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Optimally controlled quantum discrimination and estimation
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Quantum discrimination and estimation are pivotal for many quantum technologies, and their performance
depends on the optimal choice of probe state and measurement. Here we show that their performance can be
further improved by suitably tailoring the pulses that make up the interferometer. Developing an optimal control
framework and applying it to the discrimination and estimation of a magnetic field in the presence of noise, we
find an increase in the overall achievable state distinguishability. Moreover, the maximum distinguishability can
be stabilized for times that are more than an order of magnitude longer than the decoherence time.

DOI: 10.1103/PhysRevResearch.2.033396

I. INTRODUCTION

Quantum control has become a very versatile tool for
quantum technologies [1,2], including quantum computation
[3–6] and quantum simulation [7,8]. It is based on defin-
ing a figure of merit which quantifies how well the desired
target is reached and which is taken to be a functional of
yet unknown external fields [1,2]. Minimization, respectively
maximization, of the functional yields pulse shapes for the
external fields that drive the system to a target state or that
implement a desired gate operation [1,2]. Various methods are
now routinely being used to derive the pulse shapes, including
both gradient-based optimization methods such as GRadient
Ascent Pulse Engineering (GRAPE) [9], Krotov’s method
[3,10,11], or the Gradient Optimization of Analytic conTrols
(GOAT) algorithm [12], as well as gradient-free optimization
such as the Chopped RAndom-Basis (CRAB) method [13,14].

The situation for applying quantum control, when com-
pared with that in quantum computation or quantum simula-
tion, is a bit different in quantum discrimination and quan-
tum estimation, where the objective often does not involve
a well-defined target state or gate [15–31]. For example, in
quantum discrimination, the target is to distinguish a discrete
set of quantum states or channels [15,16,32–46]. Instead of
driving the system to a fixed target, the control objective is to
make the states more distinguishable to each other, since—
intuitively—the error gets smaller when the states become
more distinguishable. This is similar in quantum estimation
[15–31], where the task is to estimate the value of an unknown
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parameter encoded in the quantum dynamics. The error of the
estimation gets smaller when the states evolved with different
values of the parameter are more distinguishable.

Quantum discrimination and quantum estimation underlie
many applications in quantum information science, including
quantum hypothesis testing, quantum detection, and quantum
sensing. While quantum control has been employed to im-
prove the precision in quantum estimation [47–56], the use
of quantum control in quantum discrimination remains scarce
[57–59]. This is so despite the fact that one may expect quan-
tum control to help identify fundamental performance bounds
of quantum discrimination, similar to those found for quantum
computation [6,60] or derive pulse shapes for improved per-
formance with direct relevance to experiments [8,61]. All that
is required is to adapt the quantum optimal control toolbox to
the specific use case of quantum discrimination.

Here, we develop a unified framework of optimal quan-
tum control for quantum discrimination and quantum es-
timation. We employ the distance between two states that
underwent different dynamics, more specifically that evolved
under slightly different magnetic field strengths, as the figure
of the merit. In the limit of the difference in field strength
going to zero, optimizing this figure of merit becomes equiv-
alent to optimizing the quantum Fisher information. We use
quantum optimal control to maximize the distance between
the two states by shaping the external fields that make up
the interferometer. Intuitively, this can be understood as tai-
loring the external field to drive the states evolving under
different dynamics away from each other, instead of toward
a common target. Since both states depend on the control,
the distance between them is typically not a linear function,
which is different from the case of a fixed target. Krotov’s
method for quantum optimal control [10,11] can be used in
such a case. We employ it here to optimize discrimination
and estimation of a magnetic field in the presence of noise,
increasing the performance compared to the standard scheme
based on a Ramsey interferometer. Our work thus contributes
a quantum control perspective to current efforts for improving
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quantum sensing protocols based on Ramsey interferometry,
using squeezed [62] or anticoherent [63] states, variable de-
tuning of the pulses [64], or machine learning of the complete
protocol [65].

The article is organized as follows. We introduce the figure
of merit for discrimination and the estimation in Sec. II,
and then present the quantum control method to optimize
this figure of merit. In Sec. III, we apply the method to the
discrimination and the estimation of the magnetic fields to
demonstrate the feature and advantages of the control. We
summarize our findings in Sec. IV.

