Markovianity in the
qubit by using the measure based on information backflow
to the system [31], later referred to as NM measure. A non-
anishing NM measure signals NM evolution and the presence
of memory effects in the dynamics of the system.

The measure N of Ref. [31] quantifies the revival of
distinguishability between two states as a function of time.
While for Markovian dynamics the distinguishability of any
two states follows a monotonous decay, NM dynamics are
characterized by a temporarily increasing distinguishability.
The measure N of a dynamical map � determines distin-
guishability via the trace distance and considers the pair of

initial states ρ1,2(0) that exhibits the maximum increase in
distinguishability,

σ (t, ρ1,2(0)) = d

dt
tr|ρ1(t ) − ρ2(t )|, (8)

N (�) = max
ρ1,2(0)

∫
σ>0

dt σ (t, ρ1,2(0)) , (9)

Figure 3 displays the NM measure N and the correspond-
ing infidelity for representative parameter regimes. As one
would expect, NM effects are sizable for weak damping as the
meter is not reset fast enough. Yet, the NM measure exhibits
one or more maxima as a function of the meter-qubit coupling
x0. In none of the two cases considered, we can identify a
clear correlation between the behavior of the NM measure and
the infidelity. We conclude that there is no simple relationship
between memory effects and adiabaticity.

In addition, we also inspect the instantaneous gap between
the two instantaneous eigenstates of the qubit at the crossing
point,


R = 
E (0)(1 + 2x0〈â + â†〉)t=0 ,

which we simply obtain by tracing out the oscillator. The
red lines in Fig. 3 show the parameter values where 
R is
minimum. This curve has a good overlap with the maximum
of the infidelity on a large parameter interval, suggesting that
high-fidelity adiabatic transfer can be achieved by designing
an effective gap by means of an external environment.

C. QND measurement in the Markovian regime

The purpose of this section is to discuss the
equation governing the effective dynamics of the qubit
when the oscillator’s variable can be eliminated from the
qubit’s equation of motion. This occurs in the overdamped
limit, when the meter quickly relaxes to a steady state.
In this regime, the coupling with the meter induces an
incoherent dynamics of the qubit. The resulting master
equation describes an effective dephasing in the adiabatic
basis, whose net effect is to enforce adiabatic transfer. In this
case, the infidelity can be analytically determined in some
limits. We recall that the dynamics for master equations with
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FIG. 3. (Color online.) NM measure (left panels) and value of
the infidelity T (right panels) (a) as a function of the damping rate of
the meter κ/ωc and the QND coupling x0 computed for the adiabatic
parameter g2/ε = 1 and (b) as a function of the adiabatic parameter
g2/ε and the QND coupling x0 computed at a fixed damping rate
κ/ωc = 0.1. On all plots, the red line stands for the minimum of the
effective real gap 
R, see text for details, while the vertical white
line represents the intersection between the considered (κ/ωc, x0 )
and (g2/ε, x0) planes. All calculations are performed for β = 10/ωc

(n ∼ 4 × 10−5).

QND coupling between system and reservoir have been
discussed, for instance, in Ref. [32]. Differing from those
works, we emphasize that in our case the coupling is time
dependent and proportional to the Landau-Zener Hamiltonian.

In what follows, we sketch the derivation of the master
equation following the steps of Ref. [33] and for a generic
system acting as a meter. We then analyze the predictions of
the master equation.

1. Basic assumptions

Our starting point is the von-Neumann equation for meter
and qubit with Hamiltonian Eq. (5). The meter is assumed
to be in a thermal state at inverse temperature β. The con-
struction of the quantum adiabatic master equation requires
assumptions on the different energy and timescales. We start
with the minimal gap g between the two energy branches: To
ascertain the adiabaticity of the coherent part of the dynamics
for the LZ system, we shall take the limit where ε/g2 � 1.
We also require that the meter relaxes at timescales τM over
which one can consider the Hamiltonian ĤS (t ) to be constant,
resulting in ετ 2

M � 1. For example, when the meter is an
overdamped oscillator, then τM ∼ 1/κ when κ is the largest
rate of Eq. (7), and the second condition corresponds to the
inequality ε � κ2. Under these conditions, the incoherent
part of the dynamics is predominantly adiabatic since the

first nonadiabatic corrections scale like ε/g2 and are thus of
higher order.

