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The precise engineering of quantum states, a basic prerequisite for technologies such as quantum-
enhanced sensing or quantum computing, becomes more challenging with increasing dimension of the
system Hilbert space. Standard preparation techniques then require a large number of operations or slow
adiabatic evolution and give access to only a limited set of states. Here, we use quantum optimal control
theory to overcome this problem and derive shaped radio-frequency pulses to experimentally navigate the
Stark manifold of a Rydberg atom. We demonstrate that optimal control, beyond improving the fidelity of
an existing protocol, also enables us to accurately generate a nonclassical superposition state that cannot be
prepared with reasonable fidelity using standard techniques. Optimal control thus substantially enlarges the
range of accessible states. Our joint experimental and theoretical work establishes quantum optimal control
as a key tool for quantum engineering in complex Hilbert spaces.
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I. INTRODUCTION

Quantum information science exploits the essential
quantum features of light and matter for the design of
devices with applications in computing, sensing, or com-
munication [1]. The building blocks of any quantum device
are qubits as information carriers, and their operation
requires the ability to prepare, manipulate, and read out
their state [2]. The simplicity of the basic concept is,
however, in contrast with the complexity encountered when
implementing it in an actual physical platform. Both in
atom-based and solid-state devices it becomes more and
more challenging to precisely control the quantum state as
the size of the system increases. For example, higher-order
terms of the Hamiltonian introduce nonlinearities that limit
the fidelity of basic operations [3,4]. The complexity of the
system spectrum increases, making it difficult to address
individually quantum states in a short time [5,6]. At the

same time, decoherence occurs more rapidly, which
requires to operate faster [7].
Quantum optimal control [8,9] is a versatile approach to

address the challenge of fast navigation in a large Hilbert
space. It allows one to design the time-dependent shape of
experimental control knobs, electromagnetic fields, for
instance, that accomplish a given task in a quantum system
in the best possible way. The starting point is a performance
index, such as the target state preparation fidelity, which is
treated as a functional of the (yet unknown) shape of the
electromagnetic control field. The essence of quantum
optimal control theory is to maximize the performance
index while minimizing the use of resources such as time,
bandwidth, or power [8].
A large number of theoretical quantum control protocols

cover most physical platforms considered for quantum
technologies, notably neutral atoms [10], ions [11], photons
[12,13], color centers in diamond [14,15], and superconduct-
ing qubits [16,17]. Quantum control experiments have
progressed at a much slower pace and with a focus on one
or two qubits or few-level systems [18–22]. For systemswith
larger Hilbert spaces, such as the quantum harmonic oscil-
lator [23,24] or an assembly of trapped atoms [7,25], optimal
control approaches start to replace conventional quantum
engineering designs, providing a faster alternative [26] to
existing preparation protocols [27]. Here, we go further and
demonstrate how quantum optimal control can be used to
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navigate a Hilbert space of large dimension, finding a
strategy to reach an arbitrary quantum state, for which no
intuitive preparation method is known.
Our example is themanipulation ofRydberg atoms,which

represent an attractive platform for quantum technologies
[28]. In particular, Rydberg atoms in long-lived circular
states, where the angular momentum projection takes its
maximal value, are ideal for fundamental experiments on
matter-field coupling [29]. They have also been suggested for
use as logical states in a quantum computer [30,31] or as an
optical-to-microwave interface [32,33]. Superpositions of
circular stateswith oppositemagneticmomentumor of states
with very different electric dipoles are instrumental for
quantum-enabled electrometers and magnetometers [4,34].
Use of circular states and their superpositions in quantum
computing and sensing in particular requires the capability of
fast and accurate state preparation.
In this paper, wemake use of optimal control to coherently

manipulate Rydberg atoms and prepare an arbitrary super-
position of states in a complex Hilbert space inside the Stark
manifold of rubidium. We first demonstrate a significant
improvement of the preparation of the long-lived circular
state in terms of fidelity and duration. Furthermore, we
prepare mesoscopic superpositions of angular momentum
eigenstates in the Rydberg manifold that cannot be created
with standard protocols. This achievement is made possible
by using quantumoptimal control to tune the time-dependent
phase and amplitude of the rf drive [35] that coherently
manipulates the atoms inside the Rydberg manifold. Our
work opens the way to generate arbitrary nonclassical
superposition states in large Hilbert spaces.

