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Dilute Measurement-Induced Cooling into Many-Body Ground States

Josias Langbehn ,1 Kyrylo Snizhko ,2 Igor Gornyi ,3 Giovanna Morigi ,4 Yuval Gefen,5 and
Christiane P. Koch 1,*

1
Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14,

Berlin 14195, Germany
2
Université Grenoble Alpes, French Alternative Energies and Atomic Energy Commission (CEA), Grenoble INP,

Interdisciplinary Research Institute of Grenoble (IRIG), Quantum Photonics, Electronics and Engineering
Laboratory (PHELIQS), Grenoble 38000, France

3
Institute for Quantum Materials and Technologies and Institut für Theorie der Kondensierten Materie, Karlsruhe

Institute of Technology, Karlsruhe 76131, Germany
4
Theoretical Physics, Department of Physics, Saarland University, Saarbrücken 66123, Germany

5
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

 (Received 21 December 2023; accepted 5 June 2024; published 1 July 2024)

Cooling a quantum system to its ground state is important for the characterization of nontrivial inter-
acting systems and in the context of a variety of quantum information platforms. It can be achieved by
employing measurement-based passive steering protocols, where the steering steps are predetermined and
are not based on measurement readouts. However, measurements realized by coupling the system to aux-
iliary quantum degrees of freedom (“detectors”) are rather costly and protocols in which the number of
detectors scales with system size will have limited practical applicability. Here, we identify conditions
under which measurement-based cooling protocols can be taken to the ultimate dilute limit where the
number of detectors is independent of system size. For two examples of frustration-free one-dimensional
spin chains, we show that steering on a single link is sufficient to cool these systems into their unique
ground states. We corroborate our analytical arguments with finite-size numerical simulations and discuss
further applications of dilute cooling.
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I. INTRODUCTION

The ability to control many-body quantum systems is
a prerequisite for implementing quantum information pro-
cessing but also, and more generally, for advances across
quantum physics from atomic and molecular all the way
to condensed-matter physics. Particular challenges are
to identify control strategies that are both scalable with
increasing system size and robust to parameter fluctua-
tions. The challenge of robustness can be addressed by
so-called quantum reservoir engineering [1], where cou-
pling to a reservoir induces the desired dissipation. In the
long-time limit, the system can then be driven into a pre-
designed target state, irrespective of the initial state. For
many-body quantum systems, this allows for preparing
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pure and possibly highly entangled states or driving the
system into nontrivial quantum phases [2–7]. Leverag-
ing the robustness of driven-dissipative dynamics, here we
address the challenge of scalability in many-body quantum
control. Using control-theoretic arguments, we show under
which conditions local cooling into a global target state can
be realized.

Our starting point is a recent modification of quan-
tum reservoir engineering where the desired dissipation is
induced by quantum measurements [8]. This addresses the
problem that, when seeking to exploit engineered dissipa-
tion as a resource for, e.g., quantum computation [3,4],
the required couplings with the reservoir are difficult or
even impossible to design. In other words, natural dissipa-
tion processes often do not allow for the system-reservoir
interactions needed for, e.g., a given target state, because it
involves purely local operators. In quantum measurements,
the quantum system of interest is coupled to a “detector”
for a time during which the system and detector become
entangled (at least weakly), at which point the interac-
tion is switched off [9]. A textbook example is given by
a quantized electromagnetic field mode that interacts with
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Rydberg atoms as “detectors” [10]. Depending on the ini-
tial state of the atoms, the quantum system can be cooled
to zero temperature [10] or prepared in an entangled state
[11]. Using the framework of quantum measurements,
engineering the required dissipation by coupling to aux-
iliary degrees of freedom can also be described in terms
of so-called quantum collision models [12]. Under both
perspectives, the concept of the engineered environment
has found a wide range of applications; e.g., for cooling
a spin chain by using a qubit as a detector, the frequency
of which is tuned to an energy gap of the system [13–15].
Such cooling into low-energy states of the transverse-field
Ising model has recently been demonstrated in experiments
with superconducting qubits [6]. Engineered dissipation is
also central to protocols based on homogenization of quan-
tum systems [16,17] and to “algorithmic” or digital cooling
in quantum simulators [18–20].

For a single quantum degree of freedom interacting with
one or more detectors, such as the electromagnetic field
mode interacting with a beam of atoms [10], any desired
state can be prepared with suitably optimized classical
drives [21]. As another example, combining measurement-
based dynamics with unitary evolution, it is possible to
steer a spin-1/2 system to any desired state on or inside
the Bloch sphere [22,23]. Such a high level of control
is challenging for many-body quantum systems, where
the multipartite nature introduces competing time scales
and restrictions on the reachable states. For example, only
certain classes of states will be attainable with quasilo-
cal couplings [24,25] and systems with frustrated local
Hamiltonians are not amenable to passive steering [26].
For many-body quantum systems, measurements can nev-
ertheless be exploited in multiple ways, which include,
among many others, inducing phase transitions [27–30],
realizing cooling with quantum hardware [14,31–35], pro-
tecting quantum states and dynamics [36–38], modifying
the entanglement structure [39], or steering a quantum sys-
tem from an arbitrary initial state toward a chosen target
state [22,23,40].

The Affleck-Lieb-Kennedy-Tasaki (AKLT) Hamilto-
nian [41,42] is a popular many-body model featuring
symmetry-protected topological order. It has served as a
major paradigm for both quantum reservoir engineering
[3] and measurement-induced dynamics, including state
engineering [22,43–47] in many-body quantum systems;
similar protocols have also been brought forward for the
two-dimensional Kitaev model, a spin liquid [48,49]. In
this respect, the AKLT model and its relatives could
be considered as instrumental tools that bridge the field
of measurement-induced state preparation with that of
strongly correlated systems.

As much as versatility and robustness make control via
coupling to auxiliary degrees of freedom appealing, for
many-body quantum systems this comes at a cost. The first
distinction is based on whether or not the measurement

(a)

(b)

FIG. 1. The measurement-induced cooling of a many-body
system described by Hamiltonian H0 (shown as one-dimensional
for simplicity). (a) The setup as discussed in Ref. [22] with an
extensive number of detectors D, each one coupled to a pair of
sites. (b) Dilute cooling in the extreme limit of a single detector
D: the interplay between the local detector-system coupling and
possibly additional coherent interactions δH allows for driving
the system into the ground state of H0.

outcomes are used for control [9]. In the context of steer-
ing, this is referred to as passive [22] versus active [40]
steering, with passive steering including measurement-
induced cooling [14,22,47]. While active steering may
leverage decision-making policy [40,50] or optimization
[51] to facilitate the approach to the target state, the
actual implementation of the feedback requires additional
resources, on top of the auxiliary quantum systems serving
as detectors [52]. For many-body systems, this will quickly
become challenging, if not unfeasible. In fact, already for
passive steering protocols, one may wonder how far these
can be pushed given their requirement of the number of
detectors that is extensive in system size [cf. Fig. 1(a)].

Here, we adopt the perspective that detectors are a pre-
cious resource, whereas the ability to engineer (quasilocal)
interactions within a many-body system can be taken as
given, since this is a prerequisite for implementation of the
many-body model itself. The detectors are key to realizing
measurement-induced dynamics but how many are actu-
ally needed? For the paradigmatic AKLT model, a chain
of spin-1 particles, we show that measuring on a single
pair of two neighboring sites is sufficient to cool the entire
chain into its ground state [cf. Fig. 1(b)]. The reason is
that for sufficiently large chains, the nearest-neighbor cou-
plings allow for the propagation of any excitation to the
measured link where the excitation is dissipated. While
the structure of the AKLT Hamiltonian is such that it
ensures the propagation for all conceivable excitations,
in general, this is, of course, not the case. We, therefore,
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identify which quasilocal Hamiltonians should be added
to engineer the necessary population flow and exemplify
our theoretical framework for dilute cooling of a many-
body system with a second example, the Majumdar-Ghosh
model [53]. Finally, we discuss the hierarchy of time scales
for the excitation propagation and localized measurements,
in order to identify the scaling of the cooling time with the
system size, as well as the time dependence of cooling in
the limit of infinite systems.

The remainder of the paper is organized as follows. In
Sec. II, we present the overall concept of measurement-
induced cooling, starting with a brief recap of passive
steering [22] and its description in terms of a master
equation in Sec. II A. In Sec. II B, we introduce the notions
of local hot and cold subspaces on the link(s) that are to
be be cooled. This gives rise to conditions on the system-
detector couplings to be permissible for a given target
state. In other words, the notion of the local hot and cold
subspaces allows us to answer the question of when one
may perform the measurements that are required to attain
the target state. Another key ingredient for many-body
cooling is the cooling rate and we explain how to estimate
it as a function of the system size in Sec. II C. In Sec. III,
we analyze numerically two distinct models defined on
finite chains and demonstrate that cooling a single link is
sufficient to drive into the respective many-body ground
state. For the AKLT model, this is possible for sufficiently
large chains, as we discuss in Sec. III A, while we show in
Sec. III B, using the Majumdar-Ghosh model, that dilute
cooling can also be used to selectively drive into one
state within a degenerate ground-state manifold for suffi-
ciently large chains. Dilute cooling is not limited to these
two examples and we formulate a general framework in
Sec. IV. In Sec. IV A, we formalize the condition to pre-
serve the target for all conceivable interactions within the
system. This, together with the corresponding condition on
the system-detector couplings, allows us to identify con-
ditions, a necessary one and a sufficient one, for dilute
cooling in Secs. IV B and IV C, respectively. With those
conditions at hand, we show how to prepare the AKLT
state in small chains in Sec. IV D. Readers not interested
in the mathematical details of Secs. II B and IV will find
a concise summary of the general framework for dilute
measurement-induced cooling in the form of a “recipe” in
Sec. V. We conclude in Sec. VI.

II. MEASUREMENT-INDUCED COOLING

We first briefly review the protocol of Ref. [22] for steer-
ing the state of a quantum system from an arbitrary initial
state toward a chosen target state by coupling it to an
extensive number of auxiliary quantum degrees of freedom
(“detectors”) in Sec. II A. Then, we lay the foundations for
dilute cooling by introducing the notions of cold and hot
subspaces on the cooled sites in Sec. II B. When reducing

the number of detectors, a key question is how fast the tar-
get state is approached and we discuss in Sec. II C how to
estimate the cooling rate (or time) to reach the target state.

A. Recap of passive steering

In the following, we derive an effective Markovian mas-
ter equation in Lindblad form for the system due to its
coupling with the detectors. We do not account for any
uncontrolled interactions with the environment, i.e., we
assume that the system only interacts with the auxiliary
degrees of freedom in a controlled way. For simplicity,
the auxiliary quantum degrees of freedom are taken to
be qubits. The total Hamiltonian for the composition of
system and detector is written as

H = Hs ⊗ Id + Hs-d + Is ⊗ Hd, (1)

where Hs, Hs-d, and Hd act, respectively, on the system
only, on the system and detector, and on the detector only,
and Is (Id) is the identity operator on the system (detector)
Hilbert space. In the following, we drop the explicit ref-
erence to the identity operators. The protocol consists of
repeatedly performing the following steps [22]:

(1) At time ti, each detector qubit is prepared in a fixed
pure state, independent of the system state. The
detector and system are in the product state ρd ⊗
ρs(ti), where ρd and ρs are the state of the detector
qubits and that of the system alone, respectively.

(2) System and detector qubits are coupled during a
time interval δt. The time evolution generated by the
Hamiltonian H is given by

ρs-d (ti + δt) = e−iHδtρd ⊗ ρs (ti) eiHδt, (2)

where ρs-d denotes the joint state of the system and
detector qubits.