II. MODEL AND CONTROL PROBLEM

We consider the dynamics described by the Gorini-
Kossakowski-Sudarshan-Lindblad master equation [66],

d

dt
ρm(t ) = −i[Hm(t ), ρm(t )]

+
∑

k

γk

(
Lkρm(t )L†

k − 1

2
{L†

kLk, ρm(t )}
)

= Lm(t )ρm(t ), (1)

where

Hm(t ) = Hd,m + Hc(t ), (2)

is the Hamiltonian. Hd,m describes the drift, Hc(t ) describes
the coupling to an external drive, and Lk are the Lindblad
operators with the decay rates γk .

For quantum discrimination, we want to distinguish be-
tween two possible Hamiltonians, Hd,1 and Hd,2, while for
quantum estimation, Hd,m depends on a continuous parameter
which we want to estimate the value. In both cases, Hd,m

cannot be measured directly, and the discrimination (estima-
tion) is achieved by the measurement of the time-evolved
state ρm(T ) starting from an initial state ρin = |�in〉 〈�in|. For
the discrimination of two Hamiltonians, the two states ρ1(T )
or ρ2(T ) should be made as distinguishable as possible. In
contrast, for the estimation the precision can also be connected
to the distinguishability of the states that are evolved under
two neighboring Hamiltonian with Hd,1 = H (B − δB/2) and
Hd,2 = H (B + δB/2), where δB is an infinitesimally small
shift [67]. The difference between the discrimination and the
estimation is the figure of merit. The figure of merit for the
discrimination is typically taken as the success probability
Psucc to distinguish the two final states ρ1(T ) and ρ2(T ), which
can be related to the trace distance Dtr as [15]

Psucc = 1
2 [1 + Dtr(ρ1(T ), ρ2(T ))] (3)

where

Dtr (ρ1, ρ2) = 1
2‖ρ1 − ρ2‖tr ∈ [0, 1], (4)

‖ρ‖tr = Tr{
√

ρ†ρ}. The figure of merit for the estimation is
typically taken as the precision, which can be calibrated by the
quantum Cramer-Rao bound as E [(B̂ − B)2] � 1

RFQ
, where

E [(B̂ − B)2] is the variance of an unbiased estimator B̂, R is
the number of repetition of the experiments, and FQ is the
quantum Fisher information which determines the precision
limit. Under the two Hamiltonians Hd,1 = H (B − δB/2) and

Hd,2 = H (B + δB/2), the quantum Fisher information can be
related to the Bures distance Dbures between ρ1(T ) and ρ2(T )
as [67]

FQ = 4D2
bures(ρ1, ρ2)

(δB)2
, (5)

where the Bures distance between two states is defined as [68]

D2
bures(ρ1, ρ2) = 2 − 2Tr{

√√
ρ1ρ2

√
ρ1}. (6)

We consider distinguishing two Hamiltonians, Hd,1 =
B1σz/2 and Hd,2 = B2σz/2. The discrimination of the two
Hamiltonians can be related to the estimation when B1 =
B − δB/2 and B2 = B + δB/2, which corresponds to the es-
timation of the strength of a magnetic field oriented along the
z axis.

We first compare two protocols for the discrimination—
the standard Ramsey protocol and the protocol employing
optimized control fields. Each protocol starts with preparing
the qubit in the initial state ρin = |�in〉 〈�in| and is based
on deducing whether the field is B1 or B2 by means of
measuring its time-evolved state, ρm(T ). The Ramsey scheme
is to prepare an initial state on the Bloch sphere’s equator
and let it subsequently evolve under the constant drift Hd,m,
i.e., Hc(t ) = 0. In contrast, the optimized protocol will in
addition employ time-dependent fields, i.e., Hc(t ) �= 0. These
control fields are optimized to make the two states ρ1(T )
and ρ2(T ) as distinguishable as possible. In other words,
the optimized control fields need to maximize the distance
measure D(ρ1, ρ2). For the discrimination, the distance is the
trace distance (4), since it is directly related to the successful
probability of the discrimination; cf. Eq. (3). If expressed
in terms of the Bloch vectors r1 and r2 for states ρ1 and
ρ2, it reads Dtr (ρ1, ρ2) = ‖r1 − r2‖/2 with ‖ · ‖ being the
Euclidean vector norm [69]. Thus, the trace distance coincides
with the geometric distance between the Bloch vectors r1 and
r2 and maximal distinguishability is achieved if and only if
r1 and r2 are on opposite points on the Bloch sphere. Hence,
the maximization of Dtr will be our physical goal for the
discrimination.

