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Optimizing for an arbitrary Schrödinger cat state
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We derive a set of functionals for optimization towards an arbitrary cat state and demonstrate their application
by optimizing the dynamics of a Kerr-nonlinear Hamiltonian with two-photon driving. The versatility of our
framework allows us to adapt our functional towards optimization of maximally entangled cat states, applying it
to a Jaynes-Cummings model. We identify the strategy of the obtained control fields and determine the quantum
speed limit as a function of the cat state’s excitation. Finally, we extend our optimization functionals to open
quantum system dynamics and apply it to the Jaynes-Cummings model with decay on the oscillator. For strong
dissipation and large cat radii, we find a change in the control strategy compared to the case without dissipation.
Our results highlight the power of optimal control with functionals specifically crafted for complex physical tasks
and the versatility of the quantum optimal control toolbox for practical applications in the quantum technologies.
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I. INTRODUCTION

Schrödinger cat states [1,2] constitute an important set
of quantum states, which have various applications in quan-
tum communication [3], computation [4–7], and sensing [8].
In particular, they have been attracting a great deal of at-
tention for the implementation of hardware-efficient qubit
encodings [5,9]. Recently, these include photonic [10] and
superconducting quantum information [6,7] architectures due
to their intrinsic fault tolerance and suitability for quantum
error correction. Various approaches have been proposed and
implemented for their creation, involving, e.g., a set of fun-
damental logical gates [11,12], homodyne detection [13,14],
adiabatic protocols [15,16], or quantum reservoir engineering
[17,18]. Many of these approaches suffer from a long protocol
time which, in turn, limits the speed in quantum information
applications and makes the cat-state generation susceptible to
decoherence.

A powerful tool to obtain fast and robust state preparation
protocols is quantum optimal control theory [19,20]. It aims
to determine suitable external controls for steering a physical
system towards a particular goal, often by employing iterative
numerical algorithms. The success of such algorithms cru-
cially depends on choosing an appropriate optimization func-
tional, i.e., a figure of merit encoding the optimization success
by a single real number. An obvious choice for state-to-state
optimizations is the overlap between the state generated by
the optimized pulse and the target state. Such functionals
have also been successfully employed for optimal control
of cat state generation [21–23]. State overlap functionals
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only allow for optimization towards a single, specific state
whereas in many applications it is often sufficient to obtain
any cat state. The actual optimization target is then a set of
states and not a single state. Since the goal of the optimization
is encoded in the functional’s extremal values [24], tailoring
the optimization functional to the underlying task helps to
represent the physical target as faithfully as possible. This
allows for maximal flexibility in finding optimal solutions
which might be missed by too restrictive functionals. Such
specifically crafted functionals for complex optimization tasks
have proven to be very successful, e.g., in the optimization of
individual optical cycles in laser cooling of molecules [25]
or the optimization towards sets of entangling quantum gates
[26,27] instead of specific gates.

Here we derive an optimization functional which allows
for optimization towards the entire set of cat states instead of
only a specific element. By engineering a set of functional
terms, which individually check for all desired properties of
the target state, we are able to construct a composite functional
which takes on its extremal, optimal value if and only if a
cat state is obtained. To illustrate our functional, we show its
application in creating cat states in a simple Kerr-nonlinear
oscillator with two-photon driving.

We further demonstrate the power of our framework by
studying the optimization of maximally entangled cats in a
bipartite system. Such states are important in quantum sensing
applications [8,28] or to implement so-called flying qubits
[29]. To perform optimizations for such a problem, we refine
our functional such that it also checks whether maximal en-
tanglement between the two subsystems is generated at final
time. Optionally, the radius of the cat, i.e., the displacement
of the corresponding coherent state, may also be prescribed.
This option is particularly relevant when the system is subject
to decay because the maximally achievable radius will be
determined by a balance between the coherent mechanism that
allows for preparing the cat, e.g., a Kerr non-linearity, and the
decay [30].
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Finally, in the present era of noisy quantum devices, it
is imperative to also account for the sources of noise when
deriving pulse shapes for practical applications. Decay and
dephasing processes due to couplings between the quantum
system and its environment constitute a major such source,
and much effort has been devoted to adapting optimal control
theory to open quantum systems [24]. To account for this
impact during the optimization and search for control strate-
gies that can avoid or mitigate this effect, it is imperative to
include the effect of the environment in the model and adapt
the optimization functional. We do this here by rewriting our
optimization functional in the density matrix formalism and
employ a Markovian master equation to describe the noisy
quantum dynamics.

The paper is organized as follows. We begin in Sec. II by
briefly introducing cat states as well as the basic framework
of optimal control theory, using Krotov’s algorithm as an
example. At the end of Sec. II, we present our construction of
the functional for optimization towards arbitrary cat states and
arbitrary maximally entangled cat states as well as the neces-
sary modifications when employing our functionals for open
quantum systems. Sec. III illustrates the application of the cat-
state functional for optimization in a Kerr-nonlinear oscillator.
In Sec. IV, we present results for an example optimization to-
wards maximally entangled cat states in a Jaynes-Cummings
model for both coherent and dissipative dynamics. Finally, we
also discuss what insight can be drawn from the optimization
results regarding the role of the excitation of the cat state and
the quantum speed limit and compare the performance of the
optimized pulses we obtain with and without taking the decay
into account. We conclude in Sec. V.

II. FRAMEWORK FOR TARGETING CAT STATES

Cat states are defined as a superposition of two coherent
states |α〉 where the complex-valued parameter α describes
the displacement in phase space, respectively, the excitation
of the coherent states with respect to the ground state |0〉 [1,2].
A general form of a cat state is given as

|ψcat〉 = 1

Nϕ

(|α〉 + eiϕ |−α〉), (1)

with Nϕ =
√

2(1 + e−2|α|2 cos(ϕ)) accounting for normaliza-
tion. In the following, we refer to the relative phase ϕ between

the two coherent states, as a superposition phase. Note that it
is also possible to consider superpositions of more than two
coherent states, which are commonly referred to as multicom-
ponent cat states [31–33]. However, we use the term cat state
exclusively for two-component superpositions as the focus of
our paper.

In this section, we derive a functional framework for op-
timizing towards an arbitrary cat state. Commonly used state
distance measures such as the fidelity or trace distance are un-
suitable for this task since they target specific states whereas
we aim to optimize towards a property which can be fulfilled
by many different states. Before deriving the functionals, we
briefly review Krotov’s method [34–36] which we employ for
all numerical optimizations performed in this paper.

A. Optimization algorithm

Krotov’s method [34–36] is an iterative, monotonically
convergent optimization algorithm using gradient information
to achieve convergence. The optimization target typically con-
sists of two parts,

J = JT [ψ (T )] +
∫ T

0
Jt [ψ (t ), ε(t )] dt, (2)

where we assume a control problem described by a single
Hilbert space state ψ (t ) and a single control field ε(t ), com-
monly realized by external electromagnetic pulses. The first
part of JT depends only on the state at final time T and encodes
the target to be reached at the end of the control pulse, whereas
the intermediate-time functional Jt describes further costs. In
Krotov’s algorithm, the following cost functional is usually
employed:

Jt [ψ (t ), ε(t )] = λa

S(t )
[ε(t ) − εref (t )]2, (3)

with the shape function S(t ) ensuring that the optimized field
is smoothly switched on and off. The reference field εref (t ) is
commonly taken to be the field from the previous iteration.
This choice allows the parameter λa to tune the step size of
the optimization algorithm by penalizing large changes in the
control field between iteration steps [37].