II. RYDBERG ATOMS

We consider rubidium atoms in the presence of an
electric field F. The Hilbert space to be navigated is
sketched in Fig. 1, showing the rubidium levels with a
principal quantum number n ¼ 52 and a positive magnetic
quantum number m. The levels are arranged in a triangular
shape with the circular state 52c at its tip [36]. For m > 2,
the levels are almost hydrogenic, and the transitions
between nearby levels are, to first order in F, degenerate
at the Stark frequency ωn=2π ¼ 3nea0F=2h (250 MHz for
F ¼ F0 ¼ 2.5 V=cm). For m ≤ 2, the energy levels are
shifted due to the electron penetration in the ionic core and
the transitions can differ from a few megahertz to hundreds
of megahertz with respect to ωn [37].
Transitions between different m sublevels couple to

different polarizations of the electromagnetic field. An
atom initially prepared in a state of the lowest diagonal
of Fig. 1 will remain in this subspace (represented by thick
lines on Fig. 1) when driven by a σþ-polarized radio
frequency at frequency ωrf ¼ ωn (blue arrows in Fig. 1).
This subspace can be described as a large spin J ¼ 51=2,
evolving on a generalized Bloch sphere, with the circular
state at the north pole. For the hydrogenic levels (m > 2),

the rf field induces a classical rotation of the spin on this
sphere [33].
The experiment takes place in a plane-parallel capacitor

providing the directing field F aligned with the Oz
quantization axis (Fig. 2). The atoms are prepared at t¼0
in the lowest m ¼ 2 level (label m2 on Fig. 1) by a
combination of laser pulses [33] (see Appendix B). They
are then manipulated by a rf field created by four electrodes
circling the interval between the capacitor plates. We apply
on them rf drives atωrf=2π ¼ 250 MHz generating near the
center of the structure a σþ-polarized field. After having

FIG. 1. Stark levels. Scheme of the energy levels for
F ∼ 2.5 V=cm, sorted by m values for m ≥ 0. The circular state
is labeled c. The levels of the lower diagonal are labeled mj for
low-m states and ej for high-m states. Finally, e01 is the Stark level
with m ¼ 50 above the circular state. The laser excitation
prepares the m2 state. The atom is then driven by a σþ rf field
at frequency ωrf ¼ ωn (blue arrows). Since a σþ field only
couples levels with Δm ¼ þ1, the dynamics of the atom remains
in the subspace of the manifold lower diagonal (levels repre-
sented as thick lines).

FIG. 2. Scheme of the experiment. A rubidium thermal beam
(dark blue arrow), effusing from an oven, crosses a structure
made of two plane-parallel electrodes A and B (blue) creating the
vertical directing electric field F. They are surrounded by four
ring electrodes (yellow, two of them are not represented). At the
centerO of the structure, the atoms interact with three laser beams
(780 and 776 nm, σþ polarized, red arrow; 1258 nm, π polarized,
green arrow) that cross at 90° in the horizontal plane. At the end
of the sequence, the atoms are detected in the state-selective field-
ionization detector D.
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interacted with the rf field, the atoms drift toward another
capacitor, where they are detected by state-selective field
ionization. The detector resolves levels of different mani-
folds or with very different m values in the same manifold.
We measure the population of levels with overlapping field-
ionization signals by applying additional probe microwave
(MW) pulses, as described in Appendix C.

III. FAST CIRCULARIZATION

The standard procedure for rf-induced circular state
preparation is a rapid adiabatic passage sequence [33], in
which the electric field is slowly ramped down across F0 in
the presence of the rf field. Since the transition frequency
ω2;3 between 52m2 and 52m3 only differs from ωn by a few
megahertz for F ≈ F0, scanning the field over 0.24 V=cm
transfers the atoms from 52m2 into 52c with a 99.5%
efficiency, cf. Appendix D. To reach such a high efficiency,
the adiabatic passage method has to be slow, with a
preparation time in the few microsecond range at least.
Such a long time can be detrimental, in particular for
quantum sensing experiments [4,34].
The 52c state can be prepared much faster from the same

52m2 level by setting F ¼ F0 and applying a constant
amplitude rf pulse [33]. The duration of the preparation
(96 ns) is only limited by the applied rf amplitude. Figure 3
shows the time evolution of the populations of relevant
states. The maximum transfer efficiency is limited to 77.4
(4)%, significantly lower than that of the adiabatic passage.
Some of the population remains trapped in noncircular
levels, due to the frequency shifts of the m ¼ 0 and m ¼ 1
levels induced by the quantum defects.
Optimal control allows us to combine fast preparation

with high fidelity. We use as experimental knobs two time-
dependent voltages, VrðtÞ and ViðtÞ, generated by two

outputs of an arbitrary waveform generator (Appendix E).
They control rf mixers which modulate the amplitudes
FrðtÞ and FiðtÞ of the two quadratures of the σþ-polarized
rf field:

FrfðtÞ ¼ FrðtÞ½cosðωrftÞux þ sinðωrftÞuy�
þ FiðtÞ½− sinðωrftÞux þ cosðωrftÞuy�:

The process we seek to optimize is a state-to-state transfer
from the initial state, 52m2, to the target state jΨtgti, 52c
[35]. The success of the transfer is quantified by the real-
valued target functional,