(3) At the instant of time ti+1 = ti + δt, the interaction
is switched off and the detector qubits are discarded.
This is equivalent to a projective measurement of
the detector qubits, with an unbiased average over
all measurement outcomes. The system state is then
obtained by tracing out the detector qubits:

ρs (ti + δt) = Trdρs-d (ti + δt) . (3)

The procedure is repeated, starting at time ti+1 = ti + δt.
The dynamics of the system evolving under this pro-

tocol are obtained as follows [22]. For simplicity, we
discuss the derivation of the equation of motion for a sin-
gle detector qubit; the extension to several detectors is
straightforward. The choice of the initial state of the detec-
tor qubit, |φ0〉, induces a partition on the detector Hilbert
space Hd into two orthogonal subspaces, Hd = D0 ⊕D1,
with D0 spanned by |φ0〉 and D1 = D⊥

0 spanned by |φ1〉
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such that 〈φ0|φ1〉 = 0. Likewise, the composite system-
detector Hilbert space H = Hs ⊗Hd is partitioned into
subspaces

Hi = Hs ⊗Di (4)

for i = 0, 1 such that

H = H0 ⊕H1. (5)

We assume |φ0〉 to be an eigenstate of Hd, separated in
energy by �φ from |φ1〉. The joint Hamiltonian can be
represented as

Hs-d =
(

Hs +�φIs
√
γ L̃†

√
γ L̃ Hs

)
, (6)

where γ parametrizes the coupling strength between sys-
tem and detector and is also referred to as the dissipation
rate. The non-Hermitian operators L̃, L̃† act on the system
whenever the detector state changes from |φ0〉 to |φ1〉 or
vice versa. For sufficiently short intervals δt, Eq. (2) can
be expanded to second order in δt. Tracing out the detector
qubit results in

ρs (t+ δt)− ρs (t)
δt

= −i [Hs, ρs (t)]− [Hs, [Hs, ρs (t)]] δt

+ γ δt
(

L̃ρs (t) L̃†− 1
2
{
L̃†L̃, ρs (t)

})
.

(7)

Taking the limit of continuous measurements (δt → 0)
while keeping L = L̃

√
δt constant yields an equation of

motion for the reduced state of the system that is of Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) form [54,55].
This exemplifies the formal equivalence between a mem-
oryless interaction with an environment and weak and
continuous measurements. The generalization to multiple
detector qubits is straightforward and results in a sum
over the detector qubits each of which contributes a jump
operator Li,

d
dt
ρs (t) = L (ρs (t)) = −i [Hs, ρs (t)]

+ γ
∑

i

(
Liρs (t) L†

i −
1
2

{
L†

i Li, ρs (t)
})

, (8)

where L is the Liouvillian. The idea of passive steering
is to choose the operators Li such that repeated system-
detector interactions in the long-time limit drive the system
into the target state ρ⊕, which is often (but not neces-
sarily) the ground state of the system Hamiltonian Hs.
This is guaranteed if ρ⊕ is the unique steady state of L,
since then any initial state of the system is driven toward

ρ⊕ [56]. Ideally, the target state is pure, ρ⊕ = |ψ⊕〉 〈ψ⊕|.
Passive steering is based on a predefined set of system-
detector couplings, which, in contrast to active steering,
is not modified in the course of the protocol based on the
detector readouts. When the measurement outcomes are
completely discarded (even for the termination of steer-
ing), such a passive protocol is sometimes also referred
to as blind steering. In the context of measurement-based
cooling, such protocols can be dubbed “blind cooling”; this
term will be utilized throughout the paper.

B. Choice of jump operators

In order to understand how to engineer the system-
detector interactions, we determine which jump operators
are permissible by asking that they leave the target state
|ψ⊕〉 invariant. For simplicity, we will focus on 1D lat-
tices (“chains”), where the geometrical locality of the jump
operators is established by involving neighborhoods of
two adjacent sites, which we call a link (i, i+ 1). Our
considerations are, however, not restricted to 1D systems
and the generalization to larger neighborhoods is straight-
forward. The target state on a given link (i, i+ 1) is
obtained by tracing over all other sites,

ρ
(i,i+1)
⊕ = TrH�

i
(ρ⊕) , (9)

where H�
i ≡

⊗
j 
=i,i+1 Hj denotes the tensor complement

to the local Hilbert space of the link, H(i,i+1). We seek to
cool (empty) all states on a given link (i, i+ 1) that do not
pertain to ρ(i,i+1)

⊕ .
As a simple example, consider a qubit with target state

ρ⊕ = |0〉 〈0|. Since |1〉 does not pertain to ρ⊕, cooling via
L = σ− = |0〉 〈1| would be permissible. We can formalize
this insight via the support of ρ⊕. Defining the support of
a state ρ⊕ as

supp ρ = (ker ρ)⊥ , (10)

the local Hilbert space H(i,i+1) of the link is partitioned into
a hot and a cold local subspace,

H(i,i+1) = V (i,i+1)
cold ⊕ V (i,i+1)

hot , (11a)

V (i,i+1)
cold = supp ρ(i,i+1)

⊕ , (11b)

V (i,i+1)
hot =

(
V (i,i+1)

cold

)⊥
= ker ρ(i,i+1)

⊕ . (11c)

We refer to V (i,i+1)
hot as hot because it contains all the states

that do not pertain to ρ(i,i+1)
⊕ and therefore cooling consists

of emptying the hot subspace so that the state of the system
is in the cold local subspace V (i,i+1)

cold .
The partitioning of the local Hilbert space of the cooled

link into hot and cold subspaces leads to a natural way
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of choosing the jump operators: for every state
∣∣φh,j

〉 ∈
V (i,i+1)

hot , we choose some state
∣∣φc,j

〉 ∈ V (i,i+1)
cold such that

Lj =
∣∣φc,j

〉 〈
φh,j

∣∣. This choice ensures that the jump oper-
ators Lj do nothing but cool, i.e., they do not transfer
population from the cold to the hot subspace or within the
hot subspace, and they do not result in pure dephasing, but
they transfer population into the cold subspace.

This intuition can be formalized in terms of three condi-
tions. First, the operators L(i,i+1)

j must be nilpotent, i.e.,

(
L(i,i+1)

j

)2
= 0. (12a)

This ensures that all eigenvalues of L(i,i+1)
j are 0. Other-

wise, L(i,i+1)
j would possess at least one nonzero eigen-

value, implying the existence of an invariant state. The
second property guarantees that only states from the cold
subspace are not affected by any of the jump operators:

∩j ker L(i,i+1)
j = V (i,i+1)

cold . (12b)

Moreover,

∑
j

image
(

L(i,i+1)
j

)
⊆ V (i,i+1)

cold , (12c)

since then the jump operators only map states from the hot
subspace to the cold subspace but do not act within the hot
(respectively, cold) subspace.

C. Cooling rate

Designing the system-detector interaction that drives the
system into the desired target state is an important first
step. For practical applications of the protocol, the time
that is required to attain the target state will be faster than
the detrimental effects, which tend to heat up the system.
This is also relevant; in particular, for many-body systems.
A key question is how this characteristic time scales with
the system size.

To quantify the approach to the target state, a suitable
figure of merit is needed. A natural choice is the Hilbert-
Schmidt overlap,

Doverlap = Tr (ρf ρ⊕) , (13)

between the obtained state ρf and the target state ρ⊕. It is
a suitable figure of merit as long as the target state is pure
[57]. This is the case here and we will use it throughout.
For mixed states, one would need to consider a true dis-
tance measure [57] such as the Hilbert-Schmidt distance,
DHS = 1

2 Tr
(
(ρ⊕ − ρf)

2). Since we are interested in cool-
ing, one could also consider the expectation value of the
system energy, relative to the targeted energy, i.e., Erel

s =
Tr (Hsρf)− Tr (Hsρ⊕).

The rate of cooling is set by the spectral gap of the Liou-
villian, defined as � = |Re λ1|, where λ1 is the nonzero
eigenvalue of L with the real part closest to 0. This can be
rationalized as follows. Expressing any state ρ in terms of
the (right) eigenvectors ρi of L, its evolution can be written
as ρ(t) =∑

i ciρieλit, where ci = Tr(ρ̌iρ) is the projection
onto the left eigenvector ρ̌i. The decay toward the steady
state is given by Re λi. The lowest excited state, i.e., the
gap, sets the slowest rate of approach toward ρ0, which
dominates in the asymptotic limit t →∞. The larger the
gap, the faster is the convergence toward ρ⊕. If there exist
multiple steady states, namely, there are multiple right
eigenvectors at eigenvalue 0, then � = 0. In this case, for
some initial states, the dynamics will not converge to ρ⊕
and blind cooling is not feasible. The uniqueness of the
steady state can be checked in terms of the algebraic prop-
erties of the Hamiltonian H and the jump operators Li [58]
(see also Ref. [59]).

Obtaining � from exact diagonalization quickly
becomes unfeasible, since the Liouvillian corresponds to
a d2 × d2 matrix for a system Hilbert-space dimension d.
With the separation of the Hilbert space into cold and hot
subspaces introduced above in Sec. II B, and under the
assumption of a unique steady state, it is possible to esti-
mate the gap� determining the cooling rate for sufficiently
small dissipation rates γ as

� � �est, (14)

with the estimate �est deriving from the properties of the
Hamiltonian:

�est ≡ 1
2

Qγ , (15a)

Q ≡ min
ε

qε , (15b)

qε ≡ min
n
〈εn|Phot|εn〉. (15c)

Here, ε labels the (possibly degenerate) eigenenergies of
H with the corresponding eigenspace spanned by |εn〉,
where n runs over the degenerate eigenstates. The projec-
tor Phot projects onto the “hot” subspace on the link V (1,2)

hot
[cf. Eq. (11c)], assuming that this is the only link that is
cooled. With these definitions, Q in Eq. (15) gives the min-
imum population that an excited eigenstate |εn〉 can have in
the hot subspace.

The estimate given in Eq. (15) is justified for sufficiently
small dissipation rate γ (see Appendix A),

γ � N/dN , (16)

where N is the number of sites, d is the Hilbert-space
dimension on a single site, and the Hamiltonian is of the
form H =∑

i Oi, with the spectrum of local operators Oi
(which can act on site i and neighboring sites) confined
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to [0, 1], so that N/dN is the typical level spacing of the
Hamiltonian.

In our numerical studies of the examples below, we find,
irrespective of γ , that �est provides a bound for the gap,

� ≤ �est. (17)

We have not been able to prove this bound analytically,
yet it looks natural in the light of the following intuition:
the cooling rate is determined by the population of the hot
subspace (Q) times the dissipation rate (γ ), yet may actu-
ally be smaller since after local depopulation of the hot
subspace, excitations need time to propagate to the cooled
link; at the same time, coherent superpositions between the
states of different energies evolve in time, as they acquire
relative phases—this justifies the focus on the eigenstates
of the Hamiltonian.

III. REALIZATION OF SINGLE-LINK COOLING
IN TWO FRUSTRATION-FREE SPIN CHAINS

A. Cooling into the AKLT state for N ≥ 5 sites

The ground state of the AKLT model [41,42] is a
paradigmatic example of a matrix product state, as well
as of a symmetry-protected topological phase [60]. In
the context of quantum engineering, it holds promise
as a resource for measurement-based quantum computa-
tion [61]. Measurement-assisted preparation of the AKLT
ground state has recently attracted much attention [22,40,
44,45,62], as an illustration of proof-of-principle proto-
cols for engineering correlated many-body states. We now
show that measurement-induced cooling into the AKLT
ground state can be taken to the dilute limit.

The AKLT model [41,42], a 1D chain of spin-1 parti-
cles with nearest-neighbor interactions [cf. Fig. 2(a)], is an
example of a frustration-free system with a Hamiltonian
given by the sum of the noncommuting local Hamiltonians.
Periodic boundary conditions (PBCs) imply uniqueness of
the ground state, which is a valence-bond state such that
on each bond between two neighboring spins, there is no
projection on the total spin-2 sector. The ground state of
the whole chain is also the ground state of each local
term of the “parent Hamiltonian.” The latter property is
what allows [63] for local steering, i.e., each jump opera-
tor needs to act on only one bond. Preparation of the AKLT
ground state with passive steering has been shown in
Ref. [22] for a total number of detectors that is extensive in
system size. In that work, the passive steering protocol has
been applied to a system of noninteracting spin-1 particles.
In the present work, the measurement-induced dynamics
are superimposed onto the system dynamics governed by
its own interacting Hamiltonian. We show that, remark-
ably, cooling a single link is sufficient to drive into the
AKLT ground state for systems with N ≥ 5 sites and then
we discuss the special case of chain sizes N = 3, 4.