The presence of the drive Hamiltonian Hc(t ) allows to in-
fluence the evolution of Dtr . We make the general assumption

Hc(t ) = 1
2 [Ex(t )σx + Ey(t )σy + Ez(t )σz], (7)

where Ex(t ), Ey(t ), Ez(t ) ∈ R are control fields that couple
via σx, σy, and σz to the qubit, respectively. Note that while
Hc(t ) is identical for both Hamiltonians H1(t ) and H2(t ),
it influences the dynamics differently in the two cases due
to the difference in the drift Hamiltonians. It can thus be
used to maximize Dtr . The presence of Hc(t ) thus turns the
discrimination problem into a control problem, seeking to
answer the question of how to choose the three fields Ex(t ),
Ey(t ), and Ez(t ) such that Dtr is maximized at time T when
the state ρm(T ) is measured.

We derive suitable control fields employing optimal con-
trol theory [1]. To this end, we introduce the optimization
functional

J[{ρm}, {Ek}] = JT [{ρm(T )}] +
∫ T

0
dt g[{ρm(t )}, {Ek (t )}, t],

(8)
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where JT is the relevant figure of merit that quantifies the
failure probability or error at final time T and g captures
additional running costs at intermediate times. The sets {ρm}
and {Ek} are forward-propagated states and control fields,
respectively, here given by {ρ1, ρ2} and {Ex, Ey, Ez}. Equa-
tion (8) represents the most general form of an optimization
functional and constitutes the standard ansatz to formulate an
optimization target [70]. For the task of maximizing Dtr , we
choose JT as

JT [{ρ1(T ), ρ2(T )}] = 1 − D2
tr(ρ1(T ), ρ2(T ))

= 1 − DHS(ρ1(T ), ρ2(T )) (9)

with DHS being the Hilbert-Schmidt distance [71],

DHS(ρ1, ρ2) = 1
2 〈ρ1 − ρ2, ρ1 − ρ2〉 ∈ [0, 1], (10)

where 〈A, B〉 = Tr{A†B}. Note that the relation D2
tr = DHS

only holds for qubits in which case maximization of Dtr and
maximization of DHS are equivalent. Since both distances are
appropriate measures of state distinguishability, we choose

DHS for maximization in optimal control, since it is more
suitable for that purpose [72,73] because it allows us to build
analytical gradients with respect to the states ρ1 and ρ2.

In the following, we briefly describe our numerical algo-
rithm of choice. We use Krotov’s method [74], an iterative
and gradient-based optimization technique, to minimize JT ;
cf. Eq. (9). We achieve the minimization of JT by minimizing
the total functional J [cf. Eq. (8)], assuming g to take the
form [3]

g[{Ex(t ), Ey(t ), Ez(t )}] =
∑

k=x,y,z

λk

Sk (t )

[
Ek (t ) − E ref

k (t )
]2

,

(11)

where λk is a numerical parameter, Sk (t ) ∈ (0, 1] is a shape
function, and E ref

k (t ) is a reference field. Equation (11) is a
standard choice to control the pulse fluence [3], used to pre-
vent the optimization from drifting toward unphysical pulse
shapes. With the choice of Eq. (11), Krotov’s method allows
the derivation of a closed form for the field update [10],

E (i+1)
k (t ) = E ref

k (t ) + Sk (t )

λk
Re

{∑
m

〈
χ (i)

m (t ) ,
∂L[{Ek′ }]

∂Ek

∣∣∣∣
{E (i+1)

k′ (t )}
ρ (i+1)

m (t )

〉}
, (12)

where the superscripts (i) and (i + 1) indicate the previous
and current iterations, respectively. The states ρ (i+1)

m are deter-
mined by solving

d

dt
ρ (i+1)

m (t ) = L(i+1)(t )ρ (i+1)
m (t ), (13a)

ρ (i+1)
m (0) = ρin (13b)

and the costates χ (i)
m by solving

d

dt
χ (i)

m (t ) = L†(i)(t )χ (i)
m (t ), (14a)

χ (i)
m (T ) = −∇ρm (T )JT

∣∣
{ρ (i)

m′ (T )}. (14b)

The superscripts of the Liouvillians L [cf. Eq. (1)], indicate
the respective iteration of the control fields. The reference
field in Eq. (12) is taken to be the field from the previous
iteration, i.e., E ref

k (t ) = E (i)
k (t ). Hence, the running cost g

vanishes as the fields converge, and the total functional J
essentially coincides with the relevant figure of merit JT that
we seek to minimize. See Ref. [10] for a detailed description
of Krotov’s method.