We follow the procedure outlined in Ref. [33] and obtain
the master equation for the qubit density matrix ρ̂S = TrM[ρ̂],

∂t ρ̃S (t ) = −
∫ +∞

0
dτ {H̃S (t )H̃S (t − τ )ρ̃S (t )

− H̃S (t − τ )ρ̃S (t )H̃S (t )}CXX (τ, 0)

−
∫ +∞

0
dτ {ρ̃S (t )H̃S (t − τ )H̃S (t )

− H̃S (t )ρ̃S (t )H̃S (t − τ )}CXX (0, τ ) , (10)

where the details of the derivation are provided in
Appendix A. Equation (10) is reported in the interaction pic-
ture, where the operators Ã = H̃S and ρ̃ are related to the
operators in the laboratory frame by

Ã(t ) = Û †
S (t, 0)Â(t )ÛS (t, 0), (11)

and ÛS (t, 0) is the evolution operator of the qubit’s time-
dependent Schrödinger equation,

ÛS (t, 0) = T exp

[
− i

∫ t

0
dt ′ĤS (t ′)

]
, (12)

with T the symbol for time ordering. The scalar func-
tion CXX (t, t ′) is the autocorrelation function of the
observable X̂M,

CXX (t, t ′) = 〈X̃M(t )X̃M(t ′)〉
= Tr{eiĤMt X̂Me−ĤM(t−t ′ )X̂Me−iĤMt ′

ρ̂M} , (13)

with ρ̂M the density matrix of the meter. Since the meter’s
state is assumed stationary over the timescale of the qubit
evolution, CXX (t, t ′) = CXX (t − t ′, 0) = CXX (0, t ′ − t ).

We expand the evolution operator ÛS to first order in the
parameter ε/g2 to evaluate the integrals in Eq. (10). We ap-
proximate Eq. (12) by the expression

ÛS (t, t ′) = Û ad
S (t, t ′)[1 + V̂ (t, t ′)] + O(ε2/g4), (14)

where Û ad
S (t, t ′) is the evolution operator in leading order,

Û ad
S (t, t ′) =

∑
a=±

|a〉t t ′ 〈a|e−iμa (t,t ′ ), (15)

and is thus diagonal in the instantaneous eigenbasis. The
global phase factor μa(t, t ′) is the sum of the dynamic and
geometric components,

μa(t, t ′) =
∫ t

t ′
dτ [Ea(τ ) − iτ 〈a|ȧ〉τ ] . (16)

Operator V̂ (t, t ′) in Eq. (14) is of order ε/g2 and takes
the form

V̂ (t, t ′) = −α+−(t, t ′)|+〉t ′ t ′ 〈−| − H.c. , (17)

with the coefficient α+−(t, t ′) [3],

α+−(t, t ′) = 1

2

∫ t

t ′
dτ

gε

g2 + ε2τ 2
exp

[
i
∫ τ

t ′
du

√
g2 + ε2u2

]
,

and α−+(t, t ′) = −α∗
+−(t, t ′). In this procedure, we account

for nonadiabatic effects during the relaxation time of the meter
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by treating them to first order in the perturbative expansion.
See Appendix B for further details.

2. Master equation

The resulting master equation for the qubit density matrix
in the laboratory frame and for τM → 0 takes the form

∂t ρ̂ = Lad(t )ρ̂ , (18)

with generator

Ladρ̂ = −i[ĤS, ρ̂] − γ (t )(P̂−(t )ρ̂P̂+(t ) + P̂+(t )ρ̂P̂−(t )),

(19)

with operators P̂±(t ) = |±〉t t 〈±| projecting into the instanta-
neous basis with the time-dependent rate:

γ (t ) = G(0)(E+(t ) − E−(t ))2/2 .

The scaling factor G(0)/2 is the real part of the Fourier trans-
form �XX (ω = 0) of the meter’s autocorrelation function at
zero frequency:

�XX (ω) =
∫ +∞

0
dτ exp (iωτ )CXX (τ, 0) . (20)

Note that G(0) is here assumed to be positive, namely, the
bath correlation functions are of positive type, so γ (t ) > 0.
The quantum adiabatic master equation, Eq. (19), describes
an effective dephasing with time-varying rate γ (t ) in the in-
stantaneous eigenbasis of HS (t ). The dephasing rate decreases
with the instantaneous gap and is minimum at the anticrossing
point t = 0, where γ (0) = G(0)g2/2. We use thereafter the
notation γ0 ≡ γ (0) for quantifying the strength of dephasing.