The update equation for the pulse in the iteration k + 1 of
the algorithm is given by [36–41]

ε(k+1)(t ) = ε(k)(t ) + S(t )

λa
Im

{
〈χ (k)(t)|∂Ĥ

∂ε

∣∣∣∣
ε(k+1) (t)

|ψ (k+1)(t)〉
}

and (4)

ε(k+1)(t ) = ε(k)(t ) + S(t )

λa
Re

{〈
χ̂ (k)(t ),

∂L
∂ε

∣∣∣∣
ε(k+1) (t )

ρ̂ (k+1)(t )

〉}
, (5)

for coherent and dissipative dynamics, respectively. For the
dissipative case, we use density matrices instead of Hilbert
space states to describe the state of our system and we assume
that the time evolution is generated by a Liouvillian super-
operator L—a detailed discussion of this framework in the
context of Krotov’s method can be found in Refs. [39,41]. ∂Ĥ

∂ε

is the derivative of the Hamiltonian with respect to the control

pulse ε, while ∂L
∂ε

describes the derivative of the Liouvillian
superoperator L with respect to the pulse.

The |χ (k)(t )〉 are often called costates. They are propagated
backward in time according to the equation of motion

d

dt
|χ (k)(t )〉 = − i

h̄
Ĥ [ε(k)(t )] |χ (k)(t )〉 , (6)
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with the boundary condition

|χ (k)(T )〉 = −∇〈ψ |JT |t=T . (7)

The states |ψ (k+1)(t )〉 are obtained by solving the equation of
motion

d

dt
|ψ (k+1)(t )〉 = − i

h̄
Ĥ [ε(k+1)(t )] |ψ (k+1)(t )〉 , (8a)

|ψ (k+1)(0)〉 = |ψ0〉 , (8b)

where |ψ0〉 is the initial state of the system.
Similarly to Eqs. (6)–(8), equations of motion for the dis-

sipative dynamics, governed by L, are given as

d

dt
ρ̂ (k+1)(t ) = L[ε(k+1)(t )]ρ̂ (k+1)(t ) (9a)

d

dt
χ̂ (k)(t ) = −L†[ε(k)(t )]χ̂ (k)(t ), (9b)

ρ̂ (k+1)(0) = ρ̂0, (9c)

χ̂ (k)(T ) = −∇ρ̂JT |ρ̂ (k) (T ), (9d)

where L[ε(k)(t )] is the Liouvillian with the set of controls
ε(k)(t ) for the kth iteration and the initial state ρ̂0.

Together, these equations define the iterative optimization
algorithm which is started by picking a guess pulse ε(0)(t ).

B. Functional targeting a cat state

To construct a final time functional which allows for opti-
mizing towards the set of cat states described by Eq. (1), we
use the fact that the variance of an operator Ô in a state |ψ〉,


ψ Ô = 〈ψ |Ô†Ô|ψ〉 − |〈ψ |Ô|ψ〉|2, (10)

is zero if and only if |ψ〉 is an eigenstate of that operator.
Coherent states are eigenstates of the annihilation operator,
â |α〉 = α |α〉. As a result, all cat states as defined in Eq. (1)
are eigenstates of â2. Due to this property, we use the variance
of â2,

Jcs(ψ ) = 
ψ â2 = 〈ψ |(â†)2â2|ψ〉 − |〈ψ |â2|ψ〉|2, (11)

as a starting point for the functional. However, cat states are
not the only eigenstates of â2, such that a vanishing variance is
a necessary but not sufficient condition to identify an element
from the set of cat states. Rather, all states of shape

|ψa2〉 = c0 |α〉 + c1 |−α〉 (12)

with |c0|2 + |c1|2 + 2 Re{c∗
0c1} 〈α| − α〉 = 1 and ci ∈ C, lead

to Jcs(ψ ) = 0. To obtain an expression whose minimal value
is both necessary and sufficient to identify a cat state, we
construct a composite functional with multiple terms:

JT(ψ ) = Jcs(ψ ) + Jcat (ψ ). (13)

The first term is minimized if and only if the state is a su-
perposition of |α〉 and |−α〉, cf. Eq. (12), and the second
term attains its minimum if and only if the desired subset of
these superposition states is reached. We refer to Jcs(ψ ) as
the coherent state term and to Jcat (ψ ) as the cat term due to
their purpose in the overall functional. The specific form of
the latter depends on which set of states should be targeted.

For example, optimizing towards the set of even and odd
cat states,

|ψ±
cat〉 ∝ |α〉 ± |−α〉 , (14)

respectively, can be achieved by choosing Jcat as

Jcat,±(ψ ) = 1 − |〈ψ |�̂±|ψ〉|2, (15)

where

�̂+ =
∑
j even

| j〉〈 j| , �̂− =
∑
j odd

| j〉〈 j| (16)

are the projectors onto the eigenspaces of the parity operator.
�̂+ and �̂− project onto even and odd cat states with a
superposition phase ϕ of 0(even) and π (odd), respectively,
while not imposing any restriction on the value of α.

Another choice of Jcat which allows us to also leave the
superposition phase ϕ free, is

Jcat,ϕ (ψ ) = (ā∗ 〈ψ |â|ψ〉 + ā 〈ψ |â†|ψ〉)2, (17)

with ā ≡
√

〈ψ | â2 | ψ〉. We prove in Appendix A, that
Jcat,ϕ (ψ ) is indeed minimal if and only if |c0|2 = |c1|2 in
Eq. (12). With this, the functional term does not impose any
restrictions on ϕ and allows to optimize towards the general
set of cat states defined in Eq. (1).

A property shared by the functional terms in Eqs. (11) and
(17) is that their value is strongly suppressed for |α| → 0.
This is due to the summands in both terms being proportional
to |α|4 and thus tending towards zero as |α| → 0. Therefore,
the functional value is reduced for smaller values of α. Such
a behavior leads to an artificial pull towards small values of
|α|, which can be problematic since many applications of
cat states rely on a large displacement of the two coherent
states in phase space, corresponding to larger |α|. Examples
for benefits of large displacements are increased sensing accu-
racy [4] or an improved robustness against errors in quantum
information applications [42]. The tendency towards small |α|
can be amended by normalizing the coherent state term,

Jcs(ψ ) = 1 − |〈ψ |â2|ψ〉|2
〈ψ |(â†)2â2| ψ〉 , (18)

and the cat term for arbitrary superposition phases:

Jcat,ϕ (ψ ) = 〈ψ |â|ψ〉
ā

+ 〈ψ |â†|ψ〉
ā∗ . (19)

For the optimizations presented below, we always use the
normalized expressions defined in Eqs. (18) and (19).

C. Functional targeting an entangled cat state

The cat-state functionals can be further adapted to more
complex optimization targets. In this section, we show how to
extend our framework to target maximally entangled cat states
in a bipartite system. Specifically, we consider a harmonic
oscillator (HO) coupled to an atom described as a qubit—an
ubiquitous physical setup in the field of cavity quantum elec-
trodynamics and circuit quantum electrodynamics [2]. The
corresponding optimization targets are given by states of the
form

|cat〉 = 1√
2

(|b+〉 ⊗ |ψ+
cat〉 + |b−〉 ⊗ |ψ−

cat〉), (20)
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where |ψ±
cat〉 is defined in Eq. (14) and |b±〉 denotes an arbi-

trary orthonormal basis of the qubit. In the spirit of allowing
maximal flexibility, we again aim to derive a functional to
optimize towards arbitrary maximally entangled cat states,
i.e., the entire set of such states. In particular, we do not
want to impose any restrictions on the basis states of the qubit
involved in the superposition. However, if a specific basis on
the qubit is desired, the functional can be easily adapted by
introducing an additional term to the optimization functional.
For example, the parity operators can be employed to project
out one of the two summands constituting the entangled cat
state in Eq. (20). Then, it is straightforward to fix the state
|b±〉 by calculating the overlap with the desired basis state.