(a)

(b)

Energy

FIG. 2. (a) A schematic of the spin-1 AKLT chain with peri-
odic boundary conditions (PBCs). The projectors onto the Ji = 2
subspace for each nearest-neighbor link, P(i,i+1)

J=2 , make up the
AKLT Hamiltonian. In its most extreme form, dilute cooling
acts on a single link only, via the five cooling operators L(i,i+1)

1,...,5
[cf. Eq. (19)], with i taken to be i = 1. (b) The correlation
of the minimal eigenstate projection onto the hot subspace qε
[see Eq. (15b)], with energy ε for AKLT chains of increasing
size. The solid lines show the mean of qε for energy bins of
size �E = 0.5, while the shaded background gives the standard
deviation. This correlation implies that, in general, low-lying
excitations will decay more slowly than higher-energy ones.

With the nearest-neighbor interaction, two neighboring
spin-1 particles can form pairs of total spins Ji = 0, 1 or
2, where Ji is the quantum number associated with the
eigenvalues of

(�Ji
)2

, the square of the total spin opera-
tor �Ji ≡ �Si + �Si+1. The AKLT Hamiltonian is defined as
the sum of the projectors P(i,i+1)

J=2 on the Ji = 2 subspaces,
thereby penalizing them energetically:

HAKLT =
N∑

i=1

P(i,i+1)
2 . (18)

To drive the system into the ground state of Eq. (18), a
possible choice of operators Li projects each Ji = 2 state
onto Ji = 0, 1 states [22],

L(i,i+1)
1 = (|1, 1〉 〈2, 2|)(i,i+1) , (19a)

L(i,i+1)
2 = (|1, 1〉 〈2, 1|)(i,i+1) , (19b)

L(i,i+1)
3 = (|1, 0〉 〈2, 0|)(i,i+1) , (19c)

030301-6



DILUTE MEASUREMENT-INDUCED COOLING. . . PRX QUANTUM 5, 030301 (2024)

L(i,i+1)
4 = (|1,−1〉 〈2,−1|)(i,i+1) , (19d)

L(i,i+1)
5 = (|1,−1〉 〈2, 2|)(i,i+1) , (19e)

where i labels the sites and |J , mJ 〉(i,i+1) denotes the state
of total spin Ji, formed from the spins on the sites i, i+ 1,
with projection quantum number mJ . We note that the
chosen jump operators are “compatible” with the Hamil-
tonian of the system in the sense that they do not affect
the ground state of the Hamiltonian. Expressions for the
jump operators in terms of spin operators can be found in
Appendix B.

In Fig. 3, we show how the system state approaches the
AKLT ground state as time evolves, for chain lengths up
to N = 10. Here, the five steering operators are applied
to the link connecting sites 1 and 2. The state overlap
is calculated by averaging over Monte Carlo trajectories
[64] that unravel the GKSL equation given in Eq. (8),
resampling 10 000 trajectories 500 times with the boot-
strap method [65]. The confidence intervals for the Monte
Carlo sampling are smaller than the line widths of the
curves. In Fig. 3, we demonstrate an exponential approach
to the AKLT ground state for all chain lengths N . The gap
� is then easily extracted from the slopes in Fig. 3. As
one would expect, the approach to the ground state slows
down with chain length N , with a clear difference between
even and odd numbers of sites, where the ground state
is approached faster for even-length chains. This will be
further analyzed below, in terms of the gaps.

The overall possibility of dilute cooling and its depen-
dence on system size can be rationalized as follows. Dilute
cooling is the result of an interplay between local cooling
and coherent nonlocal dynamics generated by the interac-
tions between neighboring sites in the Hamiltonian. While
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FIG. 3. The logarithm of the overlap with the excited space as
a function of time. We observe an exponential approach with time
to the AKLT ground state |AKLT〉 for weak cooling (γ = 0.1) on
a single link for several chain lengths N . The overlap is obtained
from solving Eq. (8) with the Monte Carlo wave-function method
(with the bar denoting the average over the Monte Carlo trajec-
tories). The dashed lines are linear fits and their slope is used to
extract the Liouvillian gaps.

excitations of the chain that are distant from the cooled
link are not directly exposed to the jump operators, the
interactions propagate them through the chain until they
eventually reach the cooled link. Here, cooling takes place,
taking energy out of the system by projecting the state onto
an energetically lower subspace (from J = 2 to J = 0, 1).
If the state after the jump is the target state, then nothing
more happens, since the target state is left invariant by both
the jump operators and the interactions. Otherwise, there
still exists an excitation somewhere along the chain and the
procedure starts over by propagating the excitation through
the chain until it reaches the cooled link.

The interplay between dissipation and interaction-
induced coherent dynamics naturally introduces two time
scales: the dissipative time scale, given by the inverse
local cooling rate, 1/γ , is independent of the system size,
whereas the time an excitation needs to propagate to the
cooled link scales with system size. It is this scaling that
explains the slowing down of the approach to the AKLT
state observed in Fig. 3.

The slower approach to the AKLT state with increas-
ing system size raises the question as to whether the target
state can be attained in the thermodynamic limit. This is
determined by the scaling of the Liouvillian gap � with
the chain length. For our finite-size numerics, in Fig. 4, we
have extracted the gaps from the linear fits in Fig. 3 and
compared them to the Hamiltonian estimates in Eq. (17).
We find a finite gap � for chain sizes N ≥ 5, indicating
that cooling a single link drives the system toward |AKLT〉
for t →∞. The gap� as a function of system size roughly
follows a power law for both even and odd N but with

1016 × 100
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10−4

10−3

10−2

Δ

1/N2

1/N3

1/N4

1/N5

estimate
even N

odd N

FIG. 4. The Liouvillian gap as a function of the AKLT chain
size. The crosses show gaps (with error bars) extracted from the
numerical overlaps in Fig. 3, while the circles show gap estimates
from Eq. (15). A clear even-odd effect with respect to the chain
length is observed, with � roughly following a separate power
law in the two cases. Fitting to �(N ) = mN−α yields exponents
αeven = 2.97, αodd = 1.87 and y intersects meven = 52.3× 10−2

and modd = 17.5× 10−3.
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different exponents (cf. Fig. 4). While small chains with
even length yield a larger � than odd chains of compa-
rable lengths, it is also shown in Fig. 4 that � decreases
faster with growing even N than it does for odd N .

Chains of size N = 3, 4 turn out to be a special case
in which single-link cooling fails. This is due to the exis-
tence of dark states: excited eigenstates that are also stable.
These states are not subject to cooling on link 1-2 because
on that link they live within the J1 = 0, 1 subspace and
thus have no overlap with the local hot subspace. For
N = 3, there is only a single link with a well-defined spin,
as the other spin operators, �J2 and �J3, do not commute
with �J1. The dark states all show J1 = 1. In a chain with
N = 4 sites, there can be two links with well-defined spins,
e.g., (1, 2) and (3, 4). The dark states turn out to feature
J1 = 0 and J3 = 2. Starting with N = 5, we find no dark
states that are steady states. With PBCs, N = 5 is the
smallest chain where any link with the well-defined total
spin (meaning that the spin operator of the link in ques-
tion commutes with J1) has at least one other link with a
well-defined spin between itself and the cooled link. Note
that chains of size N = 3, 4 can be cooled in a nondilute
way, when coupling all links to detector qubits. The fail-
ure to cool chains of lengths N = 3 and 4 with the steering
of a single link can be remedied by adding coherent local
interactions. We first identify the general conditions under
which dilute cooling is possible in Sec. IV and come back
to the AKLT chain with N = 3, 4 in Sec. IV D, showing
that nearest-neighbor interactions are sufficient.

B. Selective preparation of a degenerate ground state
of the Majumdar-Ghosh model

Dilute cooling is, of course, not limited to the AKLT
model. We now show that it works equally well for another
frustration-free spin chain with a Hamiltonian given as
a sum over noncommuting terms, the Majumdar-Ghosh
(MG) model [53]. Here, three neighboring spin-1/2 par-
ticles are coupled into a total spin with quantum num-
bers Ji = 1/2, 3/2 associated with

(�Ji
)2

, where �Ji = �Si +
�Si+1 + �Si+2. The original formulation of the MG Hamilto-
nian was HMG =

∑N
i
�Ji

2
. Up to a shift in energy, the model

can be formulated in terms of projectors such that the Ji =
3/2 subspaces are energetically penalized by the projector
P(i)J=3/2 acting on sites i, i+ 1, i+ 2 via the Hamiltonian

HMG = 12
N∑

i=1

P(i)J=3/2, (20)

subject to PBCs. We consider chains with an even num-
ber of sites N because the ground-state manifold is only
twofold degenerate in this case. It is spanned by the states
|ψ±〉—the product states of spin singlets formed from
two neighboring spins with the first spin on an even (−)

[respectively, odd (+)] site,

|ψ−〉 =
N/2⊗
i=1

|0, 0〉(2i,2i+1) , (21)

|ψ+〉 =
N/2⊗
i=1

|0, 0〉(2i−1,2i) , (22)

where |0, 0〉(i,i+1) denotes the S = 0, m = 0 singlet state on
link (i, i+ 1). Although the ground state is twofold degen-
erate, it is possible to select one of them with dilute cooling
and we choose |ψ−〉 as the target ground state.

The ground-state degeneracy represents the main differ-
ence between the MG and AKLT models that needs to be
accounted for when designing a cooling protocol target-
ing a pure target state. Naive adaptation of the recipe for
choosing the jump operators presented in Sec. II B, consid-
ering three neighboring sites of the MG model, suggests
projecting every J = 3/2 state onto some J = 1/2 state.
This does not, however, lead to a pure steady state but also
allows for statistical mixtures of |ψ±〉. To single out one
of the two ground states |ψ±〉, it is sufficient to perform
cooling on only two neighboring sites. Two neighboring
S = 1/2 spins combine into either J = 1 or J = 0. We
choose to cool the link (1, 2). The |ψ−〉 state lives within
the J = 0 subspace on this link. A suitable choice of opera-
tors that act on the single link (1, 2) transforming the states
from the triplet manifold to the singlet manifold is then
given by

L1 = (|0, 0〉 〈1, 1|)(1,2) , (23a)

L2 = (|0, 0〉 〈1,−1|)(1,2) , (23b)

L3 = (|0, 0〉 〈1, 0|)(1,2) . (23c)

For an expression of Li in terms of spin operators, see
Appendix B. This choice implies

V(1,2)
hot = span {(|1, 1〉)(1,2) , (|1, 0〉)(1,2) , (|1,−1〉)(1,2)}

and V(1,2)
cold = (|0, 0〉)(1,2). We therefore choose Li such that

any state from V(1,2)
hot is projected into V(1,2)

cold . Again in anal-
ogy to the AKLT model, excitations outside of the cooled
link are propagated through the chain by the interactions,
until they eventually reach link (1, 2), where cooling takes
place.

The approach to the target state is shown in Fig. 5(a) for
chains with an even number of sites up to N = 16, where
we have used the same numerical method as in Sec. III A.
The target state is approached exponentially in time for
chains of length N ≥ 6 with the exponent, i.e., the slope in
Fig. 5(a), which depends on N differently for chains with
even and odd values of N/2. This difference is more clearly
seen in Fig. 5(b), where we plot the gap obtained from the
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FIG. 5. The scaling of the cooling rate with chain size N for
the MG model. (a) The overlap with the target state |ψ−〉, boot-
strap averaged 500 times over 10 000 trajectories. The dashed
lines are linear fits used to extract�. (b) The gap fitted to a power
law �(N ) = mN−α . The crosses show gaps (with error bars)
extracted from (a), while the circles show gap estimates from
Eq. (15), with exponents αN/2 even = 3.76 and NN/2 odd = 2.78.
The y intersects are mN/2 even = 24.4 and mN/2 odd = 2.02.

slopes in Fig. 5(a). The gap estimate in Eq. (15) gives a
fairly good prediction of � for system size up to N = 10
in Fig. 5.

As explained in Appendix A, the estimate can only be
expected to give a tight bound if the difference in eigenen-
ergies δε = |ε − ε′| for any pair of energies ε, ε′ is large
compared to γ , but for chains with N ≥ 10, this is no
longer the case. The gap roughly follows a power law sim-
ilar to the AKLT model but the size of the gap is larger
by about 2 orders of magnitude compared to the AKLT
chains of similar size (cf. Fig. 4). This is in line with the
overlaps Q (cf. Eq. (15b)) also being roughly 2 orders of
magnitude larger compared to the AKLT model. It is thus
easier to scale up the system size in the dilute cooling of the
MG model, in the sense that for similar system sizes, the
target state will be reached much faster in the MG model
as compared to the AKLT state.