III. RESULTS AND DISCUSSION

The general timescale on which one can expect a given
control task to be feasible is an important property of the
dynamics. For instance, for a control problem where an initial
state should be transferred into a given target state, it is
determined by the general speed of the evolution, typically set
by the Hamiltonian, and the distance between initial and target
state. In our case, however, we are interested in the relative
distance DHS between the two time-evolved states ρ1(t ) and
ρ2(t ) and not into their distance with respect to the initial state
ρin. Hence, the timescale on which DHS increases is defined

by their relative speed of evolution. In detail, two different
timescales are relevant for the problem of maximizing DHS.
On the one hand, there is a quantum speed limit (QSL), i.e., a
minimal time necessary to perfectly distinguish the two states.
Such a minimal time is defined for every physical control
task. Here, it is determined by δB via the coherent part of the
dynamics and can be estimated by

TQSL = π

δB
. (15)

This is the minimal time required for perfect state distin-
guishability, i.e., DHS = 1, in the Ramsey protocol and under
the assumption of no dissipation. On the other hand, dissipa-
tion continuously decreases DHS, since it causes both states,
ρ1(t ) and ρ2(t ), evolving under H1(t ) and H2(t ) to evolve
toward the same steady state ρss. The timescale set by the
dissipation is, in contrast to the QSL, independent of δB. Since
the impacts of relaxation and pure dephasing, characterized by
T1 and T2, respectively, are quite different, we consider them
individually in the following. This assumption is reasonable
since in most physical settings, the noise is either T1 or T2

dominated. We take |�in〉 = |+〉 = (|0〉 + |1〉)/
√

2 as initial
state, in accordance with the standard Ramsey scheme [75],
i.e., in our dynamical description, we do not account for the
process preparing |�in〉.

Figure 1 shows the distinguishability DHS as a function of
the protocol length T for the Ramsey and optimized protocol.
In detail, the dotted lines in Fig. 1(a) show the dynamics
of 1 − DHS for the Ramsey protocol, i.e., Hc(t ) = 0, for
several δB under relaxation, i.e., a single Lindblad operator
L = |0〉 〈1| with γ = 1/T1. The dashed vertical lines indicate
the QSL of Eq. (15). Starting at DHS = 0 at T = 0, the
distinguishability DHS increases until it reaches the maximum
of Dmax

HS at approximately T ≈ TQSL. For times T > TQSL, the
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FIG. 1. Improvement of the state distinguishability under the optimized control fields. The upper graphs show the indistinguishability
1 − DHS as a function of protocol duration in case of (a) relaxation with T1 = 1000 and (b) pure dephasing with T2 = 1000. The dotted lines
correspond to the Ramsey protocol whereas the markers indicates the reachable value of 1 − DHS under the optimized control fields at the
respective final time T . The vertical lines indicate the quantum speed limit given by Eq. (15). Panels (c) and (d) show the purity of the two
states corresponding to the dynamics of panels (a) and (b), respectively. Note that both states have almost identical purity, and hence there is
just one visible solid line per δB that indicates the purity of the final states under the optimized control fields.

distinguishability DHS decreases exponentially as the relax-
ation causes ρ1(t ) and ρ2(t ) to evolve toward the same ground
or steady state ρss = |0〉 〈0|.

The decay of the state distinguishability due to relax-
ation can be completely suppressed by using tailored, i.e.,
optimized, control fields. The markers in Fig. 1(a) show
the reachable distinguishability DHS at the respective final
time T used in the optimization. There are two interesting
effects to notice. On the one hand, the reachable maximum
Dmax

HS increases compared to the Ramsey protocol. Hence,
in the presence of relaxation, optimized control fields al-
low in general for better distinguishability despite a slightly
longer protocol duration (factor � 2) to reach Dmax

HS . On the
other hand, the improvement in state distinguishability can
be stabilized at that maximally reachable distance against
decay for protocol durations T much longer than the T1 time.
Figure 1(a) demonstrates it for times T up to 10 × T1 but
suggests it should, in principle, be feasible for even longer
times.