To generalize the final time functional, Eq. (13), to an en-
tangled cat state in a bipartite system, we modify the operator
used to calculate the variance:

â → Â ≡ 1̂ ⊗ â. (21)

Thus, the coherent state term is replaced by

J̃cs() = 
 Â2. (22)

Similar to the discussion in Sec. II B, it is insufficient to use
only the coherent state functional J̃cs() since it takes on its
minimal values not only for the desired set of states defined in
Eq. (20) but for a larger set of states given by

|ent〉 = d0(|g〉 ⊗ |ψ0,a2〉) + d1(|e〉 ⊗ |ψ1,a2〉), (23)

with |ψj,a2〉 being eigenstates of â2 [cf. Eq. (12)] and di ∈ C
with |d0|2 + |d1|2 = 1. To amend this, we once again con-
struct a composite functional, adding an additional term to
restrict the set of states to exactly those of the form of |cat〉.
We accomplish this by exploiting the fact that the targeted
states |cat〉 are maximally entangled. This means that the
reduced states of the HO, respectively, the qubit, take on the
minimal purity value [43] of P = 0.5. Since this property
identifies the presence of maximal entanglement, the purity
of the reduced state is a suitable addition as a part of the total
optimization functional for our purposes. Note that the more
straightforward choice of using the von Neumann entropy as a
measure for entanglement cannot be used in the functional. Its
derivative with respect to 〈ψ |, which is needed for the calcu-
lation of the costates, cf. Eq. (7), exhibits singularities, which
can easily lead to numerical instabilities. For this reason, we
employ the following cat term tracking the subsystem purity:

Jcat () = 2Tr
(
ρ̂2

HO

) − 1 = 2Tr
(
ρ̂2

qubit

) − 1, (24)

where ρ̂HO = Trqubit[ρ̂] and ρ̂qubit = TrHO[ρ̂]. Trqubit[·] and
TrHO[·] are the partial traces corresponding to the qubit and
the HO, respectively. Note that we have used the fact that
ρ̂ is a pure state in the second equality. This assumption is
valid for coherent dynamics. We introduce an extension of our
formalism to dissipative dynamics in the next section. Fur-
thermore, as is commonly done in optimal control, we have
renormalized Jcat () such that it takes on values between zero
and one. For the cat term in Eq. (24), we explicitly calculate
the costates in Appendix B.

The cat term in Eq. (24) ensures both that the eigenstates of
â2, |ψj,a2〉 in the entangled cat state superposition are orthogo-
nal to each other, i.e., 〈ψ0,a2 |ψ1,a2〉 = 0, and that the prefactors

in Eq. (23) are the same, i.e., |d0| = |d1|. Thus, the combined
functional,

JT () = J̃cs() + Jcat (), (25)

takes on its minimal value only for states

|ent〉 = 1√
2

(|b0〉 ⊗ |ψ0,a2〉 + |b1〉 ⊗ |ψ1,a2〉), (26)

with 〈ψ0,a2 |ψ1,a2〉 = 0 and |b j〉 being arbitrary orthogonal
basis states of the qubit. Indeed, the states in Eq. (26)
are equivalent to those in Eq. (20), which we prove in
Appendix C.

D. Dissipation adapted functional

As in the previous section, optimization will target an en-
tangled cat state:

|cat〉 = 1√
2

(|b+〉 ⊗ |ψ+
cat〉 + |b−〉 ⊗ |ψ−

cat〉). (27)

When considering open system evolution, we need to adapt
the optimization functional derived in Sec. II C to density
operators. The coherent state term Jcs is simply defined in
terms of the variance. For open quantum systems, it becomes

Jcs(ρ̂) = Tr[(Â†)2Â2ρ̂] − |Tr[Â2ρ̂]|2, (28)

where Â ≡ 1̂ ⊗ â. Using the definition of the partial trace, this
is equivalent to

Jcs(ρ̂ ) = Tr[â2ρ̂HO(â†)2] − |Tr[â2ρ̂HO]|2, (29)

where ρ̂HO = Trqubit[ρ̂] is the reduced state of the HO. Analo-
gously to Sec. II B, the coherent state term can be normalized
to counter the tendency towards |α| → 0:

Jcs(ρ̂) = 1 − |Tr[â2ρ̂HO]|2
Tr[â2ρ̂HO(â†)2]

. (30)

Finally, Jcat ensures equal weights in the superposition
Eq. (20), which in Sec. II C is achieved by making use of the
subspace purity. This cannot be so straightforwardly gener-
alized to open system evolution. When optimizing coherent
dynamics, the purity of either of the subsystems suffices to
determine if the final state is maximally entangled. However,
in case of nonunitary evolution, the subsystem purity is not
only reduced by entangling the two systems but also decreases
due to dissipation. This can, for example, lead to different
values for the two subsystem purities. We thus express Jcat (ρ̂)
in terms of the mutual information which is symmetric and, in
general, defined as

I (HO:qubit) = S(ρ̂HO) + S(ρ̂qubit ) − S(ρ̂ ), (31)

with S(ρ̂) the von Neumann entropy, S(ρ̂) = −Tr[ρ̂ ln ρ̂]. We
use the mutual information to assess the correlation of the op-
timized state which helps to steer the optimization towards our
target state even in the early stages of the optimization when
purity is low. Moreover, the mutual information takes on its
maximal value for our maximally entangled target states and
for pure states it is proportional to the entanglement entropy
[44]. Similar to the coherent case, the von Neumann entropy
is inconvenient since the derivative of S(ρ̂), which is needed
for calculation of costate in Eq. (9d), is not always defined.
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To avoid this numerical problem, we use the linear entropy
[45,46] instead:

Slin(ρ̂) = 1 − P (ρ̂) = 1 − Tr[ρ̂2]. (32)

Accounting for the fact that all terms in the final time func-
tional will be minimized, we obtain

Jcat (ρ̂ ) = 1 − (Slin(ρ̂HO) + Slin(ρ̂qubit ) − Slin(ρ̂ ))

= P (ρ̂HO) + P (ρ̂qubit ) − P (ρ̂), (33)

replacing Eq. (24) in the presence of dissipation.

III. OPTIMIZATION RESULTS FOR A KERR-NONLINEAR
RESONATOR

To demonstrate the application of the functional con-
structed in Sec. II B, we consider a Kerr-nonlinear resonator
with two-photon driving. In the rotating frame, it reads

ĤKerr/h̄ = −Kâ†â†ââ + ε(t )â2 + ε∗(t )(â†)2, (34)

where K is the strength of the Kerr nonlinearity and ε(t ) is
the complex-valued amplitude of the two-photon drive. This
Hamiltonian has been realized experimentally via coupled
Josephson junctions [18]. In this setting, various protocols
exist for the generation of cat states using this [47] or similar
Hamiltonians [48,49]. The set of reachable cat states in this
system is limited by the two-photon drive in Eq. (34) and
depends on the initial state since the driving only allows
for direct transfer between next-nearest energy levels, i.e.,

n = ±2. Therefore, when starting in the ground state |0〉,
it is only possible to reach even-parity states. This means that
only even cat states corresponding to a superposition phase
ϕ = 0 are reachable. If the initial state is not an element of
the even-parity subspace, then even cat states are unreachable,
as transitions between the two parity subspaces are forbidden
under two-photon driving.