IV. CONDITIONS FOR DILUTE COOLING

Detector qubits are a precious resource. In contrast, the
ability to engineer quasilocal coherent interactions is a
basic prerequisite for the realization of any measurement-
induced dynamics—the system needs to be coupled to the
detector qubits in the first place. It should then also be
comparatively straightforward to alter the Hamiltonian by

adding extra terms, as long as they are quasilocal (see also
Fig. 1).

This defines a paradigm that allows us to remedy
the failure of dilute cooling protocols utilizing only the
measurement-induced jump operators, as in the example
of the AKLT chain of length N = 3, 4. We formulate a
general framework to leverage quasilocal interactions to
overcome this problem. To this end, we rephrase the key
question for dilute cooling: assuming full quasilocal coher-
ent control over the system (in the sense that we are free
to add to the system Hamiltonian any quasilocal opera-
tor), under which conditions does a desired target state
ρ⊕ = |ψ⊕〉 〈ψ⊕| become the unique steady state of L? In
other words, the answer to the question of whether a given
|ψ⊕〉 is obtainable via blind dilute cooling does then not
depend on H implementing |ψ⊕〉 as its ground state. The
necessary condition formalizes the properties that the inter-
action operators must have in order to leave the target
state invariant. The sufficient condition additionally pro-
vides a yes-no answer as to whether quasilocal operators
with these properties exist that can be added to the Hamil-
tonian. Readers less interested in the mathematical details
may skip the remainder of this section and continue with
the discussion of our results in Sec. V.

A. Permissible quasilocal coherent interactions

We restrict ourselves to the case of nearest-neighbor
interactions but longer-ranged interactions or more com-
plicated neighborhood definitions are also possible. To set
the stage, we first define the space of allowed additional
coherent terms. They have to fulfill two conditions: (i) they
should be quasilocal and (ii) they need to leave the target
state |ψ⊕〉 invariant. A suitable operator basis to represent
them is the generalized Pauli basis {σ i

j }, where j ≤ d2, in
which d is the dimension of the local Hilbert space on each
site i. The space of all quasilocal operators can then be
written as

O = span ∪N
i=1 O(i,i+1),

O(i,i+1) = span
{
σ
(i)
j ⊗ σ (i+1)

k : j , k ≤ d2
}

.

From O, we select those operators that leave |ψ⊕〉 invari-
ant. In the most general sense, this requires |ψ⊕〉 to be an
eigenstate to all the selected operators. In order to obtain
a vector-space structure, we only allow for selected oper-
ators A ∈ O, such that |ψ⊕〉 is an eigenstate to A with
eigenvalue 0. We thus define

K|ψ⊕〉 ≡ {A ∈ span O : A |ψ⊕〉 = 0} ⊕ {1}, (24)

appropriately dubbing the space of allowed quasilocal
coherent terms the kernelizer. Note that we do not lose
any generality by restricting to annihilators of |ψ⊕〉, since
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operators A ∈ O with A |ψ⊕〉 = λ |ψ⊕〉 and λ 
= 0 can be
obtained by simply adding the identity to K|ψ⊕〉.

The key property of K|ψ⊕〉 as defined in Eq. (24) is to
separate the system Hilbert space H into the target space
H⊕ = span {|ψ⊕〉} and its complement H�

⊕. Our definition
in Eq. (24) comes with the advantage that K|ψ⊕〉 has a
vector-space structure over R and contains only Hermitian
operators. The kernelizer is thus spanned by all coher-
ent interactions affecting only H�

⊕. The purpose of the
separation of Hilbert space is twofold: (i) it allows for
identifying the operators that leave the target state invari-
ant and (ii) it implies a straightforward sufficient condition
for blind cooling in terms of operator controllability on the
complement H�

⊕ (see Sec. IV C).

B. Necessary conditions

We identify two necessary conditions for dilute cool-
ing, one on the jump operators and one on the coherent
interactions. The condition on the jump operators formal-
izes the insight that cooling should not affect the target
state, whereas the condition on the coherent interactions is
required to ensure population flow to the cooled link. We
state the conditions here and prove them in Appendix C.

The condition on the jump operators can be stated as
follows. Cooling on a given link (i, i+ 1) is permissible if
the local hot subspace is not empty:

V (i,i+1)
hot 
= ∅. (25a)

Equivalently, since H(i,i+1) = V (i,i+1)
cold ⊕ V (i,i+1)

hot , cooling is
permissible if the local cold subspace is a proper subset of
the local Hilbert space of the link (i, i+ 1):

V (i,i+1)
cold � H(i,i+1). (25b)

Note that the condition in Eq. (25) is equivalent to Eq. (12):
if the hot subspace is not empty, one can always choose
a set of jump operators that fulfill Eqs. (12). Conversely,
given a set of jump operators obeying the conditions in
Eq. (12), a finite hot subspace necessarily has to exist.

Assuming that the condition in Eq. (25) is met, the jump
operators L(i,i+1)

j should ideally be chosen as L(i,i+1)
j =∣∣φc,j

〉 〈
φh,j

∣∣ such that they map every state in V (i,i+1)
hot to

some states in V (i,i+1)
cold , as suggested in Sec. II B. The choice

of the {L(i,i+1)
j } is not unique. For example, the jump oper-

ators for the AKLT chain [see Eq. (19)] map the five states
with J = 2 onto the four states with J = 0, 1 such that
the sign of Jz is preserved. Another of many conceivable
choices would be {L(i,i+1)

j }, which flip the sign of Jz.
A necessary condition on the coherent interactions can

be stated in terms of the kernelizer. Considering the coher-
ent part of the equation of motion given in Eq. (8), a
necessary condition for cooling is that there should be no

state other than the target state that is invariant to both
cooling and all coherent interactions from the kernelizer.
In particular, excitations on links that are not cooled have
to propagate through the system until they reach the cooled
link. We formalize this condition as follows:

� |φ〉 ∈ H \
⎧⎨
⎩|ψ⊕〉 ⊕

⎛
⎝V (i,i+1)

hot

⊗
j 
=i

Hj

⎞
⎠
⎫⎬
⎭ such that

|φ〉 is an eigenstate of all A ∈ K|ψ⊕〉.
(26)

The kernelizer contains all Hermitian operators that leave
the target state invariant, not only those that are part of the
system Hamiltonian. This is why the condition in Eq. (26)
is necessary but not sufficient.

The condition in Eq. (26) explains why certain states,
e.g., the highly entangled Greenberger-Horne-Zeilinger
(GHZ) and W states,

|ψGHZ〉 = 1√
2

(|0〉⊗N + |1〉⊗N ) , (27)

|W〉 = 1√
N
(|100 . . . 0〉 + |010 . . . 0〉 + . . .+ |00 . . . 01〉),

(28)

cannot be obtained by dilute cooling. For these states
and N ≥ 5, one can identify a complementary state that
is not locally distinguishable from |ψGHZ〉 (respectively,
|W〉), namely, the antisymmetric GHZ state, |φGHZ〉 =

1√
2

(|0〉⊗N − |1〉⊗N ) and the state |W0〉 = |000 . . . 0〉,
respectively. Indeed, the reduced states of |ψGHZ〉 and
|φGHZ〉 on any link are identical, which implies that there is
no quasilocal operator, neither as part of the Hamiltonian
nor as part of the jump operators, that can discriminate
between the two states. In contrast, with fewer than five
qubits, the condition in Eq. (26) is satisfied and dilute cool-
ing is possible. Given that a link involves two qubits, our
argument is in line with the general proof [26] that cool-
ing toward a GHZ state requires measurements on at least
N/2 qubits [66]. Beyond the framework of Hamiltonians
and jump operators with quasilocal interactions that we
consider here, dissipative preparation of a GHZ can also
be achieved with a single auxiliary degree of freedom,
provided that it is coupled globally to all sites [67].

C. Sufficient condition

The understanding that the role of the quasilocal coher-
ent interactions is to ensure population flow toward the
cooled link allows us to formulate a sufficient condition
for dilute cooling. The desired population flow can surely
be realized if any unitary evolution on the complement
Hilbert space H�

⊕ is possible. The latter is guaranteed if
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the system part that is defined on H�
⊕ is controllable and

controllability can be checked via the rank of the dynam-
ical Lie algebra [68]. In our case, what matters is the
Lie algebra L

(
K|ψ⊕〉

)
generated by the kernelizer. The

corresponding Lie rank condition reads

dim L
(
K|ψ⊕〉

) = (
dN − 1

)2 − 1. (29)

If Eq. (29) holds, then there exist, in principle, sufficiently
many interactions leaving the target state invariant such
that any time evolution in H�

⊕ can be generated. Since it
is a condition purely on the coherent part of the dynamics,
the necessary condition on the dissipative part in Eq. (25)
must also be fulfilled. We note that this condition is suf-
ficient: controllability is a strong assumption and may not
be necessary for cooling to work. But if the condition in
Eq. (29) is met, then it is possible to add to the Hamiltonian
operators from the kernelizer that induce the desired prop-
agation of excitations through the chain toward the cooled
link. Thus, Eq. (29) together with Eq. (25) indeed ensures
cooling toward ρ⊕.

To illustrate the relationship between population flow
and controllability, in Appendix D we verify that the
AKLT model in Eq. (18) fulfills the condition in Eq. (29)
for unitary controllability in the complement to the target
subspace. In fact, it does so for any N . This implies that
blind cooling should also be possible for chains of size
N = 3, 4. In other words, the condition in Eq. (29) tells
us how to amend the AKLT Hamiltonian such that blind
cooling also becomes possible for the small chains.

D. Use of the sufficient condition to design single-link
cooling for the AKLT chain with N = 3, 4 sites

For chains of size N = 3, 4 and cooling on a single link,
multiple steady states exist for the AKLT model. However,
since the sufficient condition in Eq. (29) is satisfied for any
N (see Appendix D), there exists a coherent interaction δH
in the kernelizer, which renders |AKLT〉 the unique steady
state. One possible choice is to add

J (i,i+1)
2,x =

∑
−2≤mj≤2

(∣∣2, mj
〉 〈

2, mj + 1
∣∣)
(i,i+1) + h.c. (30a)

on all but one link, i.e.,

δH = α
N−1∑
i=1

J (i,i+1)
2,x . (30b)

Since J (i,i+1)
2,x only acts on the local J = 2 subspace, it is

an element of the kernelizer, i.e., permissible. Its specific
choice can be motivated as follows. We seek the generator
of an evolution that mixes all the excited states to guar-
antee propagation toward the cooled link. The additional
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FIG. 6. The Liouvillian gap of the AKLT chain for N = 3 with
the additional coherent interaction in Eq. (30) on links (1, 2) and
(2, 3) as (a) a function of the coherent interaction strength α and
the dissipation rate γ and (b) a function of γ for three values of
α (solid lines). The gap estimates (cf. Eq. (15)) are also shown
(dashed lines). The solid lines in (a) indicate the values of α
shown in (b).

coherent interaction in Eq. (30) mimics the Jx action on the
J = 2 subspace, generating rotations of the spin around the
x axis.

Given our choice of δH , whether and how quickly the
|AKLT〉 is reached will now depend on the interaction
strength α and the dissipation rate γ . The rate of approach
is determined by the Liouvillian gap, shown in Fig. 6 for
N = 3 as a function of α and γ . A comparison with the
gap estimate in Eq. (15), obtained via exact diagonaliza-
tion of HAKLT, is also presented in Fig. 6(b). In the weak
cooling limit (γ � 1), in which Eq. (8) is valid, the esti-
mate captures the gap very accurately. When the coupling
to the detector becomes comparable to or larger than the
nearest-neighbor interactions, one would need to solve the
full system-detector dynamics [47]. In this regime, the gap
is expected to be suppressed due to the quantum Zeno
effect, which freezes the coherent evolution. If the dissipa-
tion is strong compared to the interactions, the dissipation
immediately removes any change to the state due to the
interactions, before propagation through the chain can hap-
pen. Even in the weak coupling limit, Fig. 6(a) suggests
maximizing � by proper choice of the relative strengths
of the additional coherent interaction and coupling to the
detector qubit. More generally, one may also optimize the
choice of the additional interactions δH out of all the oper-
ators contained in the kernelizer K|ψ⊕〉. For N = 4, the
AKLT model behaves in much the same way, i.e., dilute
cooling becomes possible by adding coherent interactions.