We note that, for the specific model of Eq. (7),

G(0) = x2
0 (2n + 1)

κ

(κ/2)2 + ω2
c

, (21)

where the details of the derivation are reported in Appendix C.
The dephasing rate monotonously increases with x2

0 and with
the thermal occupation n. This term results in an imaginary
component of the gap between the instantaneous eigenstates,
analogously to the dynamics discussed in Ref. [34], whose
amplitude increases with the temperature. As we will argue
below, large reservoir temperatures result in lower infidelity,
and thus larger adiabatic transfer probability. This regime
corresponds to regions of Fig. 3 where the NM measure is
the smallest, namely, for κ/ωc > 0.3 and x0 < 0.5.

3. Adiabatic transfer in the Markovian regime

The master Eq. (19) was analyzed in Refs. [35,36], with
the noticeable difference that the dephasing rate was taken to
be constant. In Ref. [35], the asymptotic behavior T of the
infidelity was analytically determined when

√
ε � g, γ0 (see

also Refs. [37–40] for related work). In this limit, the infidelity
can be cast into the form

T = ε

2g2
Q

(
γ0

g

)
+ O

(
ε2

g2(γ 2
0 + g2)

γ 2
0

γ 2
0 + g2

)
, (22)

where Q is an analytic function [35]:

Q(x) = π

2

x(2 + √
1 + x2)√

1 + x2(
√

1 + x2 + 1)2
.

FIG. 4. Influence of the dephasing Lindbladian, Eq. (19), on the
evolution of the transition probability P for a finite time evolution and
different values of the ratio γ0/g between the dephasing rate and the
LZ coupling g. The curves are obtained by integrating numerically
Eq. (19) for the initial state |−〉ti over the finite time window [ti, t f ]
with t f = −ti = 5g/ε and g2/ε = 1. In all numerical calculations
here and later on, ε = 1.

At fixed sweeping ε, the behavior of the infidelity T is then
controlled by a competition between the gap g and the dephas-
ing rate γ0. One can especially notice that the first correction
to Eq. (22) exhibits a scaling with ε2 that echoes the one
observed for the transition probability for a Landau-Zener
model evolved on a finite time window with a linear ramp,
as in Eq. (4) [3]. In particular, when the dephasing rate γ0 	
g, then to leading order T � πε/(4γ0g). This indicates an
improvement of adiabaticity in the strong dephasing regime
and is akin to the so-called quantum Zeno effect. Indeed, as
each measurement projects the system onto an eigenstate of
the measured observable, if the measurement is made at a
fast frequency, the system does not have the time to evolve
away from the state it was projected onto, thus suppressing
the probability to tunnel toward another state.

We now analyze the behavior of the infidelity beyond
the regime of validity of Eq. (22) and study the competi-
tion between Hamiltonian dynamics and dephasing also for√

ε ∼ g, γ0. Figure 4 displays the dynamics of the transition
probability P as a function of time for several ratios γ0/g
and at fixed ε. The effects of dephasing are twofold: The
oscillations of P are damped down as γ0 increases, leading
to a smoother dynamics. The steady-state value is reached
for transfer times of the order of t f ∼ g/ε. Furthermore, the
final value of P decreases as the dephasing rate increases. For
sufficiently large ratios γ0/g, the infidelity P is substantially
reduced with respect to the value reached by the coherent
Landau-Zener dynamics.

We analyze the relative infidelity δT = T − TLZ resulting
from integrating Eq. (19). A negative value of this quantity
indicates that the effect of the dephasing favors the adiabatic
transfer with respect to the coherent Landau-Zener dynamics.
The relative infidelity is displayed in Fig. 5 as a function
of the effective dephasing rate, γ0/g, and of the adiabaticity
parameter, g2/ε. The transfer time is here half of the one in
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FIG. 5. Difference between the infidelity T and the Landau-
Zener prediction TLZ, δT = T − TLZ, as a function of g2/ε and γ0/g.
The curves show the level lines of the infidelity T , the attached
number reports the corresponding value. The infidelity T is deter-
mined by numerically solving Eq. (19) over the time interval [ti, t f ]
with t f = −ti = 5g/ε. The transition probability TLZ used to com-
pute δT is the transfer probability for the coherent dynamics at the
corresponding parameters. Note that the time interval over which the
system is evolved is proportional to g/ε.

Fig. 4. The behavior at γ0 = 0 is the prediction TLZ of the co-
herent Landau-Zener dynamics, where the infidelity decreases
as ε decreases. By adding dephasing, for any value of ε the
fidelity as a function of γ0 first becomes worse (δT > 0), then
improves (δT < 0). The difference δT highlights the param-
eter region where the QND coupling improves the protocol’s
fidelity at finite times: We observe δT < 0 for relatively large
values of ε, thus for relatively fast drives. In this regime,
dephasing suppresses tunneling to the higher energy state,
as visible from the level lines of the infidelity in Fig. 5. For
instance, an infidelity of 0.05 is found even for g2/ε < 1 by
tuning the dephasing rate γ0 to values γ0 > 10g.