We start by comparing the performance of the state-to-state
functional with the cat-state functionals for the initial state
|ψ0〉 = |0〉. For the former optimization, we use the state-to-
state functional,

Jss(ψ (T )) = 1 − |〈ψ (T )|ψtgt〉|2, (35)

with the target state being an even cat state |ψtgt〉 = |ψ+
cat〉,

similar to Ref. [21]. In the following, we present results for
α = 1.5, but optimizations for different α yield similar results.
From the ground state, the target states defined for the state-
to-state functionals are reachable with the two-photon drive
added to the Kerr Hamiltonian. As expected, we find that the
amount of iterations required in the optimization algorithm
depends on the chosen cat state functional Jcat. While the
cat-state functional optimizing towards an even cat state, as
defined in Eq. (15), converges after around the same amount of
iterations as the state-to-state functionals, Jcat,ϕ [cf. Eq. (17)]
takes about five times longer to converge.

To quantify the distance between the optimized states and
the set of cat states, we define the cat infidelity to be the
smallest infidelity between the final state and any element of
the cat state set,

Icat (ψ ) = min
|φ〉∈{|ψcat〉}

1 − F (φ,ψ ), (36)

FIG. 1. Comparison of the optimization results for two different
functionals. The plot shows the Wigner distribution of the final states
obtained with the cat-state functional described in Sec. II in (a) and
with the state-to-state functional [Eq. (35)] in (b).

where we use the overlap

F (φ,ψ ) = |〈φ|ψ〉| (37)

as the state fidelity as defined in Ref. [50] and {|ψcat〉} is the
set of all cat states, which are described by Eq. (1). Using this
definition, we obtain a cat infidelities <5 × 10−4 for all states
optimized with the different functionals.

Next, we compare the performance of a naive state-to-state
optimization with our cat-state optimization for the initial
state |ψ0〉 = 1√

2
(|0〉 + |1〉). Since the initial state |ψ0〉 is not

of even parity, it cannot evolve into an even cat state under
two-photon driving. For the latter optimization, we use the
cat-state functional from Sec. II B with the cat term Jcat chosen
as in Eq. (17), targeting an arbitrary element from the cat state
set with an arbitrary superposition phase.

Figure 1 shows the Wigner distribution of the final states
after optimization with both functionals. While the optimiza-
tion result for the cat state functional [Fig. 1(a)] exhibits the
classical phase space structure of a cat state, i.e., two coherent
states with interference fringes in between them, the results
of the state-to-state functional [Fig. 1(b)] do not resemble a
cat state. For all calculations, we used a Kerr nonlinearity of
K = 2π × 0.05 MHz and a pulse duration of T = 0.5 × 2π

K =
10 µs. Furthermore, we observe that the optimized pulses we
obtain via the cat-state functional have a spectral width which
does not exceed 400 K . Note that the linear frequency contri-
bution of the Hamiltonian ω, which we omit in the rotating
frame, is usually much larger than the nonlinearity, ω

K ≈ 103,
cf. for example Ref. [6]. Using this ratio, we find that the
frequency of the counter-rotating terms is about ten times
greater than the aforementioned spectral width of our pulse.
This confirms that we solidly stay in the regime where the
rotating-frame expression in Eq. (34) remains valid.

Using Eq. (36) for the states shown in Fig. 1, we ob-
tain a cat infidelity of ≈0.004 for the optimization with the
cat-state functional and ≈0.235 for the naive state-to-state
functional approach. This confirms that the state obtained with
the cat-state functional is much closer to a cat state than the
result achieved with the state-to-state functional. This further
elucidates that targeting even cat states via a state-to-state
functional for this Hamiltonian can only succeed when start-
ing from an even initial state, as discussed earlier.

Note that for the mixed parity initial state, we need about
one order of magnitude more iterations to reach convergence
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compared to the even parity initial state |ψ0〉 = |0〉 described
above. This shows that more difficult optimization goals and
more powerful optimization functionals often come at the
price of higher numerical cost. However, since the state-to-
state functional fails entirely for the mixed-parity initial state,
this increased cost is well worth it.

Our results illustrate that the success of a naive state-
to-state optimization hinges critically on the choice of the
target state and can completely fail if, e.g., the symmetry
of the system is not properly considered. Although it would
be possible to amend such issues by sampling the parameter
space of cat states and perform optimizations until success
is achieved for some set of parameters, such an approach
would be numerically very expensive. In contrast, using the
functional introduced in Sec. II allows for a maximally general
optimization target and thus makes scanning of the parameter
space completely obsolete.

IV. OPTIMIZATION TOWARDS ENTANGLED CAT STATES
IN A BIPARTITE SYSTEM

In this section, we apply the functional from Secs. II C and
II D to a system consisting of a HO coupled to a qubit. One
example for such a model is the dipolar transition between
two circular Rydberg states interacting with a microwave cav-
ity mode, which was realized in an experimental setup by
Raimond and coworkers [2,51]. For simplicity, we model this
system by a resonant Jaynes-Cummings-Hamiltonian in the
interaction picture. After applying the rotating wave approxi-
mation, the Hamiltonian is given by

ĤJC/h̄ = g(σ̂+ ⊗ â + σ̂− ⊗ â†) + ε∗(t )σ̂− ⊗ 1̂ + ε(t )σ̂+ ⊗ 1̂,
(38)

where g describes the coupling strength between the HO and
the qubit and ε(t ) is an external drive, which couples to the
qubit and can be realized by, e.g., a microwave pulse. For
our simulations, we use the parameters from the experimental
setup in [2,51], where the coupling between the qubit and the
cavity is given by g = 2π × 50 kHz, which is much smaller
than the resonance frequency of the qubit and the cavity
ω = 2π × 51 GHz. The eigenstates of ĤJC in Eq. (38) read

|n,±〉 = 1√
2

(|0〉 ⊗ |n + 1〉 ± |1〉 ⊗ |n〉), (39)

with the corresponding eigenenergies E±
n = ±h̄g

√
n. A more

detailed introduction to the Jaynes-Cummings-Hamiltonian in
the context of optimal control can be found, e.g., in Ref. [21].

To facilitate comparison between optimization results with
different values of |α|, we amend the functional from Eq. (25)
by a third term J|α|(), which allows us to target cat states
with a particular cat radius |α|, called |αtgt| in the following.
To accomplish this, we define a scalar cost function f (x),
which takes its minimal value at x = |αtgt|. To compare the
desired value |αtgt| with the actual cat radius |α| at final time
T , we estimate |α| from ρ(T ) by using the expression

|α|4 = Tr[(Â†)2Â2ρ̂(T )], (40)

where Â = 1̂ ⊗ â, as above. Strictly speaking, this expression
only yields a sensible value for |α| if ρ(T ) is an entangled cat

|αtgt| = 1.0(a)

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
frequency (units of g)
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T
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.
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s)

|αtgt| = 2.0(b)

FIG. 2. Spectra of the optimized pulses for optimization towards
maximally entangled cat states with |αtgt| = 1 (top) and |αtgt| = 2
(bottom). The dashed lines indicate the transition frequencies be-
tween the eigenstates |n,±〉 of the drift Hamiltonian, defined in
Eq. (39).

state, which is only true if the optimization is fully converged
through minimization of the other functional terms. Still, the
value for |α| obtained with Eq. (40) can be used as an estimate
of the cat state radius, which in practice turns out to be a
good approximation for states close to a cat state. For our
calculations, we used the functional

J|α|() = f (|α|) = (|α|4 − |αtgt|4)2

|αtgt|8 + (|α| − |αtgt|)2

|αtgt|2 . (41)

Our choice of the function f proves to be particularly suitable
since it possesses high gradients for both small and large
arguments. This helps accelerating convergence during the
optimization both far away and close to the target value.