More generally, these observations raise the question of
how to choose δH . As already mentioned above, this may
be viewed as an optimization problem on the kernelizer
space, targeting maximum � or at least a nonzero gap.
Unfortunately, the kernelizer space is high dimensional
and the simplest way to approach the question is to ran-
domly sample δH ∈ K|ψ⊕〉 and then calculate �. We have
found in all of 1000 samples that such random sampling
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yields δH that results in successful cooling. We are thus
led to conjecture that the set of H ∈ K|ψ⊕〉 not leading to
dilute cooling is sparse, possibly of measure zero. This is
in line with earlier observations in the context of system
size-extensive (i.e., nondilute) steering [26].

V. DISCUSSION: GENERAL FRAMEWORK FOR
DILUTE MEASUREMENT-INDUCED COOLING

After showcasing dilute cooling for two paradigmatic
many-body models with finite-size numerics, we now turn
to the overall applicability of our approach. First, we
explore how far one can push the system size in the dilute
cooling of many-body systems, given that the approach to
the target state slows down as the system size increases.
Second, based on a summary of the general framework
of dilute cooling, we discuss to which systems it can be
applied.

The success of dilute cooling as the size of a many-
body system increases depends both on the type and on
the strength of the interactions, within the system and of
the system with the detector. The interaction strengths give
rise to competing time scales, the scaling of which with
system size is estimated in the following with the help
of a classical diffusion picture. This can readily be moti-
vated by viewing the jump operators as implementing a
localized sink for excitations. A classical picture obviously
misses many subtleties, e.g., the difference in the prop-
agation speed for classical and nonclassical correlations
[69], as well as the possibility of (partial) integrability
of the model [70]. Therefore, the scaling arguments pre-
sented below will only give a rough estimate for generic
correlated systems.

Consider a classical 1D diffusion equation with a
δ-function source (or, rather, sink). Denoting the diffusion
constant by D and the sink strength by A, the following
types of relaxation behavior for a system of size L, char-
acterizing its spatial extent, can be expected (for details of
the derivation, see Appendix E):

(1) The “ballistic regime”—for small systems, L � �,
where � is the mean free path with respect to the
interaction of elementary excitations. The dissipa-
tion rate is determined by the measurement rate γ
and the many-body level spacing.

(2) The intermediate diffusion regime—for �� L �
D/A, the decay is exponential with decay time tA =
L/A, where A = �γ and D itself is determined by �
(note that the diffusion constant does not enter the
decay rate explicitly in this regime).

(3) For large systems, L � D/A, the time dependence
of the survival probability is first given by t−1/2,
but becomes exponential at t � tD = L2/D, with
the “gap” given by 1/tD. In the limit of an infi-
nite system, excitations decay in a power-law (more

precisely, square-root) manner, implying zero gap
for L = ∞, as it should be.

For any finite system, all the above regimes correspond to
a finite cooling time: for long times, the removal of excita-
tions from the system occurs exponentially. The numerical
calculations presented in this work cover the “ballistic
regime” of not-too-large systems. Successful cooling in
such ballistic systems suggests that the sink satisfies the
conditions for cooling in larger systems once diffusion
sets in, which guarantees single-sink cooling in an infinite
system in the limit of infinite times.

The assumption of quasilocal interactions is key to
the competition of time scales as discussed above: for
extended systems with quasilocal interactions, the speed
with which excitations can propagate to the cooled site(s)
is necessarily finite. The picture changes for global inter-
actions, as is the case in, e.g., cavity QED [71], where the
upper bound on propagation is set by the system size [72].
Dilute cooling in finite time is then, in principle, possible
even in the limit of infinite system size. For large systems
with interactions characterized by light-cone propagation
of excitations [72], the best strategy for dilute cooling will
be to balance “diluteness” with system size. For exam-
ple, one can conceive a protocol where only every tenth
link is cooled, such that the number of “detectors” is still
considerably smaller than the number of system sites.

In general, a finite density of detectors will render the
cooling time finite in the thermodynamic limit. In prac-
tice, our protocol should be used to dilute the number of
detectors based on the acceptable cooling times and error
levels. Optimization of the performance of the protocol
under given constraints will yield the required scaling of
the number of detectors with the system size for a given
type of interaction. In practice, the optimal protocol perfor-
mance will be the result of several competing time scales.
It will then also be important to account for the finite dura-
tion of the measurement [47] when determining how dilute
a given protocol can be made, since short system-detector
interaction times will need to be compensated by a larger
number of detectors.

Next, we provide a simple “recipe” to identify systems
amenable to dilute measurement-induced cooling, drawing
directly on the examples of the AKLT and MG models:

(1) Consider as target state a ground state of a
frustration-free projector-based Hamiltonian.

(2) This state can be stabilized (even without the sys-
tem’s own Hamiltonian) by a frustration-free Lind-
bladian with local terms acting on all parts of the
system.

(3) The local jump operators of such a Lindbladian
suggest the form of the local coupling of the sys-
tem parts (cells) to the measurement apparatus
(detector).
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(4) In the system with its own Hamiltonian, add the cou-
pling to a detector qubit inferred above only at a
single elementary cell of the system (a link, i.e., two
neighboring sites in the AKLT and MG examples
above).

(5) Unless the Hamiltonian has a perfectly flat band
of excitations or there exist excitations that do
not overlap with the chosen cell, dilute cooling is
expected to work: for a finite system, all excitations
will be essentially removed within a finite time.

The simple recipe can be generalized beyond frustration-
free projector-based Hamiltonians, such as the AKLT and
MG models, and can be made to work even in the case
of flat bands or excitations avoiding the sink (as in the
N = 3, 4 AKLT model). The kernelizer (Sec. IV) is key
to this generalization. It allows for identifying Hamiltoni-
ans, Lindbladians, and possibly additional interactions to
realize dilute cooling. Use of the kernelizer results in the
following extension of the simple recipe:

(1) Find a system with a ground state that fulfills the
necessary condition in Eq. (25) and choose a set of
quasilocal jump operators according to the recipe.

(2) Check if the system fulfills the sufficient condi-
tion in Eq. (29) on the kernelizer, i.e., the existence
of sufficiently many Hermitian operators acting on
the hot subspace only, such that their Lie algebra
is of full rank. In other words, check if the sys-
tem is completely controllable on the (global) hot
subspace.

(3) Add as many operators from the kernelizer to the
Hamiltonian as needed to ensure a unique steady
state.

The most difficult step is the first one but earlier findings
for nondilute cooling with quasilocal couplings provide
a good starting point [25,26,63]. Good candidates are,
e.g., systems with product entangled pair states [3,4,24],
including matrix-product states for 1D systems.

VI. CONCLUDING REMARKS

Using quantum measurements or, more generally, cou-
pling to auxiliary quantum degrees of freedom, to engineer
desired dissipative dynamics comes with the advantage
of versatility and robustness but is also very costly. The
scaling of resources for measurement-induced dynam-
ics with system size is an important open but often
overlooked question. We have addressed this question
for measurement-induced cooling into many-body ground
states. Using finite-size numerics and analytical argu-
ments, we have shown that the number of detector qubits
can under certain conditions be reduced (“diluted”) all the
way to the extreme case of a single detector.

In particular, we have demonstrated dilute cooling
for two examples: the ground states of the AKLT and
MG models. Both are frustration-free spin chains where
the Hamiltonian is given by a sum over noncommuting
quasilocal terms. In general, cooling or passive steering
requires couplings within the system and with the detec-
tor that leave the target state invariant. For dilute cooling
via weak measurements, this translates into necessary con-
ditions on the jump operators and coherent interactions.
To formalize these conditions, we have introduced two
key concepts—the kernelizer and the local hot and cold
subspaces. The latter are defined via the projection of the
target state onto the local Hilbert space of the sites that
are cooled. Invariance of the target state is ensured by the
jump operators fulfilling Eq. (12) or, equivalently, the local
hot subspace not being empty. The kernelizer is the vec-
tor space of all quasilocal Hermitian operators that leave
the target state invariant. Since these operators generate
the flow of excitations toward the cooled site(s), a neces-
sary condition is their mere existence. But the kernelizer
is even more useful: it allows us to state a sufficient con-
dition for dilute cooling, in terms of controllability on the
Hilbert-space complement to the target state. Controllabil-
ity of the kernelizer implies the existence of sufficiently
many quasilocal Hermitian operators to generate any con-
ceivable unitary evolution on the complementary space.
A constructive recipe to implement dilute cooling is then
obtained simply by adding coherent interactions from the
kernelizer to the Hamiltonian.

One may wonder how robust dilute cooling will be with
respect to both undesired decay processes and imperfec-
tions in the implementation of the protocol. For a single
qubit, quantum steering in the presence of imperfections
is found to be fully robust against the erroneous choice
of system-detector coupling parameters and reasonably
robust against other errors [73]. Unfortunately, these find-
ings cannot simply be transferred to a many-body setting
in which the time scales of the cooling, the coherent sys-
tem dynamics, and the errors, either due to imperfections
or undesired decay, all compete. This will be the subject
of future work. At the same time, it is important to realize
that robustness will not pose a fundamental obstacle to the
practical application of dilute measurement-induced cool-
ing. Indeed, the competition of time scales for the desired
and undesired dynamics suggests an obvious amendment:
if the error rates are too large to admit dilute cooling in the
extreme limit of cooling a single link, the diluteness that
can be achieved, i.e., the number of detectors relative to the
number of system sites, will be determined by the accept-
able cooling times and error levels. The recent experi-
mental demonstration of measurement-induced cooling [6]
supports this assertion.

Our results are thus relevant for any driven-dissipative
dynamics where the desired dissipation is engineered by
coupling to auxiliary degrees of freedom. For example, it
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is known that the Markovian dynamics of any multipartite
open quantum system can be simulated by a multipartite
quantum collision model [74]. Our results can be used to
improve the scalability and efficacy of multipartite colli-
sion models and to determine which states are attainable
in open quantum systems with local dissipation. Further,
our approach of using controllability to identify couplings
within the system that enable dilute cooling is related to
the algebraic approach of Ref. [58,75] to determine the
operators that ensure uniqueness of the steady state. Com-
bining our conditions for dilute cooling with the algebraic
approach of Ref. [58,75] should allow for an even larger
class of many-body target states than discussed here. In
particular, this will allow for targets beyond ground states.

Future work should also explore dilute steering when
treating the system-detector interaction as an adjustable
parameter, as has been done in Ref. [47] for nondilute cool-
ing into the AKLT ground state. This is desirable from
a twofold perspective: conceptually, it goes beyond the
restrictions of the Markovian master equation, allowing us
to fully exploit the correspondence with collision models;
and in practice, we expect it to yield better more dilute pro-
tocols when taking the restrictions of practical detectors
into account.

To conclude, we have addressed the challenge of
measurement-based cooling a many-body quantum system
to its ground state without the costly burden of extensive
measurements. By showcasing the effectiveness of cool-
ing on a single link for frustration-free 1D spin chains, we
have demonstrated that passive steering protocols can be
taken to the dilute limit under specific conditions. Our find-
ings, supported by both analytical arguments and finite-
size numerical simulations, emphasize the potential for
reducing the resources needed for measurement-induced
dynamics. Moving forward, these insights pave the way for
further applications, offering a more cost-effective and ver-
satile approach to state engineering and state manipulation
in quantum systems.
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APPENDIX A: GAP ESTIMATE

Here, we derive the estimate given in Eq. (14) for small
dissipation rates γ . We do this by explicitly constructing an
eigenstate of the Lindbladian that has eigenvalue −iω − κ
with κ ≈ �est. Having an eigenstate with κ ≈ �est guar-
antees that the Lindbladian gap does not exceed this value,
i.e., � � �est.