Via the derivation of an adiabatic master equation, we
showed that the adiabaticity of the Landau-Zener dynamics is
enforced by dephasing effects in the instantaneous LZ basis of
the qubit. This dephasing mechanism is interpreted in terms of
the Zeno effect and leads to a fast convergence of the transition
probability P toward its asymptotic value.

IV. EXPERIMENTAL IMPLEMENTATIONS

The dynamics discussed so far requires the capability to
continuously tune the coupling between meter and qubit as
a function of time. The experimental realization of a such a
measurement protocol would require a continuous and per-
fect control over the parameters of the system over time,
which is a challenging task. In this section, we analyze the
efficiency of the protocol when the coupling with the meter
is implemented at certain instants of time. We first analyze
the effect of the QND coupling as a function of the repeti-
tion rate of the measurement during the dynamics, assuming
the capability to perfectly synchronize the measurement
with the Landau-Zener evolution. We then investigate the

FIG. 6. Evolution of the transition probability P for different
sampling times δt . The results are compared with the Landau-Zener
prediction (LZ) and the continuous QND measurement (QND). The
parameters are g2/ε = 1, ωc = g, κ = 2ωc, x0 = 10, and n = 0. The
oscillator states are truncated at maximum occupancy nmax = 75.

infidelity when instead there is an error in the implementa-
tion, corresponding to an uncertainty in the exact time of the
Landau-Zener evolution.

A. Stroboscopic QND measurement

We now analyze the effect of a pulsed dynamics, such that
the coupling with the meter is switched on at certain instants
of time during the dynamics. We model the coupling using the
Hamiltonian

Ĥ ′
QND(t ) �

∑
j

δ(t − jδt )x0(â + â†) ⊗ ĤS (t ) , (23)

where δt is the time interval between two successive pulses.
The effect of this discretized measurement is investigated
numerically, approximating the Dirac distribution δ by a short
pulse of duration TP = 1/x0. The outcome of these calcula-
tions is displayed in Fig. 6. The transition probability P as
a function of time exhibits cusps at the corresponding QND
pulse. Each of these pulses corrects the evolved state of the
spin and suppresses the transition probability, with an effi-
ciency that increases as 1/δt decreases. Note that few QND
measurements in the anticrossing region tend to increase the
fidelity of the process and suppress the LZ oscillations. Even
for sparse measurements, the infidelity can lie below the value
predicted for the bare Landau-Zener model.

B. Measurement errors

We now consider the possibility of errors in the pulsed
QND measurement. The error is modeled by a random time
shift in the qubit-meter coupling Hamiltonian, such that the
QND Hamiltonian is not synchronized with the time evolution
of the Landau-Zener Hamiltonian,

Ĥ ′′
QND(t ) �

∑
j

δ(t − jδt )x0(â + â†) ⊗ ĤS (t + t j ), (24)
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FIG. 7. Evolution of the transition probability P at g2/ε = 1 for (a) different standard deviations τ for a fixed sampling time εδt/g = 1 and
(b) for different sampling times δt at fixed standard deviation ετ/g = 0.1. The dashed lines correspond to the results for a perfect stroboscopic
measurement. All curves are computed with the parameters as in Fig. 6, and averaged over nit = 50 samples of time shifts. The curves also
include the error bars on the sample-averaged values of P. In some cases, the errors are such that the bars merge with the plot line.

where {t j} is a set of random variables uniformly distributed
over the interval [−√

3τ,+√
3τ ] and τ is the standard de-

viation of the probability distribution. Figure 7 shows the
evolution of the transition probability P for nit = 50 samples.
As visible in Fig. 7(a), for a fixed sampling frequency (here
εδ/gt = 1), the introduction of errors leads to only a moderate
increase of the infidelity, highlighting the robustness of the
stroboscopic measurement against errors. Figure 7(b) com-
pares the evolution of the transition probability for several
sampling frequencies at a fixed standard deviation (ετ/g =
0.1) with the case of a perfect measurement. One can observe
that the deviation from the ideal case is minimal for large
sampling frequencies and grows with the sampling frequency.
The asymptotic behavior of the infidelity remains compara-
ble with the ideal case as long as the standard deviation of
the time shift is well below the sampling time τ � δt . This
demonstrates the robustness of the protocol against moderate
parameter fluctuations.