A. Coherent dynamics

Using the functional JT(ψ ) = Jcs(ψ ) + Jcat (ψ ) + J|α|(ψ ),
we have performed numerical optimizations towards cat states
with |αtgt| = 1 and |αtgt| = 2, respectively, starting from the
ground state of the atom-cavity system. For both values of |α|,
we have obtained states with cat infidelities of Icat (|(T )〉) <

10−3, where we use the same definition as in Eq. (36), al-
though this infidelity is now calculated with respect to the
set of maximally entangled cat states defined in Eq. (20) to
match the optimization goal. In Fig. 2, we show the spectra
of the optimized pulses. Both spectra exhibit sharp peaks
located at the transition frequencies between the eigenstates
of the atom-cavity system |n,±〉 [cf. Eq. (39)] of the drift
Hamiltonian ĤJC with adjacent n, indicated by dashed lines
in Fig. 2. Since the qubit is driven, these are the only direct
transitions between atom and cavity. In turn, this allows for
increasing or decreasing the number of excitations in the
cavity by 
n = ±1 due to the interaction. It also explains
why we observe spectral broadening when optimizing for cat
states with larger α. Such cat states require higher levels of the
HO to be populated and thus higher-level transitions between
the eigenstates of the atom-cavity system need to be driven
by the pulse. The transition frequencies between n and n + 1
become either 
ω ∝ √

n + 1 + √
n for |n,±〉 → |n + 1,±〉,

which we call type-(i) transitions or 
ω ∝ √
n + 1 − √

n
for |n,±〉 → |n + 1,∓〉, which we call type-(ii) transitions.
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FIG. 3. Detailed analysis of the optimized pulse towards |αtgt| =
2.0, showing the pulse in time domain (c), in frequency domain
(a), and a time-frequency distribution (b) calculated via the Gabor
transform. All quantities are expressed in units of the coupling
strength g.

Since the latter frequencies tend towards zero with larger n,
the type-(ii) transition frequencies become more and more dif-
ficult to resolve for a given pulse duration. This only leaves the
optimization algorithm to target the larger type-(i) transition
frequencies to address higher-level transitions. Comparing the
spectrum obtained for |αtgt| = 1.0 in Fig. 2(a) and the spec-
trum for |αtgt| = 2.0 in Fig. 2(b) confirms this interpretation.
Indeed, the pulse in Fig. 2(b) contains larger frequency com-
ponents in comparison to the pulse in Fig. 2(a) and exhibits a
broader spectrum.

We now inspect the optimized pulse obtained for |αtgt| =
2.0 in greater detail, noting that the optimization strategy
obtained for |αtgt| = 1.0 turns out to be very similar.

Figure 3(c) depicts the real part of the optimized pulse in
time domain, showing a consistent increase of the instanta-
neous pulse frequency with time. This behavior can be further
elucidated with a Gabor transform of the pulse,

Gσ (τ, ω) ∝
∫ ∞

−∞
e− (τ−t )2

2σ2 eiωtε(t ) dt, (42)

shown in Fig. 3(b) with σ = T
4
√

2π
. The Gabor transform re-

veals how the frequency components of the pulse change with
time. For visual aid, the spectrum of the pulse from Fig. 2(b)
is plotted again in Fig. 3(a). Indeed, the time-frequency dis-
tribution in Fig. 3(b) exhibits mainly contributions at the
transition frequencies of the Jaynes-Cummings model. Addi-
tionally, the optimized pulse contains only a few frequency
components at the beginning, with more—and, in particular,
larger—frequencies added over time. This gradual driving of
higher frequency components generates a population ascent
towards higher levels, ultimately yielding the desired distribu-
tion.

The pulse duration is an important property of an optimal
control solution. It determines whether an operation can be

1 2 3 4 6
final time T (units of g−1)

0.0

0.5

1.0

1.5

fin
al

|α
|

target |α|
free
0.25
0.50
0.75

1.00
1.25
1.50

1.75

FIG. 4. The final value of |α| plotted against the pulse duration T
for different optimizations. The different marker styles indicate op-
timizations performed with different target values |αtgt|. The dashed
auxiliary lines on the right, colored with the same color as the marker
styles, are added to guide the eye.

carried out and influences the impact of dissipation. Specif-
ically, finding the minimal time required to implement the
physical target can help to limit the role of dissipative effects.
Alternatively, dissipation can be included in the model—an
approach that is followed in Sec. IV B. Here, we restrict our-
selves to coherent dynamics and use the functional developed
in Sec. II C to investigate how fast cat states can be prepared
for a Jaynes-Cummings Hamiltonian. The determination of
the shortest time for generating or transforming states is an
important task of optimal control theory. The resulting quan-
tity is called the quantum speed limit [52–56], which is usually
determined by a set of optimizations with varying pulse dura-
tions. The shortest pulse duration at which the objective can
still be reliably reached is then used as an estimate for the
quantum speed limit [54,56].

Since the cat-state functional is fairly complex, reaching
convergence proved difficult in some of our calculations.
Particularly, the presence of plateaus in the optimization
landscape posed an appreciable problem during some op-
timizations. These plateaus lead to asymptotically slow
convergence if the value of λa, cf. Eq. (4), is kept constant
during the optimization. Hence, we have employed an ad-
ditional line search inside Krotov’s method to find the best
value for the step size parameter λa in each optimization step.
With this modification, we have reliably obtained good con-
vergence despite the functional’s complexity. The results for
the optimizations with different pulse durations are depicted
in Fig. 4. All data exhibit a similar trend, as the final value
|α|, cf. Eq. (40), steadily increases for small values of T and
saturates at the desired value as soon as the pulse duration
crosses a certain threshold. Once this threshold is reached, the
optimization attains the desired value reliably. The smallest
duration T α

QSL at which |α| reaches |αtgt| increases with the
desired target value |αtgt|. This suggests that T α

QSL indeed
represents the quantum speed limit. The increase of T α

QSL with
|αtgt| can be directly justified with our previous findings in
Fig. 3, showing that higher levels need to be sequentially pop-
ulated and thus longer times are needed for higher excitation
of the cat state.

We have also performed optimizations towards entangled
cat states without prescribing a target value for |α|, i.e.,
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without the term J|α|. The obtained “free” optimization results
are plotted as magenta squares in Fig. 4. As expected, the final
values of the cat-state radii |α| stay below all curves indicating
the quantum speed limit for a given value of |α|. However, the
final values |α| do not always increase with larger pulse dura-
tions for the free optimization, whereas the quantum speed
limit continuously increases towards larger values of |αtgt|.
The latter is in accordance with our previous findings in Fig. 3,
showing that higher levels need to be populated one after
another. Since larger excitations of the cat state, i.e., larger
|α|, require more transitions to higher levels, the larger time
required to reach the target is not surprising.