Consider

ρcoh = |ψexc〉 〈ψ⊕| , (A1)

where |ψexc〉 ∈ H/ |ψ⊕〉 is any state in the excited sub-
space. ρcoh represents coherences between the target state
and the excited subspace and will decay as the population
of the excited subspace gets eliminated. Under Eq. (8),
the time evolution of the coherences is governed by an
effective Hamiltonian,

H̃ = Hs − ε⊕ − i
γ

2
Phot, (A2)

where ε⊕ is the ground-state energy of |ψ⊕〉 and

i
d
dt
ρcoh = H̃ρcoh,

where we have used the identities 〈ψ⊕|L†
i = 0 and∑

i L†
i Li = Phot. Therefore, any eigenstate |λ〉 of the non-

Hermitian Hamiltonian H̃ restricted to the excited sub-
space gives rise to an eigenstate of the Lindbladian gov-
erning the evolution in Eq. (8):

H̃ |λ〉 = λ |λ〉 ⇒ L (|λ〉 〈ψ⊕|) = −iλ |λ〉 〈ψ⊕| . (A3)

For γ → 0, the eigenstates of H̃ coincide with the eigen-
states |ε〉 of Hs up to corrections O(γ /δε), where δε

represents the level spacing of Hs. Then, by virtue of first-
order perturbation theory, the respective decay eigenvalues
are κ = −Re (−iλ) = −Im λ = (γ /2)〈ε|Phot|ε〉 up to cor-
rections O(γ 2/δε). In the case of degenerate eigenstates of
Hs, one needs to diagonalize Phot in each energy subspace
in order to find the eigenstates of H̃ . The smallest κ = �est
corresponds to the state |ε〉 with the smallest overlap with
the hot subspace, leading to Eq. (15b).
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APPENDIX B: PHYSICAL REPRESENTATION OF JUMP OPERATORS

We present the jump operators introduced above in terms of spin operators to provide a more physical picture of the
required interaction. Since the system-detector Hamiltonian Hs-d in Eq. (1) acts on a link, i.e., two system sites, it involves
a three-body interaction. It can always be written as Hs-d = σ †L+ σL† where σ (respectively, σ †) effects transitions
between |φ0〉 and |φ1〉 on the detector.

For the AKLT model, we find that

L1 = 1
8

Sz ⊗ S− + 1
4

Sz ⊗ Sz,− + 1
8

S2
z ⊗ S− + 1

4
S2

z ⊗ Sz,− − 1
8

S− ⊗ Sz − 1
8

S− ⊗ S2
z −

1
4

Sz,− ⊗ Sz − 1
4

Sz,− ⊗ S2
z ,

L2 = −1
8

Sz ⊗ S2
z +

1
8

Sz ⊗ S+,− + 1
8

S2
z ⊗ Sz + 1

8
S2

z ⊗ S+,− − 1
8

S+,− ⊗ Sz − 1
8

S+,− ⊗ S2
z +

1
16

S+ ⊗ S− + 1
8

S+ ⊗ Sz,−

− 1
16

S− ⊗ S+ − 1
8

S− ⊗ Sz,+ + 1
8

Sz,+ ⊗ S− + 1
4

Sz,+ ⊗ Sz,− − 1
8

Sz,− ⊗ S+ − 1
4

Sz,− ⊗ Sz,+,

L3 =
√

3
12

Sz ⊗ S2
z −

√
3

12
S2

z ⊗ Sz +
√

3
24

S+ ⊗ S− −
√

3
12

S+ ⊗ Sz,− +
√

3
24

S2
+ ⊗ S2

− −
√

3
24

S− ⊗ S+ −
√

3
12

S− ⊗ Sz,+

−
√

3
24

S2
− ⊗ S2

+ +
√

3
12

Sz,+ ⊗ S− −
√

3
6

Sz,+ ⊗ Sz,− +
√

3
12

Sz,− ⊗ S+ +
√

3
6

Sz,− ⊗ Sz,+,

L4 = −1
8

Sz ⊗ S2
z +

1
8

Sz ⊗ S+,− + 1
8

S2
z ⊗ Sz − 1

8
S2

z ⊗ S+,− − 1
8

S+,− ⊗ Sz + 1
8

S+,− ⊗ S2
z +

1
16

S+ ⊗ S−

− 1
8

S+ ⊗ Sz,− − 1
16

S− ⊗ S+ + 1
8

S− ⊗ Sz,+ − 1
4

Sz,+ ⊗ S− + 1
4

Sz,+ ⊗ Sz,− + 1
8

Sz,− ⊗ S+ − 1
4

Sz,− ⊗ Sz,+,

L5 = 1
8

Sz ⊗ S+ − 1
4

Sz ⊗ Sz,+ − 1
8

S2
z ⊗ S+ + 1

4
S2

z ⊗ Sz,+ − 1
8

S+ ⊗ Sz + 1
8

S+ ⊗ S2
z +

1
4

Sz,+ ⊗ Sz − 1
4

Sz,+ ⊗ S2
z ,

where Sx,y,z are the usual spin operators, S± = Sx ±
iSy , and Sa,b = (SaSb + SaSb)/2 with a, b ∈ {x, z, y,+,−}
denotes the symmetrized mean.

For the Majumdar-Ghosh model, the jump operators can
be rewritten as

L1 = 1√
8
(1⊗ S−−S− ⊗ 1)+ 1√

2
(Sz ⊗ S−−S−⊗Sz),

(B1)

L2 = 1
2
(Sz ⊗ 1− 1⊗ Sz + S+ ⊗ S− − S− ⊗ S+) , (B2)

L3 = 1√
8
(S+ ⊗ 1− 1⊗ S+) + 1√

2
(S+ ⊗ Sz − Sz⊗ S+).

(B3)

It should be noted that while the above expressions appear
rather lengthy, the jump operators that we consider are just
one specific choice. Different choices that are simpler and
easier to implement experimentally may exist.

APPENDIX C: PROOFS OF THE NECESSARY
CONDITIONS FOR DILUTE COOLING

Here, we provide proofs of the necessary and sufficient
conditions for dilute cooling stated in Sec. IV B.

A jump operator is permissible if it leaves the target
state invariant in the sense that L(i,i+1) ⊗ 1� |ψ⊕〉 = 0. Not
all operators with this property lead to cooling, which is
why this is only a necessary condition. As a first step,
we prove that a necessary condition for the existence of
a nontrivial (i.e., nonzero) permissible jump operator on
link (i, i+ 1) is for the reduced density operator to not be
full rank. This can be seen to be equivalent to the condi-
tion of a nonempty local hot subspace [see Eq. (25a)] by
recalling the definition in Eq. (11c) and using that any lin-
ear operator has full rank if and only if its kernel contains
only 0.

For convenience of notation, we write L = L(i,i+1),
assuming that the jump operator only acts on the cooled
link (i, i+ 1).

Claim. L⊗ 1� |ψ⊕〉 = 0 ⇒ rk ρ(i,i+1)
⊕ < d2.

We prove the contraposition

rk ρ(i,i+1)
⊕ = d2 ⇒ L⊗ 1� |ψ⊕〉 
= 0.

Consider the right-hand side; it is equivalent to

L⊗ 1� |ψ⊕〉 〈ψ⊕|L† ⊗ 1� 
= 0. (C1)
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Since the left-hand side of Eq. (C1) is a projector and using
the cyclicity of the trace,

Tr
(

L†L⊗ 1� |ψ⊕〉 〈ψ⊕|
)

= 0.

Taking the partial trace over all but the cooled link allows
us to rewrite Eq. (C1) in terms of the reduced state,

Tr
(

Lρ(i,i+1)
⊕ L†

)

= 0.

By assumption, ρ(i,i+1)
⊕ has full rank and we may write

ρ
(i,i+1)
⊕ =

d2∑
n=1

λn |n〉 〈n| ,

with λn > 0 and {|n〉} an orthonormal basis of Hi,i+1. Then,
the above trace becomes

∑
n λnTr |ñ〉 〈ñ|, with |ñ〉 ≡ L |n〉.

Therefore,
∑

n λnTr |ñ〉 〈ñ| > 0 unless |ñ〉 = 0 for all n.
Since L is required to be nontrivial, we can exclude this
case, which concludes the proof.

We now turn to the necessary condition on the coher-
ent interactions, given in Eq. (26). To grasp the intuition,
consider a state |φ〉 that is neither the target state nor in
the hot subspace. Because it is not in the hot subspace, it
cannot be affected by any jump operator (we have intro-
duced the jump operators to only act on the hot subspace).
Then, |φ〉 is not directly subject to cooling, and cooling
can only be mediated through interactions. In order for this
to work, there has to be some interaction H from the ker-
nelizer that connects |φ〉 to some other state

∣∣φ′〉 = H |φ〉.
It may be that

∣∣φ′〉 is then subject to cooling or that
∣∣φ′〉 is

connected via interactions to yet another state until eventu-
ally a state subject to cooling is reached. This observation
can be phrased as a necessary condition on the interactions:
for every such state |φ〉 that is not directly subject to cool-
ing, there has to exist an operator from the kernelizer that
maps |φ〉 to some other state

∣∣φ′〉 
= λ |φ〉 for some λ ∈ C.
We formalize this condition as

∀ |φ〉 ∈ H \
⎧⎨
⎩|ψ⊕〉 ⊕

⎛
⎝V (i,i+1)

hot

⊗
j 
=i

Hj

⎞
⎠
⎫⎬
⎭

∃H ∈ K|ψ⊕〉 :
∣∣φ′〉 = H |φ〉 
= λ |φ〉 .

Negating both parts of the statement leads to Eq. (26):
there can be no state |φ〉 being neither the target nor in
the hot subspace such that |φ〉 would be an eigenstate to all
operators from the kernelizer.

APPENDIX D: UNITARY CONTROLLABILITY
FOR THE AKLT MODEL

As an illustrative example, here we show that the suf-
ficient condition for dilute cooling on the interactions,

Eq. (29), i.e., full unitary controllability on the comple-
ment of the target state, is satisfied for the AKLT chain.
Our argument consists of three steps. First, we present the
general structure of a subset of the kernelizer for the AKLT
model. Although only a subset of the kernelizer, we show
in the third step that it generates an algebra of full rank
on the complement space. Therefore control on this sub-
set leads to full operator controllability on the complement
space. Second, we argue that the absence of nontrivial
invariant subspaces of the Lie algebra generated by the ker-
nelizer implies controllability. Finally, we present the proof
that there can be no other invariant subspaces of the Lie
algebra than the space complementary to the target state
and the target state itself.

First note that by construction, |ψAKLT〉 is orthogonal to
the Ji = 2 sectors. Its reduced state on the cooled link,
ρ
(i,i+1)
AKLT , only has support in the Ji = 0, 1 subspaces and

may in general have 3+ 1 nonzero eigenvalues. Moreover,
HAKLT makes no distinction between all Ji = 1 states such
that the eigenvalues of ρ(i,i+1)

AKLT are (3+ 1)-fold degenerate.
Labeling them λ1 = λ2 = λ3 ≡ λ and λ0, we may write

ρ
(i,i+1)
AKLT = diag

⎛
⎝0, 0, 0, 0, 0︸ ︷︷ ︸

Ji=2

, λ, λ, λ︸ ︷︷ ︸
Ji=1

, 1− 3λ︸ ︷︷ ︸
Ji=0

⎞
⎠ .

Evidently, any action on the Ji = 2 subspace leaves ρ(i,i+1)
AKLT

invariant. Therefore, the local kernelizer, K (i,i+1)
|ψAKLT〉 ≡

K|ψAKLT〉 ∩O(i,i+1), where O(i,i+1) is the space of operators
on the link (i, i+ 1) (cf. Sec. IV A) is 25-fold dimen-
sional, containing all the generators of unitaries acting on
the Ji = 2 subspace. In other words, K (i,i+1)

|ψAKLT〉 = su (5), the
generator of SU(5) acting on the Ji = 2 subspace.

Since O is the space of all quasilocal interactions, we
may express the (global) kernelizer as

K|ψAKLT〉 = K|ψAKLT〉 ∩O
= K|ψAKLT〉 ∩

(O(1,2) +O(2,3) + . . .+O(N ,N+1)) .

This implies that

K|ψAKLT〉 ∩O(i,i+1) ⊆ K|ψAKLT〉

and we have

N∑
i=1

K (i,i+1)
|ψAKLT〉 ⊆ K|ψAKLT〉.