Figure 1(c) shows the purities for states ρ1(t ) and ρ2(t )
corresponding to the data in Fig. 1(a), both for the Ramsey
protocol (dotted lines) and at final time T after an evolution
under the optimized control fields (markers). The dotted lines
show an intermediate purity loss in the Ramsey protocol due
to the relaxation. The final gain in purity for t → ∞ is here a
sign for the incoherent process of both states approaching the
same (pure) ground or steady state. In contrast, the behavior of
the purity in case of the improved and stabilized DHS depends
on δB. While for larger δB the loss of purity is avoided at all
T by the respective optimized control fields, the improvement
in the case of small δB comes along with a loss in purity.

The improvement and stabilization of DHS is achieved via a
simple control strategy which is most conveniently understood
on the Bloch sphere; cf. Fig. 3(a). To this end, we choose
the control field Ez such that it cancels the known B, i.e.,
Ez(t ) = −B. This eliminates the fast, coherent oscillations of
r1(t ) and r2(t ) around the z axis which do not contribute to
the distinguishability DHS. Furthermore, in order to protect
both states, r1(t ) and r2(t ), as much as possible from the
detrimental relaxation, i.e., prevent their vector norms from
shrinking, we kick both states from their initial position on the
equator close to the ground or steady state ρss = |0〉 〈0|. This

FIG. 2. Guess (dotted) and unconstrained optimized (solid) field
for the case of (a) relaxation with the control field Ey(t ) and (b) pure
dephasing where the control is Ex(t ). The Bloch sphere dynamics is
depicted in Figs. 3(a) and 3(b), respectively.
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FIG. 3. Exemplary dynamics of the two states ρ1(t ) and ρ2(t )
under the optimized fields within the Bloch sphere for (a) relax-
ation and (b) pure dephasing. The parameters are δB = 0.011 with
(a) T1 = 1000 and (b) T2 = 1000. The total time is T = 2511 and the
corresponding optimized fields are shown in Figs. 2(a) and 2(b). The
density of dots on each line indicates the speed of the evolution with
a low density corresponding to high speed and vice versa.

is achieved by a π/2-like pulse via Ey right at the beginning
of the protocol. The states will stay close to ρss for the largest
part of the protocol where they evolve effectively free of
decoherence in the vicinity of ρss. For the final measurement,
both states are transferred back to the equator by a second,
inverse π/2-like pulse.

Note that this strategy of protecting both states close to
the ground or steady state for as long as possible has been
identified in steps. Initially, we allowed the optimization of all
three control fields Ex, Ey, Ez and started optimizing without
any strategic choice for their guess fields. However, the above
strategy (with only slight deviations) has been identified even
then. Its reduced version consists of a constant Ez and no Ex at

all such that Ey is the only time-dependent field that needs to
be optimized.

Figure 2(a) shows, in an exemplary case, the guess and
optimized forms of Ey(t ) when guiding the optimization with
an guess field that already incorporates the initial π/2-like
kick in the beginning and its inverse counterpart at the end
[76]. Compared to the guess field, the optimization increases
the intensity of the first kick such that the rotation from the
initial equatorial state ρin = |+〉 〈+| toward ρss is carried out
as quickly as possible. The corresponding dynamics on the
Bloch sphere is shown in Fig. 3(a). After the first kick, the
states remain most of the time close to the ground or steady
state ρss, which effectively protects them from losing purity.
The second, inverse kick is much smoother and transfers the
states symmetrically to the equatorial plane such that DHS

becomes maximal at T , i.e., the final time of measurement.
The optimized field in Fig. 2(a) and its corresponding dy-
namics on the Bloch sphere, cf. Fig. 3(a), have been picked
as a representative of an entire class of solutions for the
problem of maximizing distinguishability in the presence of
relaxation. The exact details of the optimized control field and
corresponding dynamics differ depending on δB and T , but
the general control strategy remains similar.