B. Dissipative dynamics

Dissipation is expected to influence the preparation process
of the entangled cat states. Including this influence in the
optimization framework may allow for identifying control
strategies that are better adapted to the presence of dissipation
than those obtained with a coherent model. In the following,
we first investigate the influence of dissipation on the coher-
ently optimized results and then reoptimize the latter to find
strategies better suited for dissipative dynamics. To this end,
we consider an open quantum system described by a Gorini-
Kossakowski-Sudarshan-Lindblad master equation [57] with
T1 relaxation of the HO,

d

dt
ρ̂(t ) = − i

h̄
[Ĥ (t ), ρ̂(t )] + κ

(
L̂ρ̂L̂† − 1

2
{L̂†L̂, ρ̂(t )}

)
,

(43)

where ρ̂ is the joint density operator of HO and qubit and
L̂ = 1̂ ⊗ â with decay rate κ .

To analyze how the optimization protocols derived in the
previous section are affected by dissipation, we inspect three
quantities, or “errors”, characterizing the final state and its
quality, for three different target values |αtgt| in Fig. 5. The
first quantity is the deviation of the purity P from that of a
pure state, which is equivalent to the linear entropy defined in
Eq. (32). Second, to quantify how close the final state is to the
set of target states {|cat〉}, we define a cat infidelity,

Icat (ρ̂) = min
|〉∈{|cat〉}

1 − F (ρ̂, |〉 〈|), (44)

where we use the generalized overlap

F (σ̂ , ρ̂ ) = Tr
√√

ρ̂ σ̂
√

ρ̂ (45)

as the state fidelity as defined in Ref. [50]. The third quantity
is the deviation of |α| from the target value |αtgt|:


|α| = ||α| − |αtgt||. (46)

The target value |αtgt| determines the minimum time needed
to prepare the cat state, the so-called quantum speed limit. We
therefore discuss the influence of dissipation by expressing
the dissipation strength in units of the quantum speed limit
TQSL. Following the same logic, the pulse duration T is cho-
sen to be approximately twice the quantum speed limit. The
specific values are T = 2.4π/g for |αtgt| = 1.0, T = 3.5π/g
for |αtgt| = 1.5, and T = 5π/g for |αtgt| = 2.0.

Figure 5(a) depicts the deviation of the final state purity
from the ideal purity with growing dissipation strength. The
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FIG. 5. Dependence of the final state errors on the dissipation
strength κ for different target values |αtgt|: (a) purity error, (b) cat
infidelity, and (c) cat radius error. The solid lines correspond to pulses
optimized with dissipation taken into account whereas the dashed
lines display the results obtained using the coherently optimized
pulses, but propagated with the corresponding dissipation strength.

dashed lines correspond to the performance of pulses opti-
mized for coherent evolution but evaluated in the presence
of dissipation. The purity errors show a qualitatively similar
behavior for different |αtgt| and, as expected, increase with
dissipation strength. The solid lines display the results of
reoptimization in the presence of dissipation using the pulses
obtained without dissipation as guess pulse. They follow a
similar trend as the coherently optimized results. Upon closer
inspection, however, they exhibit improvements, which are
most pronounced for |αtgt| = 1.5 (magenta lines). We analyze
these improvements in more detail below.

Dissipation does not only affect the purity, but we also
find a larger infidelity of the final states. The cat infidelity
as defined in Eq. (44) is plotted in Fig. 5(b). Analogously to
Fig. 5(a), infidelity and dissipation strength are correlated and
the shapes of the curves resemble those depicted in Fig. 5(a).
Finally, Fig. 5(c) analyzes the error of |α| with respect to the
target value |αtgt| as a function of the decay rate κ . Since
the model accounts for decay of the HO, α is particularly
affected by dissipation, reducing α with increasing κ . Indeed,
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FIG. 6. The same data as in Fig. 5(a) but with linear scale for the
purity to illustrate the different improvements under reoptimization
with dissipation (solid) compared to coherently optimized results
(dashed). Same line styles and color code as in Fig. 5.

the curves in Fig. 5(c) show this behavior and follow a similar
trend as in Figs. 5(a)–5(b) for both the coherently and the re-
optimized pulses. Note that the reoptimization does not reduce
the final-time cat radius error for the two larger values of |αtgt|,
|αtgt| = 1.5 (magenta) and |αtgt| = 2.0 (green). This is not
surprising for the following reason. The optimization targets
a sum of terms which are balanced against each other. Since
the function f used in the definition of J|α| is comparatively
insensitive to errors in the desired value of |α|, the value of
|α| can slightly deteriorate in favor of improvements in the
other terms. If needed, this could be counteracted by chang-
ing the weight of J|α| or even changing the function f used
when defining J|α|. Despite the similar behavior of the three
quantities presented in Fig. 5 on first glance, a more detailed
analysis of the curves reveals three different types of adjust-
ments that the reoptimization introduces. We illustrate these in
Fig. 6 by changing the scale of plot Fig. 5(a) to highlight the
differences between the coherently optimized (dashed) and
reoptimized (solid) results. The blue curve, corresponding to
|αtgt| = 1.0, shows no improvement due to the reoptimiza-
tion, which indicates that the solution found without account
of dissipation is already robust. This is corroborated by the
observation that the other quantities in Figs. 5(b) and 5(c)
do not significantly improve either. In contrast, the purity of
the reoptimized result for |αtgt| = 1.5 (magenta) is strongly
enhanced compared to the original result for all decay rates
κ considered. An improvement under reoptimization is also
observed for |αtgt| = 2.0 (green), except for small values of
κ . The improvement in both cases suggests that the strategies
found by the coherent optimization are not optimal once dis-
sipation is taken into account and indicates the importance of
considering dissipation in the optimization for obtaining more
robust strategies. We also studied the generation of cat states
with larger values of α, which revealed a similar behavior,
albeit with a much stronger purity loss. For very large α, this
loss of purity becomes so strong that the optimization fails,
which illustrates the practical limitation that is imposed by
the decay on exciting the system coherently. We investigate
the change in control strategy next. To this end, we focus on
the results for |αtgt| = 1.5 and |αtgt| = 2.0, showing signs of a
strategy change as discussed above. To analyze the dynamics

of the HO, the mean number of excitations,

〈n̂〉 ≡ Tr[(1̂ ⊗ n̂)ρ̂(t )], (47)

is plotted over time in Figs. 7(a) and 7(b). Analogously
Figs. 7(c) and 7(d) show the average excitation of the qubit,

〈σ̂z〉 ≡ Tr[(σ̂z ⊗ 1̂)ρ̂(t )], (48)

as a function of time. Additionally, the interaction between the
subsystems is analyzed in Figs. 7(e) and 7(f) by means of the
mutual information, defined in Eq. (31). We start by describ-
ing the dynamics for the case |αtgt| = 1.5. In Fig. 7(a), the
dynamics optimized under pulses with and without dissipation
show clear differences. Under the coherently optimized pulses
(dashed line), the HO gets excited already shortly after the
beginning. In contrast, the pulse optimized taking dissipation
into account (solid line) keeps the excitation in the HO very
small until t ≈ T/2, where it starts to increase linearly to
〈n̂〉 ≈ |α|2. Overall, the excitation induced by the pulse opti-
mized without dissipation is above the one for the reoptimized
pulse at all times. The strategy of reducing excitation is not
surprising, as more excitation in the HO is directly related
to a stronger decay. The excitation dynamics on the qubit,
depicted in Fig. 7(c), is oscillatory and does not immediately
reveal an underlying strategy. As we will see below, it is
important that, for strong dissipation, 〈σ̂z〉 oscillates around
zero in the last third of the time interval. Figure 7(e) depicts
the mutual information and thus the correlations between the
subsystems. Note that in case of the coherent dynamics, the
mutual information indicates the entanglement between the
systems, while for the mixed case the interpretation of the
mutual information is more intricate. While in the coherently
optimized case the HO and qubit become strongly entangled
from the beginning on, the strategy for the reoptimized pulses
is to keep the subsystems independent from each other until
about t ≈ T/2, and then continue with strong correlations
between the subsystems. During this phase of strong corre-
lations, excitation is directly transferred to the HO, which
explains the straight excitation increase in Fig. 7(a). All in
all, the strategy identified by the optimization algorithm in the
presence of dissipation is to wait in the beginning and then
generate the cat state as fast as possible in the end. This simply
reduces the time during which excitation in the HO is exposed
to decay, yielding higher quality final states.