V. CONCLUSION AND OUTLOOK

We have proposed a protocol that can enforce adiabaticity
in Landau-Zener dynamics by a QND type of setup. The QND
coupling we considered is time dependent and commutes with
the Landau-Zener Hamiltonian at the given time. In the limit
in which the meter instantaneously relaxes to its steady state,
the QND coupling realizes an effective dephasing of the qubit
in the instantaneous, adiabatic basis, thus suppressing diabatic
transitions for given transfer times. In this regime, the transfer
fidelity at finite times increases with the temperature of the
thermal bath, with which the meter equilibrates. This result is
consistent with studies on thermally assisted quantum anneal-
ing [41,42].

Interesting dynamics are found in the regime where the
meter’s relaxation time cannot be neglected over the char-
acteristic timescale of the qubit. By suitably choosing the
parameters, these dynamics perform an effective error correc-
tion by cooling the qubit to the lower instantaneous eigenstate,
thus realizing high-fidelity adiabatic transfer in relatively
short times. Previous work on Landau-Zener dynamics in
the presence of external baths identified the competition of
incoherent processes, which promote or suppress diabatic

transitions [43,44] and cast them in terms of interference
processes by the means of an elegant path-integral formula-
tion. Our study shows that the fidelity of the transfer can be
partially understood in terms of an effective gap induced by
the time-dependent QND coupling. Future work will focus on
analyzing the connection between this gap and the spectral
gap. One intriguing perspective is to be able to design an
effective gap for achieving high-fidelity adiabatic transfer by
means of an external environment.

The dynamics studied here is a realization of control of a
quantum system by means of driven-dissipative dynamics in
the spirit of Refs. [45,46]. It could be implemented in several
setups, such as a single trapped ion [47], a single trapped
atom inside a resonator [15,48], and a superconducting qubit
in circuit QED [49]. The QND type of Hamiltonian discussed
here can extend the protocol of Ref. [26] to tune the coupling
between meter and qubit as a function of time. Errors in real-
izing the stationary QND Hamiltonian have been discussed in
Ref. [26]. In the case here discussed, they are systematically
corrected by cooling generated by retardation effects in the
coupling with the meter. Cooling is, however, detrimental to
protocols that aim at realizing adiabatic transfer in excited
states. In this case, one shall work in the regime where the
coupling with the ancilla realizes an effective dephasing dy-
namics in the instantaneous eigenbasis.

In view of practical applications, we have further shown
that the requirement of continuous, time-dependent QND cou-
pling can be relaxed: Diabatic transitions can be suppressed
by performing a stroboscopic series of instantaneous QND
measurements during the dynamics. We have also included
the effect of the fluctuations in implementing the specific form
of the QND coupling and shown that the protocol is robust
against timing errors.

The adiabatic transfer can be further optimized by tailor-
ing the temporal variation of the Landau-Zener Hamiltonian
[50–52], and combining measurements with optimal con-
trol techniques [53]. Suppression of errors at faster tuning
rates can be studied beyond adiabatic perturbation theory
in the framework of quantum nonadiabatic master equa-
tions [54–56]. Future work will extend this protocol for
reservoir engineering fast adiabatic dynamics across gapless
points in many-body quantum systems.

033005-8



RESERVOIR-ENGINEERING SHORTCUTS TO … PHYSICAL REVIEW RESEARCH 4, 033005 (2022)

ACKNOWLEDGMENTS

We thank Jacek Dziarmaga, Rosario Fazio, Ronnie
Kosloff, and Marek Rems for their helpful insights. This work
was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation)–Project-ID 429529648 – TRR
306 QuCoLiMa (“Quantum Cooperativity of Light and Mat-
ter”), No. TRR 183 Entangled States of Matter, and by the
German Ministry of Education and Research (BMBF) via
the Projects NiQ (Noise in Quantum Algorithms) and Quan-
tera NAQUAS. Project NAQUAS has received funding from
the QuantERA ERA-NET Cofund in QuantumTechnologies
implemented within the European Union’s Horizon 2020 Pro-
gramme.

APPENDIX A: THE BORN-MARKOV APPROXIMATION

In the following, we will derive the Lindblad equation in
the case of a system coupled to a measurement apparatus
which performs nondemolition measurement.