JT ¼ 1 − jhΨðTÞjΨtgtij2; ð1Þ

where jΨðTÞi is the final state at the end of the protocol.
A perfect match of final and target state, up to a global
phase, is obtained if and only if JT takes its minimal value,
JT ¼ 0. The final state depends implicitly, via its time
evolution, on the external controls FrðtÞ and FiðtÞ. An
optimal choice of Fr=iðtÞ can be calculated by minimization
of the target functional [8]. Here, we use Krotov’s method
to minimize JT . It is a gradient-based optimization tech-
nique that ensures monotonic convergence of JT toward its
minimum [38]. A detailed, hands-on introduction of the
method is found in Ref. [39]. As with any gradient-based
technique, the condition for JT to be extremal, ∇J ¼ 0,
results in an update equation for the external controls, and
evaluation of the gradient implies forward propagation in
time of the initial state and backward propagation of the
target state [8]. In practice, the functional is thus minimized
iteratively by updating FrðtÞ and FiðtÞ until we reach a
transfer efficiency of 99% in the simulation.
In our system, the rf pulse mainly couplesm levels on the

lowest diagonal in Fig. 1, but off-resonant excitation may
also populate the levels on the second lowest diagonal.
These levels are thus included in the calculation. To ensure
that the optimized field is experimentally feasible, we need
to include constraints on the spectral bandwidth and the
maximum amplitude of the pulse. The simplest possible
implementation—truncation of the optimized pulse to the
allowed range of amplitude and frequency after each
iteration step—has turned out to be sufficient to this
end [35].
The optimized pulse is presented Fig. 4(a). The dynam-

ics induced by the shaped pulse is discussed in detail in
Ref. [35]. Briefly, the optimized pulse can be decomposed
into two phases [separated by a vertical line in Fig. 4(c)].
The first 40 ns prepare a superposition of hydrogenic levels
(m > 2) that corresponds to a spin coherent state (SCS) on
the Bloch sphere, while leaving no spurious population in
m ¼ 1 [Figs. 4(c) and 4(d)]. The last 73 ns rotate the SCS
onto the circular state.
The optimization algorithm produces a pulse, in which

the amplitude of the two quadratures is modulated even

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

τ (ns)

Po
pu

la
tio

ns

FIG. 3. Circular state preparation with a square pulse. Evolu-
tion of the population PjðτÞ of the levels labeled by j (j ¼ m1,
m2, m3, e2, e1, and c, where the labels and the associated color
code are defined in Fig. 1) as a function of the duration τ of the rf
pulse. The points are experimental with statistical error bars. The
shaded areas (purple and orange) shows the error range for levels
m1 and m3 due to the uncertainty on the MW probe pulses
calibration (see Appendix C). The solid lines correspond to the
numerical simulation of the experiment.
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after τ > 40 ns. This corresponds to a slow oscillation of
the direction of the rotation axis of J on the Bloch sphere.
This modulation is not necessary for reaching the circular
state. It results from the constraint on the spectral band-
width that is imposed during the optimization. The physical
insight in the dynamics under the optimized pulse allows us
to remove the unnecessary modulation. We have checked
numerically that, after t > 40 ns, these oscillations can be
flattened out into a pulse of constant amplitude and well-
chosen phase without losing the transfer efficiency into the
circular state [Figs. 4(b) and 4(c)].
Using the rf mixer calibration (Appendix E), we calcu-

late, from the flattened theoretical pulse, the voltage VrðtÞ
and ViðtÞ to be applied in the experiment. We finally
perform a “closed-loop” optimization, directly on the
experimental signal. For the first 40 ns the two quadratures

are rescaled by the same 0.95 factor, close to 1, in order to
compensate for the rf amplitude calibration uncertainty. For
the flat part of the pulse (τ > 40 ns), we finely tune the SCS
rotation by independently adjusting the constant values of
VrðtÞ and ViðtÞ in order to optimize the final circular state
population (Appendix F).
Figure 5 presents the experimental evolution of the Stark

levels populations (dots) for the optimized pulse (abruptly
interrupted after a variable duration τ). The transfer
probability into the circular state now reaches 96.2(3)%,
for a preparation time (113 ns) comparable to the duration
of the square pulse (Fig. 3). The fact that only about 25
oscillations of the carrier rf wave perform such an efficient
transfer is a remarkable result. The evolutions of the probed
level populations are in good agreement with the numerical
predictions (solid lines). Quantum control provides thus a
considerable improvement over the usual circular state
preparation methods.
We now test the coherence of the prepared state by

checking that the process does not spoil a coherent super-
position with a reference level. For practical reasons, we
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FIG. 5. Circular state preparation with an optimized pulse. The
voltage Vr and Vi for the optimized pulse are shown in the upper
panel. The main frame shows the evolution of the population
PjðτÞ of the levels j as a function of the duration τ, after which the
rf pulse is interrupted, for j ¼ m1; m2; m3 (τ ≤ 52 ns) and j ¼
e2; e1; c (τ ≥ 80 ns). The points are experimental with statistical
error bars, using the color code of Fig. 1. The shaded area (purple
and orange) shows the error range for levelsm1 andm3 due to the
uncertainty on the MW probe pulses calibration. The solid lines
correspond to the numerical simulation of the experiment. The
discrepancy between the data and the simulation at the beginning
of the optimized pulse is probably due to the finite bandwidth of
the rf circuit. When we set Vr and Vi to zero at time τ, the rf has a
finite ring-down time, which affects the measured population.
The effect of this ring down is not visible at the end of the pulse, as it
corresponds there to a small additional rotation of the spin, which is
automatically compensated by the optimization procedure. Finally,
we find Pc ¼ 96.2ð3Þ%, Pe1 ¼ 0.20ð1Þ%, Pe2 ¼ 0.74ð4Þ%. We
alsomeasurePe3 ¼ 0.15ð7Þ%,Pe4 ¼ 0.13ð8Þ%,Pm3

¼ 0.08ð3Þ%,
Pm2

¼ 0.37ð4Þ%, Pm1
¼ 1.16ð8Þ%.