We now turn to the case of pure dephasing with Lindblad
operator L = σz and rate γ = 1/T2. Figure 1(b) shows the
dynamics for the Ramsey protocol as dotted lines. In com-
parison to the case of T1 decay [cf. Fig. 1(a)], pure dephas-
ing has a more severe influence on DHS even if the decay
rates are identical, γ = 1/T2 = 1/T1. But also in this case,
optimization is capable of improving DHS over the Ramsey
protocol—again at the expense of longer protocol durations
(factor � 2). The effect of stabilizing DHS at the maximal
reachable distance for times much longer than the decay time
can be observed as well. Nevertheless, the dynamics both in
the Ramsey protocol as well as under the optimized control
fields look quite different compared to relaxation. With pure
dephasing, no unique, single steady state exists but rather
a set of states, namely the coherence-free states given by
{ρss = p |0〉 〈0| + (1 − p) |1〉 〈1| |p ∈ [0, 1]}, i.e., all states on
the z axis of the Bloch sphere. Since neither the drift Hd,m nor
the dephasing cause a change of any state’s z projection, the
two states r1(t ) and r2(t ), starting initially in the equatorial
plane, precess around the z axis while loosing purity, i.e.,
shrink within the equatorial plane. Hence, they evolve toward
the Bloch sphere’s center, i.e., the completely mixed state.
This is evidenced by the dotted lines in Fig. 1(d), which show
the purity evolving toward 1/2 under the Ramsey protocol.

An optimization of all three available control fields Ex, Ey,
Ez again yields a simple control strategy. Like in the case of
relaxation, it can also be realized by a single time-dependent
control field, which is what for simplicity we discuss here.
This time, the time-dependent control is Ex(t ), while Ez(t ) =
−B again cancels the known field B and Ey is not needed
at all. Figure 2(b) shows the guess field for Ex(t ), which
exhibits a peak at the beginning. This peak is modified by the
optimization such that it splits the two states r1(t ) and r2(t )
within the equatorial plane as a first step and then rotates them
onto the z axis in a second step; see Fig. 3(b) for the corre-
sponding dynamics. Once the states reach the z axis, Ex(t ) ≈ 0
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FIG. 4. Quantum Fisher information FQ (weighted by the proto-
col duration T ) for small values of δB. Panel (a) corresponds to the
case of relaxation presented in Fig. 1(a) while panel (b) corresponds
to the case of pure dephasing in Fig. 1(b). The dotted lines indicate
the values for the Ramsey protocol whereas the markers show the
optimized results.

is essentially turned off and the states become invariants of
the dynamics, which implies that their distinguishability DHS

can essentially be preserved forever. This readily explains the
stabilization observed in Fig. 1(b). The respective optimized
field and dynamics in Figs. 2(b) and 3(b) again represent an
example for the entire class of solutions for the problem of
maximal distinguishability in the case of pure dephasing. The
exact details depend again on δB and T .

Next, we relate the improved distinguishability DHS ob-
served in Fig. 1 to the quantum Fisher information FQ; cf.
Eq. (5). However, it depends on the Bures distance Dbures,
which is a distance metric on the set of density matrices, just
as the trace distance Dtr or the Hilbert-Schmidt distance DHS.
Unlike the trace distance discussed above, Dbures cannot be
related to DHS, not even in the case of qubits. Nevertheless,
the increase of DHS is expected to increase Dbures as well [73].
For the maximization of DHS, shown in Fig. 1, this is in fact
true and Dbures is readily improved alongside DHS.

Note that Eq. (5) is only valid for small δB. Moreover,
it needs to be weighted by the protocol duration T in order
to quantify the amount of information that can be obtained
per unit time for any given protocol. Accordingly, Fig. 4
shows the quantum Fisher information FQ weighted by the
protocol duration for small values of δB. In the case of pure
dephasing [cf. Fig. 4(b)], there is a small improvement in
DHS, respectively Dbures, for the optimized protocol compared
to the Ramsey protocol. This is, however, almost completely
canceled by the slightly longer protocol duration T . As a
result, the maximally reachable value of FQ/T is almost iden-
tical for the Ramsey and optimized protocols. In contrast, for
relaxation [cf. Fig. 4(a)], the significant improvement of DHS,
respectively Dbures, realized by the optimized protocol gives
rise to an improvement of FQ/T despite the slightly longer
protocol duration T . We thus expect a metrological gain of
the optimized protocol compared to the Ramsey protocol.