The construction of the nonadiabatic master equation re-
quires some assumptions on the different energy and
timescales involved in the description of dynamics, starting
with the minimal gap g between the two energy branches. The
gap shall be compared with the rate at which the Hamiltonian
HS evolves, namely, ε. To ascertain the adiabaticity of the
coherent part of the dynamics for the LZ system, we shall
make sure that ε/g2 � 1. Under this condition, the incoherent
part of the dynamics is dominated by adiabatic mechanisms
since nonadiabatic effects scale like ε/g2. The derivation of
the adiabatic master equation will also require that the meter
relaxes at timescales τM over which one can consider the
Hamiltonian HS (t ) to be constant, resulting in ετ 2

M � 1.
Let us consider χ̂ , the density matrix representing the

two-level system and the measurement apparatus, such that
the density matrix of the system is obtained via the par-
tial trace of the states of the meter ρ̂(t ) = TrM[χ̂ (t )]. The
time evolution of the density matrix χ̂ is piloted by the
Liouville-von Neumann equation

d

dt
χ̂ = −i[ĤSM, χ̂ ], (A1)

where HSM is a Hamiltonian of the generic form

ĤSM = ĤS (t ) ⊗ 1̂M + 1̂S ⊗ ĤM + ĤS (t ) ⊗ X̂M. (A2)

Let us notice that we are actually treating an unusual case
where the Hamiltonian of the system is time dependent, and
so is the interaction term that couples the system to the meter,
via nondemolition measurement.

To treat the effects of this coupling on the dynamical prop-
erties of the system, we will place ourselves in the interaction
picture, thus isolating the interaction dynamics from the free
dynamics. In the interaction picture, we may define the family
of freely evolved operators Ã(t ) such that

Ã(t ) = Û †(t, t0)Â(t0)Û (t, t0), (A3)

where the free evolution operator U (t, t0) is defined
as the solution of the Schrödinger equation in the

noninteracting case

Û (t, t0) = T exp

[
− i

∫ t

t0

dt ′(ĤS (t ′) + ĤM)

]

= ÛS (t, t0) ⊗ ÛM(t, t0), (A4)

where T is the time-ordering operator.
The Liouville-von Neumann equation in the interaction

pictures is then modified, as terms describing the coherent
part of dynamics are eliminated by the application of the free
evolution operator, only leaving terms accounting for the inco-
herent dynamics. The equation of motion of the density matrix
can then be self-consistently expanded up to an arbitrary order

d

dt
χ̃ (t ) = −i[ṼSM, χ̃ (0)]

−
∫ t

0
dt ′[ṼSM(t ), [ṼSM(t ′), χ̃ (t ′)]], (A5)

with ṼSM = H̃S ⊗ X̃M being the interaction between the sys-
tem and the measurement device. Under the assumption that
the system is initially decoupled to the meter, tracing out the
meter will result on the vanishing of the first term in the
previous equation. The equation of motion for the reduced
density matrix then reads

˙̃ρ(t ) = −
∫ t

0
dt ′TrM{[ṼSM(t ), [ṼSM(t ′), χ̃ (t ′)]]}. (A6)

To proceed, we will need to make a first assumption on the
form taken by the full density matrix χ̃ .

Hypothesis 1: Assuming that the coupling between the
system and the meter is sufficiently weak to leave the state
of the meter globally constant over time, we may write the
density matrix as the product state of the system and the meter

∂t ˜χ (t ) = ρ̃(t ) ⊗ M̂0 + O(ṼSM). (A7)

Under this assumption, tracing out the meter leads to a
description of the incoherent dynamics in terms of the
time-correlation properties of the meter. Developing the two
commutators, one obtains the following master equation for
the evolution of the reduced density matrix:

∂t ρ̃(t ) = −
∫ t

0
dt ′{H̃S (t )H̃S (t ′)ρ̃(t ′)

− H̃S (t ′)ρ̃(t ′)H̃S (t )}CXX (t, t ′), (A8)

−
∫ t

0
dt ′{ρ̃(t ′)H̃S (t ′)H̃S (t ) (A9)

− H̃S (t )ρ̃(t ′)H̃S (t ′)}CXX (t ′, t ), (A10)

where CXX (t, t ′) = 〈X̃M(t )X̃M(t ′)〉 is the autocorrelation
function of the observable XM that couple the meter to the
system.

To accurately approximate the dynamics of the open sys-
tem S by a Markovian process, one has to assume the
timescale separation of the system and the meter or, in other
words, that the dynamics of the meter is much faster than the
one of the system. Therefore, the information transferred from
the system to the meter is quickly erased and has no backward
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effect on the dynamics of the system, then resulting in the loss
of memory that characterizes a Markovian time evolution.