We proceed by showing that the Lie algebra generated
by the sum of the local kernelizers is already sufficient
to satisfy Eq. (29). For brevity, we write L

(
K|ψ⊕〉

) = L
and K|ψ⊕〉 = K in the remainder of the proof and argue
that if the Lie algebra L acting on a vector space V only
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possesses a single invariant subspace, this subspace is V
itself. Moreover, in this case the dimension of L is maxi-
mal, dim L = dim V2. If it was smaller, then L would not
generate all unitaries on V and there would be a subspace
invariant under L. It is thus sufficient to prove that L pos-
sesses exactly two invariant subspaces, V⊕ |ψAKLT〉 = H.
The invariance of the latter subspace follows by construc-
tion. In other words, it is sufficient to show that there
exists no invariant subspace V with dimension smaller than
dim V = dN − 1.

The strategy of the proof is to construct V via
repeated applications of L on some initial state, cho-
sen to be the all-up state |v0〉 ≡ |1, . . . , 1〉 in the local
spin-1 basis. For lack of an explicit expression for L,
we will only consider actions of K ⊂ L for the genera-
tion of V. We shall see that this is already sufficient. We
introduce the notation for vector-space orbits, K [H] =
span {A |ψ〉 : A ∈ K , |ψ〉 ∈ H}; it is the image of Hilbert
space H (i.e., a vector space of states) under the vec-
tor space of operators K . As a first step, we prove the
following.

Lemma 1. There exists some k ∈ N such that V ≡ Vk ≡
L [|v0〉] is the smallest subspace invariant under L and
contains |v0〉.

Proof. First, by definition, 1 ∈ L such that |v0〉 ∈ V.
For the same reason, we have Vk ⊆ Vk+1. Therefore,
there exists some k ∈ N for which the series converges
and Vk+1 = Vk ≡ V. Next, we show that indeed there is
no smaller subspace that is invariant under L and con-
tains |v0〉. By definition of Vk, there exists a series of
A1, . . . , Ak ∈ L such that any |v〉 ∈ Vk is connected to |v0〉
via Ak . . .A1 |v0〉 = |v1〉. Therefore, V does not contain any
subspace that would be invariant under L. Now assume the
existence of smaller subspace W that is invariant under L
and that contains |v0〉. Since we are looking for the small-
est such subspace, W cannot contain another subspace
that is invariant under L. This implies that all |w〉 ∈ W
are connected to |v0〉 by some Aq . . .A1 |w〉 = |v0〉. By
assumption, Vk is converged, so that any such state |w〉 is
also in V. Therefore, W ⊆ V and because neither contains
additional invariant subspaces, we have W = V. �

To set the stage for constructing V, we introduce the
shorthand notation K =∑N

i=1 Ki, with Ki ≡ K (i,i+1)
|ψAKLT〉, and

note that the local Hilbert space on a single link (i, i+ 1)
is partitioned into a local excited space and a local ground
space,

Hi = Hi
2 ⊕Hi

0,1,

where Hi
2/(1,0) ≡ H(i,i+1)

2/(0,1) refers to the J = 2 (respectively,
J = 0, 1) subspace. The state |v0〉 is excited with respect to
this partition on all links of the chain and can be expressed
locally as

∣∣J = 2, mj = 2
〉

on any link. To carry out the

proof, we will first show controllability for even chain
lengths and then use the result to prove controllability for
odd chain lengths.

For even chain lengths, we can cover the whole chain by
the set of adjacent nonoverlapping even (odd) links, denot-
ing a link as even (odd) when the index of the left site is
even. In the following, we focus on a cover of the chain by
the set of odd links (1, 2) , (3, 4) , . . . , (N − 1, N ). The spin
operators Ji for even and odd i are then mutually commut-
ing, such that any state can be labeled by its J , mj quantum
numbers, and we can partition the total Hilbert space,

H =
N⊗

i=1, odd

(Hi
2 ⊕Hi

0,1

)

=
N∑

k=0

(
N
k

)
H2 ⊗ . . .⊗H2︸ ︷︷ ︸

N−k

⊗H0,1 ⊗ . . .⊗H0,1︸ ︷︷ ︸
k

=
N∑

k=0

∑
(p ,q)∈PN

k

Hp(1)
2 ⊗ . . .⊗Hp(N−k)

2︸ ︷︷ ︸
N−k

⊗Hq(1)
0,1 ⊗ . . .⊗Hq(k)

0,1︸ ︷︷ ︸
k

,

where PN
k denotes the set of permutations of an N -

dimensional vector of k entries equal to 0 and N − k entries
equal to 1. Here q (respectively, p) in (p , q) ∈ PN

k denote
the positions of the entries 1, (respectively, 0) in the per-
mutation. We illustrate this for the example of an N = 4
chain:

H = (H1
2 ⊕H1

0,1

)⊗ (H2
2 ⊕H2

0,1

)
= (H1

2 ⊗H2
2

)⊕ (H1
2 ⊗H2

0,1

)⊕ (H1
0,1 ⊗H2

2

)
⊕ (H1

0,1 ⊗H2
0,1

)
.

We will show that each such Hilbert-space summand
except H1

0 ⊗ . . .⊗HN−1
0 is connected to |v0〉 by repeated

actions K .
As a first step, consider the action of Ki on |v0〉. Note

that |v0〉 ∈ Hodd
2 ≡⊗N

i=1, odd Hi
2 and Ki contains any (Her-

mitian) operator on Hi
2. Therefore, the vector-space orbit

Ki |v0〉 = span
{
A |v0〉 : A ∈ Ki

}
contains any state of the

form
∣∣2, mj

〉
i

⊗N
j=1j 
=i,j odd |2, 2〉 with −2 ≤ mj ≤ 2, i.e.,

the whole Hi
2. Since for every i the vector-space orbit

Ki |v0〉 is connected to |v0〉 by K , it follows that they all
belong to V such that Hodd

2 ⊂ V.
Next, we show that we can generate a Hilbert-space

summand Hi
0,1 at an arbitrary position i from Hodd

2 . We
consider the local kernelizer Ki+1 acting on the even link
on i+ 1. Specifically, we consider the image of Hodd

2
under Ki+1. Since links i and i+ 1 (respectively, i and
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i− 1) are overlapping, the action of Ki+1 is nontriv-
ial only on Hi

2 ⊗Hi+2
2 and it is sufficient to consider

the vector-space orbit Ki+1
[Hi

2 ⊗Hi+2
2

]
. One can show

(numerically) that it has a finite overlap with Hi
2 ⊗Hi+2

0
and Hi

0 ⊗Hi+2
2 . More specifically, Ki+1

[Hi
2 ⊗Hi+2

2

]
con-

tains states of the form

⎧⎨
⎩
∣∣φj

〉
∈H2

⊗
∣∣∣ψJ=0,1

j

〉
∈H0,1

⎫⎬
⎭

j=1,...,4

, where

the four states
∣∣∣ψJ=0,1

j

〉
form a basis of H0,1 and∣∣φj

〉
are some states in H2. Similarly, it also contains⎧⎨

⎩
∣∣∣ψJ=0,1

j

〉
∈H0,1

⊗ ∣∣φj
〉

∈H2

⎫⎬
⎭

j=1,...,4

. By another application of Ki

(respectively, Ki+2) acting only on
∣∣φj

〉 ∈ Hi
2 (respectively,

Hi+2
2 ), we generate both Hi

2 ⊗Hi+2
0 and Hi

0 ⊗Hi+2
2 . This

works because Ki contains any (Hermitian) operator on
H2 such that Ki

[∣∣φj
〉⊗ ∣∣∣ψJ=0,1

j

〉]
= Hi

2 ⊗
∣∣∣ψJ=0,1

j

〉
and

likewise Ki+2
[∣∣∣ψJ=0,1

j

〉
⊗ ∣∣φj

〉] = ∣∣∣ψJ=0,1
j

〉
⊗Hi

2.
This mechanism works in general and allows us to gen-

erate any Hilbert-space summands with arbitrary number
of H0,1 on arbitrary links by alternating application of the
kernelizers on even and odd links. The only Hilbert-space
summand not entirely accessible in this way is Hodd

0,1 ≡⊗N
i=1, odd Hi

0,1 and we conclude that H\Hodd
0,1 ⊂ V.

In order to connect all excited states in Hodd
0,1 to |v0〉,

we now cover the whole chain by adjacent even links
(2, 3) , (3, 4) , . . . , (N , 1). First, note that |v0〉 ∈ Heven

2 .
Thus we can repeat the above procedure and immediately
find that H\Heven

0,1 ⊂ V. In order to show that V contains all
states except |ψAKLT〉, we consider the orthogonal comple-
ment V⊥. Note that

(H\Heven
0,1

)+ (H\Heven
0,1

) ⊆ V; there-

fore, V⊥ ⊆ ((H\Heven
0,1

)+ (H\Heven
0,1

))⊥ = (H\Heven
0,1

)⊥ ∩(H\Heven
0,1

)⊥ = Hodd
0,1 ∩Heven

0,1 . The only state not in V is
simultaneously in the ground space of all even and all
odd links. The only state in this set is the unique ground
state |ψAKLT〉. This concludes the proof of controllability
for even chain lengths.

For odd chain lengths, covering the whole chain by adja-
cent even and odd links leaves a single site uncovered, e.g.,
for 5 sites one would cover (1, 2) , (3, 4) or (2, 3) (4, 5). In
other words, the chain essentially becomes a chain with
open boundary conditions. We can still apply the above
procedure but without the closing link (N , 1) there are now
four states in V⊥: the four degenerate AKLT ground states
of a chain with open boundary conditions. To formalize
this, V⊥ ⊆ Hodd

0,1 ∩Heven
0,1 is not cut with HN

0,1 and there-
fore the states in V⊥ are not constraint on HN

0,n, resulting in
the four degenerate AKLT states. We can partition the four
states in V⊥ into 3+ 1 states: one state without excitations
on link N , corresponding to the unique AKLT ground state

of a chain with PBCs; and the other three excited on link
N and therefore subject to KN , which allows us to connect
them to V. This concludes the proof of controllability for
odd chain lengths.

APPENDIX E: DIFFUSION WITH A SINK

We present a diffusive model of a relaxation problem
in a 1D system with a pointlike sink (mimicking a mea-
sured link in the AKLT system). The motivation for such
a description comes from the fact that elementary exci-
tations of the AKLT model are weakly interacting local
objects (solitons, “domain walls”; see Ref. [77]). These
excitations are expected to diffuse on spatial scales larger
than the mean free path determined by their interaction.
The diffusive nature of their dynamics can also be inferred
from the Wigner-Dyson character of the many-body level
statistics (see Fig. 1 in Ref. [70]). Note that according to
Ref. [70], there are separate species (sectors) of excita-
tions (corresponding to different sets of quantum numbers)
that interact within the sector but not with excitations from
other sectors. Thus, the fluid of excitations splits into a
set of mutually noninteracting fluids, as a result of the
“partial integrability” of the AKLT model. In what fol-
lows, we consider a single fluid; all the spatial scales are
assumed to be larger than the mean free path in this fluid
of excitations—hence, we model the fluid with a diffusive
equation.

1. Sink as a delta-function source term

Consider a 1D diffusion equation on a segment
[−L/2, L/2] with a delta-function sink term located at
x = 0:

∂

∂t
f (x, t) = D

∂2

∂x2 f (x, t)− A δ(x)f (x, t), (E1)

where A describes the strength of the pointlike sink that
removes particles from the system and D is the diffusion
constant. The sink strength is related to the absorption rate
γ as A = �γ , where � is the “ultraviolet” length scale of
the problem.