So far, we only considered decay rates determined by
T1 = 1000 and T2 = 1000. However, since the dissipation sets
a timescale for the control task that is independent on the
QSL set by δB [cf. Eq. (15)], it is natural to ask whether
the control strategy that has been identified above depends on
the decay rates. To this end, we examine how the improvement
of DHS, respectively Dtr = √

DHS, observed in Fig. 1 behaves
for different relaxation and dephasing times. In detail, we are
interested in the behavior of

Mγ (δB) ≡ min
t

{1 − Dtr(ρ1(t ), ρ2(t ))}, (16)

as a function of δB and for various decay rates 1/T1 and 1/T2.
The function Mγ measures, for a given δB, the maximally
reachable distinguishability Dmax

tr , independent of the time it
takes to reach it. In other words, Mγ (δB) = 1 − Dmax

tr . If, for
a given physical process, the protocol duration is not crucial
and only the maximally achievable state distinguishability is
of importance, Mγ (δB) is the relevant figure of merit. For the
Ramsey protocol, Eq. (16) can be solved analytically to yield

Mγ (δB) = 1 −
[

(δB)2

(δB)2 + γ 2

× exp

{
− γ

δB
arccos

(
γ 2 − (δB)2

γ 2 + (δB)2

)}]1/2

(17)

for relaxation with γ = 1/T1. For pure dephasing, the solution
takes the same form but differs by a factor of 4, i.e., γ = 4/T2.
The dotted lines in Figs. 5(a) and 5(b) show Mγ for the Ram-
sey protocol for relaxation and pure dephasing, respectively.
The dotted lines perfectly fit the numerical values given by
the opaque markers, as expected for an analytical solution.
For the dynamics under the optimized control fields, we can
evaluate Eq. (16) numerically; cf. the nonopaque markers in
Fig. 5. Remarkably, these show an almost identical functional
dependence compared to the Ramsey scheme. We therefore fit
the data obtained for the optimized protocol to Eq. (17) using
effective relaxation and dephasing times as fitting parameters.
This yields the solid lines in Fig. 5, which indeed show
that Mγ (δB) accurately describes the dependence also for
the optimized data points with effective decay times T1,eff or
T2,eff ; see the legends in Fig. 5. This is in fact not obvious as
the coherent dynamics of the Ramsey and optimized proto-
col differ drastically, which makes the resemblance in their
functional behavior of Mγ remarkable. For relaxation, the
effective decay times satisfy T1,eff/T1 ≈ 2.4, whereas for pure
dephasing, the ratio is T2,eff/T2 ≈ 1.2. Thus, the maximally
reachable distinguishability Dmax

tr behaves as though it would
have been measured by a Ramsey protocol with 2.4 times
longer T1, respectively 1.2 times longer T2 time, which greatly
improves the distinguishability. Given the protection strategy
of the dynamics, the prolongation of the decay times is not
surprising, since the overall impact of the dissipation onto the
states is reduced.

IV. CONCLUSIONS

In summary, we have studied how optimized control fields
can help to improve the distinguishability of two states of a
qubit—both of which evolve under different drift but identical
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FIG. 5. Improvement of the state distinguishability in terms of effective decay rates. The plot shows the maximal trace distance Dmax
tr , i.e.,

minimal Mγ , as a function of δB for several (a) relaxation and (b) dephasing times. The values for the Ramsey scheme (opaque markers) follow
the analytical prediction of Eq. (17), shown as dotted lines. The nonopaque markers correspond to the optimized values of Dmax

tr , i.e., numerical
evaluation of Eq. (16). The solid lines are fits of the optimized values to Eq. (17) with fitting parameter (a) γ = 1/T1,eff and (b) γ = 4/T2,eff .

drive Hamiltonians while being exposed to either relaxation
or pure dephasing. Our results show two improvements with
respect to a standard Ramsey protocol for state discrimination.

First, optimized control fields increase the overall achiev-
able state distinguishability, at the expense of slightly longer
protocol durations. When comparing this improved state dis-
tinguishability against the prolonged protocol duration, in the
case of relaxation, we observe a metrological gain, evidenced
by the quantum Fisher information weighted by the protocol
duration. In contrast, both effects—the improved state dis-
tinguishability and the prolonged protocol duration—roughly
cancel in the case of pure dephasing.

Second, by utilizing optimize control fields, we are not
only able to improve the state distinguishability but also to
stabilize it at its maximum for times that are at least one order
of magnitude longer than the decay times due to the environ-
mental noise. The control strategy utilizes decoherence-free
subspaces in all cases, where the states can be effectively
stored and protected before being separated right before their

measurement. We find the required control fields to be both
simple and experimentally feasible.

Our study demonstrates the capabilities of optimal control
to effectively reduce the environments detrimental influence.
For the considered state discrimination problem and if com-
pared to the standard Ramsey scheme, it reveals an alternative
protocol with improved noise resistance. Our results thus
suggest to explore state discrimination and its impact on
quantum metrological applications from another perspective.
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