(a)

(b)

(c)

(d)

FIG. 4. Optimized circularization pulse. Amplitude of the two
quadratures (red and black lines) of the optimized rf pulse
(a) before and (b) after postprocessing (flattening of the
oscillations that result from the constraint on the spectral
bandwidth of the pulse). The gray area indicates the pulse
envelope. (c) Evolution of the population of each Stark level of
the lower diagonal as a function of time for the rf pulse of (b).
The inset presents the histogram of the populations at τ ¼ 40 ns
(red bars). (d) Snapshot of the Q function of the atomic state
represented as a large angular momentum on a generalized
Bloch sphere for τ ¼ 0 ns (i), τ ¼ 15 ns (ii), and τ ¼ 40 ns (iii).
The first 40 ns of the pulse transfer the 52m2 level (i) into a spin
coherent state (iii).
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start from a superposition of 52c (reached by an initial rapid
adiabatic passage) and the reference level 50c. This super-
position is prepared by a π=2 mw pulse driving the 52c →
50c two-photon transition. A sequence of a time-reversed
optimized rf pulse (Appendix F) and of a direct one,
separated by a 10 ns delay, drives 52c into 52m2 and back.
A final π=2mw pulse mixes again 52c and 50c and closes a
Ramsey interferometer.
The optimized time-reversed and direct pulses are shown

in Fig. 6(a). Since the Stark frequency ω50=2π differs by
only 10 MHz from ωrf=2π, the rf driving produces a
spurious rotation of the spin associated to the n ¼ 50
manifold. By using two amplitude levels for the first 73 ns
of the reversed pulse and the last 73 ns of the direct pulse,
we ensure that each pulse returns 50c exactly onto itself,
while preserving the optimal transfer between 52c and
52m2 (Appendix F). Figure 6(b) presents the probability for
finally detecting the atoms in 52c as a function of the
relative phase of the twoMW pulses. The fringe visibility is
0.891(6), a large value, limited by electric field noise. The
atoms are transiently cast in a superposition of levels (52m2

and 50c) with very different dipoles which is utterly
sensitive to the electric field [4]. An extrapolation to zero
electric noise leads to a visibility equal to 1 within the error
bars (Appendix G). We thus conclude that the rf optimized
pulse preserves coherences extremely well.

IV. CAT STATE PREPARATION

Optimal control opens much wider possibilities than
merely improving circular state preparation. We use the
same methodology as described above, simply replacing
the target state jΨtgti by an equal weight superposition of
the lowest level in the m ¼ 1 manifold (52m1) with the
circular state (52c). This superposition is a Schrödinger-
cat-like state useful for quantum-enabled electrometry [4].
It is particularly challenging to prepare, as its preparation is
equivalent to a π=2 pulse on a 50-photon transition.
We again design the rf pulse driving the desired state

transfer using Krotov’s optimization method. Figure 7(a)
presents the corresponding results, with Figs. 7(b) and 7(c)
showing the calculated evolution of the population in both
the m level basis and the dressed-state basis. The prepa-
ration of the cat state involves a transient superposition of
many of the dressed states in a complex interference
process. During the first tens of nanoseconds, the optimized
pulse progressively shelves half of the population into the
eigenstate of the atom-rf field Hamiltonian that has the
largest 52m1 component [nearly horizontal line in Fig. 7(c)]
while bringing the other half of the wave function into a
SCS [inset of Fig. 7(b)]. The second part of the pulse rotates
the SCS toward the north pole of the Bloch sphere, while
leaving the population of 52m1 unaffected (the eigenstate is
a dark state for the rf). At the end of the pulse, as the SCS

(a)

(b)

(c)

FIG. 7. Optimized cat state preparation pulse. (a) Amplitude of
the two quadratures of the rf pulse given by the Krotov optimi-
zation. Time evolution of the population of each Stark level of the
lower diagonal (b) and of the instantaneous eigenstates of the
atom-rf field Hamiltonian in the rotating frame (c), denoted as
“dressed states” in the main text. The vertical position of the lines
in (c) reflects the instantaneous energy of the corresponding state,
and the color of a line shows its population at time τ. The inset in
(b) presents the computed population histogram for the differentm
levels at τ ¼ 60 ns, showing that the pulse prepares, during the
first few tens of nanoseconds, a superposition ofm ¼ 1 and a spin
coherent state made up of levels with m > 2.
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FIG. 6. Coherence test. (a) Evolution of the control voltages
VrðτÞ (black line) and ViðτÞ (red line) in the sequence that tests
the coherence of the optimized circularization pulse. We first
apply a time-reversed optimized pulse followed by a circulari-
zation pulse similar to that of Fig. 2(b). The flat parts of the pulses
(0 ≤ τ ≤ 73 and 163 ≤ τ ≤ 236 ns) are now divided in two steps,
ensuring that the reference 50c level is transferred back into itself
by each pulse. (b) Probability to finally detect the atoms in 52c as
a function of the relative phase between the MW Ramsey
pulses. The points are experimental with statistical error
bars, the solid line is a sine fit. The visibility [89.1(6)%] is
excellent, limited mostly by the technical electric field noise in
the experiment.
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reaches the circular state, the rf is slowly switched off so
that the part of the wave function in the dark state
adiabatically transfers into a pure 52m1 level.
Similarly to the case of circular state preparation, the