We impose PBCs at x = ±L/2. At time t = 0, a particle
is located at x = x0:

f (x, 0) = δ(x − x0). (E2)

At the position of the sink, the distribution function is con-
tinuous, f (0− δ, t) = f (0+ δ, t) = f (0, t), with infinitesi-
mal δ→ 0, while the derivative of the distribution jumps:

∂f
∂x

∣∣∣∣
x=0+δ

− ∂f
∂x

∣∣∣∣
x=0−δ

= A
D

f (0, t). (E3)

Making use of the periodicity of the system, it is conve-
nient to consider a segment [0, L] instead of [−L/2, L/2]:
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in this case, there is no need to impose an additional
boundary condition at ±L/2. We then have the bound-
ary conditions relating the distribution function (and its
derivative) only at x = 0 and x = L:

f (0, t) = f (L, t), (E4)

∂f
∂x

∣∣∣∣
x=0
− ∂f
∂x

∣∣∣∣
x=L

= A
D

f (0, t). (E5)

The general solution for the distribution function can be
written in terms of symmetric (with respect to x = L/2)
and antisymmetric parts:

f (x, t; x0) = fa(x, t; x0)+ fs(x, t; x0), (E6)

fa(x, t; x0) = −fa(L− x, t; x0), (E7)

fs(x, t; x0) = fs(L− x, t; x0). (E8)

The antisymmetric part has zero at x = 0: otherwise, the
derivatives at x = 0 and x = L in Eq. (E5) would not match
the boundary condition at the sink. This means that the
antisymmetric part is not affected by the sink. The sym-
metric part has a finite value at x = 0 and L: otherwise, a
finite difference of derivatives in Eq. (E5) is impossible.

The distribution function is represented in terms of a
series of eigenmodes

e−Dtq2
sin(q(x − L/2)) and e−Dtq2

cos(q(x − L/2)),

which are solutions of the diffusion equation under the
periodicity constraint. The antisymmetric part is indepen-
dent of A,

fa(x, t; x0) = 1
L

∞∑
k=1

e−(πk/L)2Dt

× sin
[
πk
L

(
x0 − L

2

)]
sin

[
πk
L

(
x − L

2

)]
,

(E9)

and corresponds to the solution of the 1D Schrödinger
equation in a well with infinite walls at x = 0 and x = L
and a node at x = L/2. Replacing the sum over k with
an integral in Eq. (E9) (which is, in fact, a dangerous
procedure; see below), one obtains a natural result

fa(x, t; x0) ≈ e−(x−x0)
2/4Dt − e−(L−x−x0)

2/4Dt

2
√

4πDt
, (E10)

which describes the diffusive spreading of

fa(x, 0; x0) = 1
2

[δ(x − x0)− δ(x − L+ x0)] .

Diffusion leads to a suppression of this channel with time
due to the gradual homogenization of the distribution. The

characteristic time scale is determined by the exponent
for the slowest mode with k = 1. Since the antisymmetric
part does not contribute to the particle number (or survival
probability), we disregard fa in what follows.

The symmetric part has the initial condition of the form

fs(x, 0; x0) = 1
2

[δ(x − x0)+ δ(x − L+ x0)] .

This distribution spreads according to

fs(x, t; x0) = 1
L

∞∑
n=1

e−q2
nDt

× cos
[

qn

(
x0 − L

2

)]
cos

[
qn

(
x − L

2

)]
.

(E11)

The spectrum is determined by the (standard for quantum
wells of finite depth) equation resulting from Eq. (E5):

Qn tan Qn = AL
4D

, (E12)

where we have introduced a dimensionless wave vector

Qn ≡ qnL/2. (E13)

We illustrate Eq. (E12) in Fig. 7. In view of the symmetry
of fs, we can consider only positive eigenvalues.

One should distinguish between the following two
cases:

(i) AL/D � 1, (ii) AL/D � 1. (E14)

In case (i), the wave vector of the lowest eigenmode is
special (see Fig. 7), as the left-hand side of Eq. (E12) is

FIG. 7. The graphical representation of Eq. (E12). The spec-
trum is given by the values of Q for the intersections of the
blue curve Q tan Q with the horizontal line that shows the right-
hand side of Eq. (E12). The orange (green) line corresponds to
AL/4D � 1 (AL/4D � 1).
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quadratic in Q for Q � 1. This yields

Q2
1 �

AL
4D

⇒ q1 �
√

A
DL

. (E15)

All the higher modes have the eigenvalues Qn close to
multiples of π , yielding

qn � 2(n− 1)π
L

+ A
2πD(n− 1)

≈ 2(n− 1)π
L

, n > 1.

(E16)

Since q1 � qn>1, the lowest mode decays much more
slowly than other modes. As a result, for times t � tD,
where

tD = L2/D (E17)

is the diffusion time of spreading over the system, the
distribution is approximated by the lowest mode:

fs(x, t; x0) ≈ 1
L

exp
(
−A

L
t
)

cos

[√
A

DL

(
x0 − L

2

)]

× cos

[√
A

DL

(
x − L

2

)]
. (E18)

Note that the decay time tA in this case is independent of D:

tA = L/A. (E19)

Integrating Eq. (E18) over x, we obtain the survival prob-
ability, which turns out to be essentially independent of x0
(L � √

DtA):

S(t) ≡
∫ L

0
dx fs(x, t; x0)

≈ 2
√

DtA
L

sin
(

L
2
√

DtA

)
cos

x0 − L/2√
DtA

exp
(
− t

tA

)

≈ exp
(
− t

tA

)
. (E20)

Thus, in case (i), i.e., when the system is short or the
absorption is weak, the “gap” scales as 1/L.

In case (ii), the lowest eigenvalues Qn are close to odd
multiples of π/2 (see Fig. 7):

qn � (2n− 1)
π

L
− (2n− 1)

π

L
D
AL

, n � AL/D. (E21)

For large values of n, the eigenvalues Qn approach multi-
ples of π , yielding

qn � 2n
π

L
+ A

DLπn
, n � AL/D. (E22)

For very long times, t � tD, only the lowest mode with
n = 1 can be retained:

fs(x, t � tD; x0) ≈ 1
L

exp
(
−π

2

L2 Dt
)

sin
πx0

L
sin

πx
L

.

(E23)

Note that the sink strength A does not enter this result, as
we have neglected the subleading term in the spectrum in
Eq. (E21). The survival probability is then given by

S(t � tD, x0) ≈ 2
π

sin
πx0

L
exp

(
− t

tD

)
. (E24)

This corresponds to the “gap” that scales as 1/L2 (see
Eq. (E17)).

The above results for the gap scaling are relevant for a
finite-length system at the longest times, t →∞. In other
words, they correspond to the following order of taking the
“the thermodynamic limit”:

first t →∞, then L →∞. (E25)

The opposite order of limits,

first L →∞, then t →∞, (E26)

corresponds to evolution in an infinite chain. A natural
question in this case is whether the survival probability
for a fixed x0 tends to zero as t →∞ or the particle has
a chance to escape absorption. For A →∞, the answer is
clear: the problem reduces to the first-passage problem in
1D diffusion, where it is guaranteed that, within an infi-
nite time interval, a random walker eventually visits x = 0,
i.e., the survival probability indeed tends to zero. In our
case, however, the absorption strength is finite. Related
interesting questions can be asked about the fate of the
random walker when the initial point itself scales with L,
say, x0 = L/2 or x0 ∝ L1/2. In general, one can consider a
distribution of initial points and this distribution can also
evolve with the system size. Needless to say, taking the
limit L →∞ first allows one to analyze the survival prob-
ability in a finite system at times shorter than the dwell
time tD.

The general expression for the survival probability reads

S(t, x0) = 2
∞∑

n=1

e−q2
nDt cos

[
qn

(
x0 − L

2

)]
sin(qnL/2)

qnL
.

(E27)

Since we are interested here in the limit L →∞, we con-
centrate on case (ii), where L � D/A. Replacing, after
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some massaging, the summation over n with the integra-
tion over q (see details in Appendix E 2), we obtain, for
L →∞,

S(t, x0) �
∫ ∼A/D

0

dq
π

e−q2Dt
[

sin(qx0)

q
+ D

2A
cos(qx0)

]
.

(E28)

We note that the upper limit of the integral is determined
only up to a constant, but this constant is immaterial for
the leading long-time asymptotics of S(t), which read as
follows:

S(t, x0) � 2Ax0 + D

4A
√
πDt

erf

(
A

√
t
D

)

t→∞≈
√

D
4A
√
π t

, x0 � D/A, (E29)

and

S(t, x0) � 1
2

erf
(

x0√
4Dt

)
+

√
D

4A
√
π t

exp
(
− x2

0

4Dt

)

t→∞≈ x0

2
√
πDt

, x0 � D/A, (E30)

where

erf(z) �

⎧⎪⎪⎨
⎪⎪⎩

2z√
π

, z � 1,

1− e−z2

√
π z

, z � 1
(E31)

is the error function.
We observe that, for a fixed value of x0, the limit L →

∞ can indeed be taken first: the remaining expression is
finite and its time dependence is governed by the relation
between x0 and D/A. In any case, the long-time asymp-
totics of the survival probability in an infinite system is
inversely proportional to the square root of time. Interest-
ingly, for x0 � D/A, the leading term is independent of the
absorption strength A [see Eq. (E30)]. In finite systems, the
obtained results for S(t, x0) are valid in the time window
t � tD; for longer times, the power-law suppression trans-
forms into the exponential decay governed by the rate 1/tD
[see Eq. (E24)].

Thus, within this diffusive model, depending on the
relation between the system size L and the characteristic
lengths encoded by the parameters of the system, we can
observe the following types of relaxation behavior:

(1) Short systems, L � �, where � is the mean free
path with respect to the interaction of elementary
excitations: a “ballistic regime” with the relaxation
rate determined by the measurement rate γ and the
many-body level spacing as described in the main
text.

(2) �� L � D/A, an intermediate diffusion regime:
the exponential decay is determined by tA = L/A,
where A = �γ and D is the diffusion constant (itself
determined by �).

(3) L � D/A: the time dependence of the survival prob-
ability is first given by t−1/2 but at t � tD = L2/D it
becomes exponential, with the “gap” given by 1/tD.
In the limit of an infinite system, an elementary exci-
tation decays in the power-law (square-root) manner
(implying zero gap for L = ∞, as it should be).

2. Evaluation of the sums in survival probabilities

In this section, we evaluate the sum in Eq. (E27) to
derive the long-time asymptotics of the survival probabil-
ity in an infinite system (the limit L →∞ is taken before
sending t →∞). For t � tD, when many eigenvalues con-
tribute to the sum, it is natural to replace the summation
over n in Eq. (E27) by integration over q. One should,
however, exercise a certain caution when going from the
sum to the integral over q. Indeed, we note that the factor
sin(qnL/2) in the sum in Eq. (E27) is exactly zero for the
leading terms qn ≈ 2nπ/l in the spectrum for n � AL/D
given by Eq. (E22). This means that when neglecting the
subleading terms in the spectrum, we should set the upper
integration limit to A/D. For q > A/D, we should take into
account the subleading terms in the spectrum,

sin
qnL
2
� (−1)n

2A
DL2qn

, n � AL
D

.

For n � AL/D, we thus replace

cos
[

qn

(
x0 − L

2

)]
sin(qnL/2)

qnL
� A

DL2q2
n

cos(qnx0)

in Eq. (E27). Similarly, using Eq. (E21) for n � AL/D,
we can make another replacement in Eq. (E27) to take into
account the discreteness of levels:

cos
qnL
2
� (−1)n

D
2A

qn and sin
qnL
2
� (−1)n+1,

which leads to

cos
[

qn

(
x0 − L

2

)]
sin(qnL/2)

qnL
� sin(qnx0)

qnL
+ D

2AL

(
1− 2x0

L

)
cos(qnx0).
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As a result, we rewrite the sum in Eq. (E27) as

S(t, x0) = 2
∼AL/D∑

n=1

e−q2
nDt

[
sin(qnx0)

qnL
+ D

2AL

(
1− 2x0

L

)
cos(qnx0)

]
+ 2

∞∑
∼AL/D

e−q2
nDt A

DL2q2
n

cos(qnx0). (E32)

The value of n at which the sum in Eq. (E27) splits into
two distinct sums in Eq. (E32) is not determined pre-
cisely; hence n ∼ AL/D. This uncertainty, however, does
not affect the long-time behavior of the survival probabil-
ity. Now, it is safe to transform the sum into the integral,
since no zeros appear for the leading terms in discrete
qn. After this transformation, for the contribution of n >
AL/D (second sum), we will have

1
L2

∞∑
AL/D

. . . !→ 1
L

∫ ∞

A/D

dq
2π

. . . ,

which will vanish in the limit L →∞. Thus, we are left
with the contribution of the first sum in Eq. (E32), i.e.,
terms with n < AL/D. Neglecting the term with 2x0/L,
which also vanishes for L →∞ in the integral, we finally
obtain Eq. (E28).
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