In the case of |αtgt| = 2.0, the strategy change is more
subtle. For both curves in Fig. 7(b), 〈n̂〉 is almost constant
around zero in the beginning and linearly grows to the desired
value of 〈n̂〉tgt = |αtgt|2 = 4.0 after about half the time. The
difference between both curves is the final peak of the dynam-
ics under the coherently optimized pulse (dashed line), which
surpasses the desired value just before the end and finally
decreases to match the desired excitation. In contrast, the
solid curve, representing the dynamics under the reoptimized
pulse, approaches the final value in an almost straight line,
a behavior already observed for the reoptimized dynamics
in Fig. 7(a). The dynamics of 〈σ̂z〉, depicted in Fig. 7(d),
is again more complex. The first part is clearly dominated
by small fluctuations around the ground state of the qubit.
Around half time, both dynamics exhibit strong oscillations
before 〈σ̂z〉 remains close to zero in the interval between t ≈
0.65 × 10−2 κ−1 and t ≈ 0.85 × 10−2 κ−1. Thereafter, the
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FIG. 7. Comparison of different strategies: The solid lines depict the dynamics induced by the pulse optimized with strong dissipation
and the dashed lines depict the dynamics with the coherently optimized pulses. The left and right columns correspond to |αtgt| = 1.5 and
|αtgt| = 2.0, respectively. (a), (b), (c), (d) The average excitation of the harmonic oscillator, Eq. (47), and of the qubit, Eq. (48). (e), (f) The
mutual information between the harmonic oscillator and the qubit, Eq. (31).

oscillations grow stronger again, ultimately ending close to
the desired value of 〈σ̂z〉 = 0. Finally, the dynamics of the
mutual information in Fig. 7(f) are similar to each other
and those found for the dissipatively optimized dynamics in
Fig. 7(e). For the pulse obtained under strong dissipation,
the mutual information increases a bit later compared to the
coherently optimized case. Also, the mutual information for
|αtgt| = 2.0 exhibits a significant dip just before the end,
which indicates that the system briefly goes to a relatively
uncorrelated state just before the entangled cat state is created.
Apart from this detail, both strategies for |αtgt| = 2.0 follow
a similar structure as the reoptimized dynamics discussed in
Fig. 7(e). Despite this similarity of the dynamics, we observe
a strong improvement in purity and even fidelity for large dis-
sipation. The mutual information of the reoptimized pulse in
Fig. 7(e) also exhibits a speedup, compared to the coherently
optimized dynamics, which is reflected in the delayed rise of
the solid curve, compared to the dashed one. However, since
the speedup is only marginal, the enhancement must also be
related to avoiding the final peak in the average excitation of
the HO. To further illustrate the strategy change for |αtgt| =
2.0, the qubit dynamics close to the final peak is presented in
Fig. 8(b)–8(c) together with the data from Fig. 7(b) replotted
in Fig. 8(a) for clarity. Here, the star and cross in Fig. 8(a)
indicate the time period plotted in Figs. 8(b) and 8(c). For the
optimization not taking into account dissipation [Fig. 8(b)],
the qubit starts by evolving to the ground state |0〉 becoming
disentangled from the HO as already indicated by the dip in
the mutual information in Fig. 7(e). It continues and evolves

to the maximally entangled state at the center of the Bloch
sphere. For the reoptimized dynamics [Fig. 8(c)], the qubit
instead starts to evolve towards the excited state |1〉, but does
not completely reach it due to the purity reduction caused by
dissipation. From there, it evolves to the center of the Bloch
sphere, again in an almost straight line. We thus find that the
two strategies approach the final state in a similar way, yet
from different sides of the Bloch sphere. In the case of the
coherently optimized pulse (blue), this means that for the final
part of the protocol, excitation is transferred from the HO to
the qubit. This coincides with the observation of the peak
around t = 0.95 × 10−2 κ−1 in Fig. 8(a). It represents the
excitation excess that is stored in the HO and later transferred
to the qubit. Since the dissipation punishes more excitation in
the HO, the strategy for the reoptimized pulse is to instead
store excitation in the qubit and transfer the surplus excitation
to the HO in the end, thus protecting it from decay as long as
possible.

V. CONCLUSIONS

We have developed an optimization framework to target
cat states and entangled cat states in bipartite systems. The
corresponding functionals target the whole set of cat states
instead of individual elements from this set. As a result, they
provide the maximal flexibility for the optimization algorithm
to steer the system towards the most suitable state from the set
in a given physical setup. The composite functionals consist
of several terms, which separately check whether the state
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FIG. 8. Visualization of the strategy change, storing excitation in
the qubit instead of the harmonic oscillator, when optimizing with
strong dissipation. (a) The same plot as in Fig. 7(b). (b), (c) The
dynamics of the qubit in Bloch sphere representation. For the sake of
clarity, we only show the final part of the dynamics in (b) and (c), as
indicated by the gray dashed lines in (a).

is an eigenstate of the annihilation operator, whether it is an
equally weighted superposition, and, in the case of a bipartite
entangled cat, whether the two subsystems are maximally
entangled. Moreover, we have shown how to adjust the func-
tionals to specify particular cat state properties, such as a
desired displacement of the coherent states constituting the
cat superposition.

We have performed example optimizations using these
functionals for a Kerr-nonlinear oscillator with two-photon
driving. By directly comparing their performance with a naive
state-to-state approach, we have been able to show that our
framework reliably finds cat states, whereas the state-to-state
approach needs to be manually adjusted to a reachable state
in advance. This demonstrates the power of the cat-state func-
tionals which allow us to avoid analyzing the reachable set
of cat states in advance. Furthermore, we have successfully
applied the functionals for maximally entangled bipartite cat
states in an archetypical Jaynes-Cummings model. We have
analyzed the structure of the optimized pulses which show
a consecutive transfer of population towards higher energy
levels as control mechanism. Moreover, we have investigated
how fast cat states can be prepared and determined the quan-
tum speed limit which we found to be directly connected to
the excitation of the cat states, i.e., to the cat radius.

Finally, we adopted our framework to open quantum sys-
tems and investigated the influence of dissipation in the
Jaynes-Cummings model, comparing the performance of
coherently optimized pulses with those optimized in the pres-
ence of decay of the HO. Accounting for the decay during the
optimization has allowed us to improve the final state fidelity
for states with large cat radius which are most affected by the
decay.

Inspecting the dynamics under the optimized pulses, we
have been able to identify the strategy changes obtained when
taking dissipation into account. In the presence of decay, it
is more advantageous to keep excitation of the HO low as
long as possible. While this by itself is not surprising, the
optimization identifies the most suitable protocol, depending
on the desired cat radius. For sufficiently small radii, the cat
is simply generated as fast as possible towards the end of
the protocol. For larger cat radii, the best way to keep the
oscillator excitation low is by storing excitation temporarily in
the qubit. These results illustrate how taking dissipation into
account during the optimization of a desired quantum process
allows for identifying control strategies which are more robust
than those obtained by optimizing coherent dynamics.