qualitative understanding of the dynamics allows us to
simplify the pulse. We replace the pulse in the second half
of the protocol (τ > 80 ns) by a linearly increasing and
decreasing amplitude of the control voltage of each quad-
rature (Appendix F). This enables us to tune the rotation
angle of the spin coherent state (by independently changing
the pulse area for each quadrature), while ensuring that the
phase and amplitude of the rf field vary slowly enough for
the other half of the wave function to adiabatically remain
shelved in the instantaneous dressed state.
Figure 8(a) shows the programmed pulse. Its shape

includes minor compensations for the finite electronic

bandwidth, and the parameters of the two linear amplitude
ramps are adjusted to optimize the rotation of the SCS
(Appendix F). Figure 8(b) shows the experimental evolu-
tion of the relevant level populations (dots). The prepara-
tion of the dressed state with a large component of 52m1 is
evidenced by the nearly constant population of 52m1 after
60 ns. The final population balance between 52m1 and 52c
is excellent. The experiment is again in good agreement
with the numerical model (solid lines).
In order to test the coherence of the cat state, we apply,

after an adjustable delay Δt, a time-reversed preparation
pulse. During the delay, the superposition state accumulates
a phase in the frame rotating with the rf carrier frequency.
The state at the end of the time-reversed pulse thus
oscillates between 52m2 and a state orthogonal to it as a
function ofΔt. Figure 8(c) shows the oscillations, withΔt, of
the probability to find the atoms finally in 52m2. The
visibility of the interference is high [0.80(1)]. An extrapo-
lation to zero electric field noise (Appendix G) leads to a
visibility of 0.97(2). We estimate that we prepare the
expected state superposition with a remarkable 93% fidelity.

V. CONCLUSIONS

We have used quantum optimal control to prepare
nontrivial Rydberg states with high fidelity in short times.
The optimized pulses are very robust to the limited
calibration of the control electronics. At the same time,
they are comprehensible, which eases adaptation of the
pulses to the experimental constraints. For example, the
strategy for the cat state pulse consists in preparing a
superposition of a spin coherent state and an eigenstate that
is kept dark during the rotation of the spin coherent state.
This understanding allows us to experimentally fine-tune
the final rotation of the spin coherent state without affecting
the final population of 52m1.
The preparation could be made even faster if more rf

power is available in the experiment. The method could be
extended to a larger variety of Rydberg quantum states, in
particular by applying simultaneously σþ- and σ−-polar-
ized shaped pulses, with interesting applications for quan-
tum-enabled electrometry and magnetometry [4,34]. More
generally, our results attest for the power and reliability of
quantum optimal control in a Hilbert space of a large
dimension, with a complex combination of harmonic and
anharmonic ladders. They open the way for quantum
optimal control based state engineering in complex systems
for applications in quantum science and technology.
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(Appendix F) as a function of the delay Δt between the pulses.
The points are experimental with statistical error bars, the solid
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technical electric field noise, demonstrates the coherence of the
cat state prepared by the first pulse.
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APPENDIX A: NUMERICAL OPTIMIZATION

In this appendix, we describe additional details of the
pulse optimization (see also Ref. [35] for a comprehensive
description).
In order to calculate the dynamics of the atoms, we first

numerically compute all the eigenvalues of the Stark
Hamiltonian (in the absence of rf field) for each magnetic
quantum number m ≥ 0. For this diagonalization we
consider all states with a principal quantum number of
n ¼ 52� Δn. We use the known rubidium quantum
defects up to l ¼ 7 [40] for describing the energy levels
in zero electric field. We then compute the transition matrix
elements between neighboring m and mþ 1 Stark levels.
We check the validity of the Hilbert space truncation by
comparing the eigenstates and transition matrix elements
for one value of Δn with an extended Hilbert space with
Δnþ 1. For the chosen value of Δn ¼ 4, this method leads
to an accuracy of the order of 10−6 in the energy levels and
transition matrix elements.
At the field strength F ¼ F0 ¼ 2.5 V=cm, we find

transition frequencies ωm;mþ1 between m and mþ 1:

ω0;1 ¼ 2π × 71.1 MHz;

ω1;2 ¼ 2π × 190.3 MHz;

ω2;3 ¼ 2π × 244.8 MHz:

Form ≥ 3, all the transition frequencies ωm;mþ1=2π are less
than 1 MHz away from ωrf=2π (the difference being due to
residual quantum defect shifts and the second-order Stark
effect).