Hypothesis 2: Assuming that the dynamics of the meter is
much faster than the one of the system, the correlations of the
meter are expected to decay sufficiently fast in time so we may
approximately treat the density matrix as a constant over the
integration time,

ρ̃(t ′) � ρ̃(t ), (A11)

in the integral term of Eq. (A10) whose upper bound can
be taken to infinity. After a change of variable (t ′ = t − τ )
and the application of the timescale separation approximation,
the quantum master equation now takes the form given in
Eq. (10).

Usually, assuming the weak coupling of the system and
its environment and timescale separation is sufficient to
transform this integro-differential equation into a Lindblad
equation. However, to perform the integrals, we have to make
further assumptions.

APPENDIX B: ADIABATIC EVOLUTION
APPROXIMATION

To give the quantum master equation the form of a
Lindblad equation, we will take advantage of the slow na-
ture of the dynamics of the system. Indeed, assuming that
the evolution of the system is adiabatic, we may provide an
approximate expression for the evolution operator US (t, t ′),
thus simplifying the calculations.

Hypothesis 3: At first order in the adiabatic expansion, the
evolution operator reads

ÛS (t, t ′) = Û ad
S (t, t ′)[1̂ + V̂ (t, t ′)] , (B1)

where the contribution at leading order reads

Û ad
S =

∑
a

|a〉t t ′ 〈a|eiμa (t,t ′ ) , (B2)

and the correcting term V̂ (t, t ′) takes the form

V̂ (t, t ′) = −
∑
a �=b

αab(t, t ′)|a〉t ′ t ′ 〈b| . (B3)

Both operators are here expressed in the basis of the in-
stantaneous eigenstates of the Hamiltonian ĤS (t ), such that
ĤS (t )|Ea(t )〉 = Ea(t )|Ea(t )〉. The scalar μa(t, t ′) is here the
phase accumulated in the time interval [t ′, t],

μa(t, t ′) =
∫ t

t ′
dτ [Ea(τ ) − iτ 〈a|ȧ〉τ ], (B4)

and the coefficients αab(t, t ′) in Eq. (B3) are expressed as

αab(t, t ′) =
∫ t

t ′
dτe−i(μb(τ,t ′ )−μa(τ,t ′ )

τ 〈a|ḃ〉τ . (B5)

Before applying this approximate expression in the study
of the quantum master equation, we will use the properties
of the evolution operator to formulate one last approxima-
tion. Indeed, the following reasoning, we will be brought to
encounter ÛS (t − τ, 0) = ÛS (t − τ, t )ÛS (t, 0). Yet, since the
meter is assumed to evolve much faster than the system, we
allow ourselves to assume that the Hamiltonian stays constant
over the time necessary for the correlations CXX to decay, we
may then state that

ÛS (t − τ, 0) � eiτ ĤS (t )Û ad
S (t, 0). (B6)

In what follows, we detail how the adiabatic approximation
modifies the first of the integral terms and then generalize it
to all the right-hand side of Eq. (10). The first integral terms
then becomes

∫ +∞

0
dτÛ ad†

S (t, 0)e−iτ ĤS (t )ĤS (t )eiτ ĤS (t )Û ad
S (t, 0)ρ̃(t )H̃S (t )CXX (τ, 0)

�
∑
a,b

eiμab(t,0)|a〉t (HS (t ))ab t 〈b|ρ̃(t )H̃S (t )
∫ +∞

0
dτeiτ [Eb(t )−Ea (t )]CXX (τ, 0)

�
∑

a

Ea(t )|a〉t t 〈a|ρ̃(t )H̃S (t )
∫ +∞

0
dτCXX (τ )

�
∑
a,b

�XX (0)Ea(t )Eb(t )|a〉t=0 t=0〈a|ρ̃(t )|b〉t=0 t=0〈b|,

where μab(t, 0) = μa(t, 0) − μb(t, 0) and the matrix el-
ement (HS (t ))ab = 〈a(t )|HS |b(t )〉 = Ea(t )δab. Furthermore,
we note the spectral function of the autocorrelation �XX (ω) =∫ +∞

0 dτ exp (iωτ )CXX (τ, 0). Following the same path for the
other integral terms, the quantum master equation then takes
the compact form

∂t ρ̃ =
∑
a,b

�XX (0)Ea(t )Eb(t )P̂a(t )[ρ̃(t ), P̂b(t )] + H.c., (B7)

where P̂a(t ) = |a(t )〉〈a(t )| is the projector at time t onto the
eigenstate labeled a.