In the future, our functionals could be further adapted to
target more complex sets of states, for example, multicompo-
nent cat states [33,58–60] or (entangled) multipartite cat states
[8,29,61]. Another potential future avenue of our work is to
extend the framework to the generation of squeezed states or
squeezed cat states, which have recently attracted interest in
quantum error correcting codes [62]. It will also be interesting
to apply the cat-state optimization framework derived here
to open quantum systems that require a description of the
environment’s influence beyond a phenomenological decay,
in particular, to systems with non-Markovian dynamics. For
example, superconducting circuits are subject to 1/ f noise
[63], which results in non-Markovian dynamics. Beyond iden-
tifying strategies that are best adapted to the open system
properties, this may allow for exploiting non-Markovianity as
a resource for control, see, e.g., Refs. [24,64] and references
therein. The present results thus increase the utility of the
quantum optimal control toolbox [19,20] for practical appli-
cations in the quantum technologies.
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APPENDIX A: DERIVATION OF THE CAT TERM
FOR ARBITRARY SUPERPOSITION PHASES

We show that an eigenstate of â2 [cf. Eq. (12)] is of the
form of Eq. (1) if and only if

‖ā|ψa2〉 − â|ψa2〉‖2 = ‖ā|ψa2〉 + â|ψa2〉‖2, (A1)

where ā ≡
√

〈ψa2 | â2 | ψa2〉, which becomes ā =
√

α2 = α if
the state is an eigenstate of â2. Expanding both sides of the
equation yields

ā|ψa2〉 − â|ψa2〉
= c1α |α〉 + c2α |−α〉 − c1α |α〉 + c2α |−α〉
= 2c2α |−α〉 ,

ā|ψa2〉 + â|ψa2〉
= c1α |α〉 + c2α |−α〉 + c1α |α〉 − c2α |−α〉
= 2c1α |α〉 .

043051-11



KRAUSS, KOCH, AND REICH PHYSICAL REVIEW RESEARCH 5, 043051 (2023)

This implies

‖ā|ψa2〉 − â|ψa2〉‖2 = 4|c2|2|α|2,
‖ā|ψa2〉 + â|ψa2〉‖2 = 4|c1|2|α|2,

such that Eq. (A1) reduces to

4|c2|2|α|2 = 4|c1|2|α|2 ⇐⇒ |c2|2 = |c1|2,
as desired. By calculating the state norms, Eq. (A1) can be
further simplified to

‖ā|ψa2〉 ± â|ψa2〉‖2

=|ā|2 ± ā∗ 〈ψa2 |â|ψa2〉
± ā 〈ψa2 |â†|ψa2〉 + 〈ψa2 |â†â|ψa2〉 ,

(A2)

which yields the condition

ā∗ 〈ψa2 |â|ψa2〉 + ā 〈ψa2 |â†|ψa2〉 != 0, (A3)

that is used for the cat term in Eq. (17).

APPENDIX B: CALCULATION OF THE COSTATE

In the following, we briefly summarize the calculation of
the costates:

|χ〉 = −∇〈ψ |JT = − ∂J

∂ 〈|
∣∣∣
t=T

. (B1)

For the terms presented in Sec. II, most of the costates can be
directly calculated by using the relation

∂

∂ 〈|Tr(Ôρ̂ ) = ∂

∂ 〈| 〈ψ |Ô|ψ〉 = Ô |ψ〉 , (B2)

where ρ̂ = |ψ〉 〈ψ |. However, the calculation of the costates
for the cat term in Eq. (24) is not as straightforward. To
calculate the derivative, we first express Eq. (24) as

JP() ≡ JP(1, 2)|1=2= (B3)

= 2Tr(ρ̂1,HO ρ̂2,HO)|ρ̂1=ρ̂2=ρ̂ − 1, (B4)

with ρ̂i,HO = Trqubit[ρ̂i]. Using this relation, we calculate the
costate of the cat term |χP〉 as

|χP〉 = − ∂JP

∂ 〈|
∣∣∣∣
t=T

= −
(

∂JP

∂ 〈1| + ∂JP

∂ 〈2|
)∣∣∣∣∣

1=2=

= −
((

2
∂

∂ 〈1|Tr((ρ̂2,HO ⊗ 1̂qubit ) ρ̂1)

)

+
(

2
∂

∂ 〈2|Tr((ρ̂1,HO ⊗ 1̂qubit ) ρ̂2)

))∣∣∣∣∣
1=2=

= −(2(ρ̂2,HO ⊗ 1̂qubit ) |1(T )〉
+ 2(ρ̂1,HO ⊗ 1̂qubit ) |2(T )〉)|1=2=

= −4(ρ̂HO ⊗ 1̂qubit ) |(T )〉 . (B5)

APPENDIX C: PROOF FOR THE EQUIVALENCE
OF EQS. (20) AND (26)

In Sec. II C, a functional is constructed which allows for
optimizing towards states of the form given in Eq. (26). At
first glance, this appears to be a different form compared to
the desired entangled cat states in Eq. (20). In the following,
we show that both expressions are indeed equivalent. To this
end, we first write the eigenstate of the annihilation operator
â2 defined in Eq. (12) as

|ψa2〉 = c0 |α〉 + c1 |−α〉 = d+ |ψ+
cat〉 + d− |ψ−

cat〉 , (C1)

where |d+|2 + |d−|2 = 1 d± ∈ C. Using this, we rewrite
Eq. (26) as

|ent〉 = 1√
2

(|b0〉 ⊗ |ψ0,a2〉 + |b1〉 ⊗ |ψ1,a2〉)

= 1√
2

(|b0〉 ⊗ (d0+ |ψ+
cat〉 + d0− |ψ−

cat〉)

+ |b1〉 ⊗ (d1+ |ψ+
cat〉 + d1− |ψ−

cat〉))

= 1√
2

(ei�0 |b0〉 ⊗ (cos ϕ |ψ+
cat〉 + sin ϕeiθ |ψ−

cat〉)

+ ei�1 |b1〉 ⊗ (sin ϕ |ψ+
cat〉 − cos ϕeiθ |ψ−

cat〉)).
(C2)

Since 〈ψ0,a2 |ψ1,a2〉 = 0, we can reexpress the prefactors of the
cat states as

d0+ = ei�0 cos ϕ, d0− = ei�0 eiθ sin ϕ,

d1+ = ei�1 sin ϕ, d1− = −ei�1 eiθ cos ϕ,

with ϕ, θ,�i ∈ R. Using these relations, we rewrite Eq. (C2)
as

|ent〉 = 1√
2

(ei�0 |b0〉 ⊗ (cos ϕ |ψ+
cat〉 + sin ϕeiθ |ψ−

cat〉)

+ ei�1 |b1〉 ⊗ (sin ϕ |ψ+
cat〉 − cos ϕeiθ |ψ−

cat〉))

= 1√
2

((ei�0 cos ϕ |b0〉 + ei�1 sin ϕ |b1〉) ⊗ |ψ+
cat〉

+ eiθ (ei�0 sin ϕ |b0〉 − ei�1 cos ϕ |b1〉) ⊗ |ψ−
cat〉

≡ 1√
2

(|b+〉 ⊗ |ψ+
cat〉 + |b−〉 ⊗ |ψ−

cat〉). (C3)

Thus, the state obtained by optimizing the functional in
Eq. (26) is an entangled cat state as defined in Eq. (20).
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