1. Fast circularization

Theoptimizationof the desired state-to-state transfer in the
Starkmanifold of the rubidiumRydberg atomwas performed
using Krotov’s method [35]. We have assumed the initial
state to be the lower state of the 52m ¼ 2 ladder of the Stark
manifold. For this optimization, it is sufficient to take the
lowest two diagonal ladders of the n ¼ 52 manifold into
account and to operate thus in a Hilbert space of dimension
103 [35]. As a final check, we perform a numerical
integration with the full, untruncated Hamiltonian using
the optimized pulse.We find the same final population of the
target state as in the truncated space within a precision
of 5 × 10−5.
In the optimization, we take into account two exper-

imental limitations. At each iteration of the optimization,
we truncate the pulse bandwidth by a square window
(frequency bounds 140 ≤ ωrf=2π ≤ 360 MHz, with sine-
shaped edges of 20 MHz width). This avoids getting
variations of the quadrature amplitudes that would be

too fast to be implemented experimentally. We also limit
the pulse amplitude by truncating the pulse to the maximal
experimentally available value Frf ¼ 5 V=m.
We then carry out the optimization for a given total pulse

duration, targeting a preparation fidelity larger than 99%.
The guess pulse has a flattop shape with sine-shaped edges
with a rise and fall time of 10 ns. For too short pulse
durations, the algorithm does not converge within the
imposed limitations; it first reaches convergence for a
duration of 113 ns.

2. Cat state preparation

The target state for this optimization is chosen to be
ðj52m1i − j52ciÞ= ffiffiffi

2
p

. The maximal rf amplitude was kept
at Frf ¼ 5 V=m, but the bandwidth of the pulse was
slightly changed to 130 ≤ ωrf=2π ≤ 320 MHz with sine-
shaped edges of 50 MHz width, such that the center of the
frequency window is a bit lower than for the circularization
pulse. The guess pulse was similar to the circularization
one. The duration of the pulse had to be increased to 150 ns
for a successful optimization.

APPENDIX B: TIMING OF THE EXPERIMENT

The setup is depicted Fig. 2. A thermal beam of Rb,
effusing from an oven, crosses a structuremade of two plane-
parallel electrodes surrounded by four electrodes that form a
ring around them. At the center of the structure, the atoms
interact with three laser beams at 780, 776, and 1258 nm,
resonant with the 5S1=2 → 5P3=2, 5P3=2 → 5D5=2, and
5D5=2 → 52F transitions, respectively. The 780 and
776 nm propagate along the same direction, and are always
on. The 1258 nm laser is sent perpendicular to the other laser
beams, and is switched on for 1 μs at the beginning of the
sequence. The beginning of the laser pulse sets the time
origin t ¼ 0.
During the laser excitation, the quantization axis is

defined by a small horizontal electric field along the axis
of the 780 and 776 nm lasers, created by a voltage applied
across two of the ring electrodes. This field partially lifts
the degeneracy of the 52F level, and we set the 1258 nm
laser to be on resonance with the transition toward the 52F
sublevel with jmj ¼ 2. We also choose the polarization of
the 780 and 776 nm lasers to be σþ polarized and the
1258 nm laser to be π polarized with respect to the
quantization axis. We thus prepare the atoms selectively
in the state j52F;m ¼ 2i.
Once the atoms have been excited to the Rydberg state,

the electric field is adiabatically rotated and ramped up to
F ¼ 2.63 V=cm between t ¼ 2 μs and t ¼ 3 μs. It is
finally aligned with Oz, which is the quantization axis
for the rest of the experiment. It remains constant for 1.3 μs,
and decreases down to F ¼ 2.39 V=m in 1.5 μs. It is
finally kept constant for 1 μs. This variation of the electric
field makes it possible to prepare the 52c circular state with
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a high purity by adiabatic passage if needed as initial state
for the rest of the sequence. In this case, we ramp up at
t ¼ 2.91 μs the amplitude of the rf field to a value of
4.8 V=m in 2.05 μs. We leave the amplitude constant for
0.1 μs, and ramp it down to zero in 2.05 μs. When
decreasing F ¼ 2.63 V=cm down to F ¼ 2.39 V=cm,
the Stark frequency in n ¼ 52 varies between 262 and
238 MHz and crosses the rf source frequency while the rf
amplitude is near its maximum. Ramping down the electric
field in the presence of the rf adiabatically transfers the
atoms from 52m2 into the circular state. If we choose not to
apply the rf, the atoms remain in 52m2. At t ¼ 7 μs, we set
the amplitude of the electric field to the value F0, and we
start the optimized rf pulse at t ¼ 8.71 μs.