From this point, we can return to the Schrödinger pic-
ture and recast this quantum master equation into the form
of a Lindblad equation describing dephasing mechanisms.
Using the relationship ρ̃(t ) = Û †

S (t, 0)ρ̂(t )ÛS (t, 0), the left-
hand side of Eq. (B7) transforms back into the Liouville-von
Neumann part of the Lindblad equation:

ÛS (t, 0)∂t ρ̃Û †
S (t, 0) = ∂t ρ̂ + i[ĤS (t ), ρ̂(t )]. (B8)
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The application of the evolution operator to the right-hand
side of Eq. (B7), on the other hand, results in bringing the
projectors Pa to time t ,

∂t ρ̂ = −i[ĤS (t ), ρ̂(t )]

+
∑
a,b

�XX (0)Ea(t )Eb(t )P̂a(t )[ρ(t ), P̂b(t )] + H.c.,

(B9)

where the spectral function �XX (0) can be split into two
different contributions �XX (0) = 1

2 G(0) + iS(0). both defined
from the full Fourier transform of the autocorrelation function

G(ω) =
∫ +∞

−∞
dτeiωτCXX (τ, 0), (B10a)

S(ω) =
∫ +∞

−∞

dω′

2π
G(ω′)P

(
1

ω − ω′

)
, (B10b)

where P is Cauchy principal value.
In the case of the Landau-Zener model, the spectrum is

reduced to only two levels E±(t ), such that E+(t ) = −E−(t ).
The quantum master equation then takes the form of Eq. (19).

APPENDIX C: LINDBLAD EQUATION
IN THE ADIABATIC LIMIT

We will discuss in the following the Lindblad equation in
its adiabatic regime, namely, in the limit when the damp-
ing rate κ is large, our purpose being to ascertain the fact
that dephasing effects then become predominant and that
the behavior of the Lindblad equation is consistent with the
predictions of the adiabatic master equation for the qubit.
The correlation function associated with the observable X̂ =
x0(â + â†) can be computed in the case of the damped har-
monic oscillator described by the Lindblad equation:

∂t ρ̂ = −i[ωcâ†â, ρ̂] + κ (n + 1)

(
âρ̂â† − 1

2
{â†â, ρ̂}

)

+ κn

(
â†ρ̂â − 1

2
{ââ†, ρ̂}

)
. (C1)

The derivation of the correlation function relies on the decom-
position of the density matrix in the right and left eigenvectors
of the Liouvillian superoperator ρλ and ρ̌λ, respectively, such
that Lρλ = λρλ and ρ̌λL = λρ̌λ, with Tr{ρ̌λρλ} = δλ,λ′ . This
decomposition is known for Eq. (C1) [27,57].

The correlation function that we defined as CXX (t, t ′) =
〈X (t )X (t ′)〉 is expressed in terms of averages over the
equilibrium state of Eq. (C1), namely, the thermal state R0 =
exp(−βωca†a)/Z . The nonvanishing contributions of the cor-

FIG. 8. Asymptotic infidelity T as a function of the dephasing
rate γ0. Fixing the values of g2/ε = 1, x0 = 1, ωc = g, and κ , the de-
phasing rate at anticrossing γ0 is tuned by changing the temperature,
which results in a shift of the vibrational occupancy n.

relation function then lead to the form

CXX (t, t ′) = 〈x2
0 (â(t ) + â†(t ))(â(t ′) + â†(t ′))〉

= x2
0 (Tr{â†(t )â(t ′)R̂0} + Tr{â(t )â†(t ′)R̂0}) .

Using the completeness relation of the eigenbasis
∑

λ ρλρ̌λ =
1, we decompose the two contributions of the correlation
function as

Tr{â†(t )â(t ′)R̂0} =
∑

λ

Tr{â†e(t−t ′ )Lρλ}Tr{ρ̌λâR̂0},

where trace is performed over the basis of the coherent states.
Due to orthogonal properties of the Laguerre polynomial
involved in the eigenoperators of the Liouvillian, all the con-
tributions in the sum vanish except for the one corresponding
to (k = ±1, n = 0), leading to the simple expression for the
correlation function:

CXX (t, t ′) = x2
0 e−κ (t−t ′ )/2

(
(n + 1)e−iωc (t−t ′ ) + neiωc (t−t ′ )) .

As a result, we obtain that the real part of the correlation
function at frequency ω = 0 reads

G(0)

2
= x2

0 (2n + 1)
κ/2

(κ/2)2 + ω2
c

, (C2)

from which can be deduced the value of γ0, the dephasing
rate at the anticrossing point. The asymptotic value of the
infidelity T computed via the adiabatic master equation and
the Lindblad equation is displayed in Fig. 8 and shows a
consistent behavior of infidelity in both cases: T increases for
weak values of the dephasing rate before reaching a maximum
and decreasing.
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