APPENDIX C: MEASUREMENT OF LEVEL
POPULATIONS

The field-ionization detection method does not resolve
Stark sublevels of the same manifold that have similar m
values. Therefore, to measure the population of a given
sublevel of the n ¼ 52 manifold after the rf pulse, we
selectively transfer its population into a level inside the 51
or 50 manifolds with a MW π pulse, called “probe pulse,”
and count the number of atoms in the target manifold.
However, different atomic levels may have different detec-
tion efficiencies (Fig. 10). As a result, we use specific
normalization methods for each relevant level.

1. Low-m states

We measure the population of the levels 52mi (i ¼ 1, 2,
3) by applying, after the end of the rf pulse, a MW probe π
pulse tuned on one of the 52mi → 51m2 transitions. In
order to avoid a strong count rate reduction due to the finite
lifetime of 51m2, we then transfer the population of 51m2 to
51c by adiabatic passage and count the number of atoms in
the 51c state. This number is proportional to the population
of the probed levels and to the efficiencies of the 52mi →
51m2 π pulses. They are carefully calibrated and included
in the calculation of populations in 52mi. These popula-
tions are obtained by using as a normalization factor the
number of atoms counted in 52m2 (via 51c) in the absence
of rf pulse. Note that this method discriminates the states
with m ¼ 2 and with m ¼ −2. Atoms initially prepared in
the 52; m ¼ −2 state due to small laser polarization
imperfection are transferred in 51; m ¼ −2 by the probe
MW π pulse but are not transferred into 51c by the σþ rf
circularization pulse.
The 52mi → 51m2 (i ¼ 1, 3) transitions have a large

linear Stark effect. A slow drift of the static electric field
(∼10−4 V=m over an hour timescale) results in significant
errors in the calibration of MW π pulse efficiencies (shaded
area on Fig. 3 of the main text). For the cat state preparation
(Fig. 8 of the main text), we normalize the population in
52m1 by the number of atoms directly prepared in 52m1

from 52m2 using a resonant rf π pulse (efficiency 99% as
seen on Fig. 9). This method is insensitive to the 52m1 →
51m2 MW probe pulse efficiency calibration.

2. High-m states

We measure the population of the 52c, 52ei (i ¼ 1, 2, 3,
4), and 52e01 levels, by applying a probe microwave π pulse
that selectively transfers one of these levels into the
corresponding one in the 50 manifold [33], which is finally
detected. For each of these levels, we calibrate a correction
factor that takes into account the efficiency of the micro-
wave π pulses and the relative detection efficiency of
relevant levels in order to estimate their populations [41].
We normalize populations by the number of atoms that we
detect with the 52c probe when we prepare the circular state
by adiabatic passage. This method thus directly compares
the efficiency of the preparation of the circular state using
the optimized pulse with that of the adiabatic passage
(estimated at ∼99.5%; see below), independently from the
transfer efficiency of the circular state MW probe.

APPENDIX D: ADIABATIC PASSAGE
EFFICIENCY

Figure 10 presents the ionization signals of the atomic
state with and without performing the adiabatic passage at
t ¼ 2.91 μs. We clearly see that most of the population in
the initial state has been transferred to high-m states, which
ionize in larger fields. The residual counts at the position
of the 52m2 ionization peak (about 0.5%) most likely
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FIG. 9. Preparation of the 52m1 state. To normalize the
population of 52m1 in the superposition state, we modulate
the two quadratures of the 250 MHz carrier at 59.5 MHz in order
to generate a 190.5 MHz rf field that is resonant with the 52m2 −
52m1 transition. The points represent the population Pm2

remain-
ing in the 52m2 state as a function of duration τ of the pulse. For
τ ¼ 88 ns, we measure Pm2

≈ 0.3%. The amplitude of the rf is
chosen low enough so that the atoms cannot be transferred into
52m3 (numerical simulations estimate that Pm3

< 0.5%). The
pulse thus prepares 51m1 with more than 99% efficiency.
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correspond to atoms that have been prepared in them ¼ −2
state (due to the excitation laser polarization imperfections)
and do not interact with the σþ radio frequency. However,
our detection method using probes distinguishes between
m ¼ �2 (see above). The m ¼ −2 atoms thus do not
contribute to the measured populations in the m ¼ 2 state.
There are two possible effects that limit the efficiency of

the adiabatic passage [33]. On the one hand, if the
adiabaticity criterium is not fulfilled, some population
can remain in the second last level of the energy ladder,
52e1. On the other hand, if the polarization of the radio
frequency is not purely σþ, some population can end up in
the elliptical state 52e01, defined on Fig. 1. In order to
precisely quantify the purity of the adiabatic circular state
preparation, we have measured the population of the 52e1
and 52e01 states after the adiabatic passage using probes
[33]. We find Pe1 ¼ 0.15ð1Þ% and Pe0

1
¼ 0.39ð3Þ%,

respectively. Since these numbers are already very low,
the probability for the atoms to be in levels further away
from the circular is negligible. We thus estimate a prepa-
ration fidelity on the order of 99.5%.

APPENDIX E: rf SETUP

We generate the two quadratures of the radio-frequency
fields by using two sets of four synthesizers with a global
phase difference of π=2. For each set, we optimize the
relative phases and amplitudes in order to generate a purely
σþ-polarized rf field with the four ring electrodes. We
control the field global amplitude of each quadrature by
applying control voltages VrðtÞ and ViðtÞ to sets of mixers

used as voltage-controlled attenuators. Control voltages are
generated by a two-channel arbitrary waveform generator
with a 1 ns time resolution. (Fig. 11).
The field FrfðtÞ is the sum of the two quadrature vector

fields defined by

FrðtÞ ¼ FrðtÞ½cosðωrftÞux þ sinðωrftÞuy�;
FiðtÞ ¼ FiðtÞ½− sinðωrftÞux þ cosðωrftÞuy�:

In order to determine the conversion between FrðtÞ and
VrðtÞ [orFiðtÞ andViðtÞ], we first record how the amplitudes
of the rf signals after the amplifiers, Srk and Sik, vary as we
change the control voltagesVr andVi. Figure 12 presents the
results of this measurement (normalized to the value of the
amplitude forVr ¼ Vi ¼ V0 ¼ 1.52 V).We observe that all
channels behave quite similarly (up to a ∼10% deviation for
channel 2 and large values of the drive voltage). Using the
measurement of the k ¼ 3 channel, we define
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FIG. 10. Ionization signals. Number of detected atoms per
sequence as function of the ionization field applied in the field-
ionization detector for the laser-excited 52m2 state (red line) and
for the 52c state prepared by the adiabatic passage (black line).
The difference of height of the two peaks results from the shorter
lifetime of the 52m2 state. The residual peak in the black signal at
the position of the red one probably results from Rydberg atoms
spuriously prepared in the state m ¼ −2 due to laser polarization
imperfections.

FIG. 11. Radio-frequency circuit. The outputs of an eight-
channel synthesizer (light red), labeled Sr;01 , Sr;02 , Sr;03 , Sr;04 , Si;01 ,
Si;02 , Si;03 , and Si;04 , are sent to eight sets of three successive mixers
that are controlled either by the voltage VrðtÞ (black line, for the
outputs Sr;01 , Sr;02 , Sr;03 , Sr;04 ) or by ViðtÞ (red line, for the outputs
Si;01 , Si;02 , Si;03 , Si;04 ). The resulting signals are combined two by
two using 3-dB couplers and sent to amplifiers, which feed the
four ring electrodes surrounding the experiment (in gray).
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frðVrÞ ¼ Sr3ðVrÞ=Sr3ðV0Þ; ðE1Þ

fiðViÞ ¼ Si3ðViÞ=Si3ðV0Þ: ðE2Þ

We then use the atomic signal to measure the amplitude
of the rf field F0

r corresponding to Vr ¼ V0. To that end, we
prepare the atoms in the 52c state and apply to the mixers a
pulseVrðtÞ of constant amplitudeV0 and variable duration τ.
Such a rf pulse induces a rotation of the spin coherent state
describing the atoms at an angular frequency Ω52

rf , which is
directly proportional to the amplitude F0

r of the rf field at the
position of the atoms when VrðtÞ is equal to V0. By
measuring the population of the levels 52c, 52e1,
and 52e2 as a function of τ, we infer Ω52

rf and measure
F0
r ¼ 4.37� 0.03 V=m.We measure with the same method

the amplitude F0
i ¼ 4.53� 0.02 V=m of the rf field

when ViðtÞ ¼ V0.
We finally have

FrðtÞ ¼ F0
rfr(VrðtÞ);

FiðtÞ ¼ F0
i fi(ViðtÞ):

We invert these equations to convert the optimal pulse
amplitude FrðtÞ and FiðtÞ into the time-dependent voltages
VrðtÞ and ViðtÞ. This method assumes that all mixers
provide exactly the same attenuation, and neglects the
frequency response of frðVÞ and fiðVÞ as well as the
nonlinearity of the amplifiers at the end of the rf generation
chain. It thus only provides a rough calibration. After the
conversion, we perform a final “closed loop” optimization

of the shape of VrðtÞ and ViðtÞ on the atomic signal as
described in Appendix F.

APPENDIX F: EXPERIMENTAL OPTIMIZATION
OF THE PULSES

1. Optimization of the 52c preparation

We optimize the first 40 ns of the pulse by globally
rescaling the amplitude of the pulse by an adjustable factor
λ. This provides a first-order compensation for the uncer-
tainty on the determination of fr, fi, F0

r , and F0
i and on the

frequency response of the mixer. The last 73 ns of the pulse
correspond to a rotation of the spin coherent state toward the
north pole of the Bloch sphere. This part is very sensitive to
phase and amplitude calibration of the rf. For a givenvalue of
λ, we directly optimize iteratively the amplitude of the
plateaus of VrðtÞ and ViðtÞ on the population of 52c.
We repeat the optimization for different values of λ

between 0.9 and 1. Figure 13 presents the populations Pc,
Pe1 , and Pe2 for each value of λ once the plateaus have been
optimized. The flat optimum shows that the optimized pulse
is very robust to small changes. We finally choose the value
λ ¼ 0.95, which has the highest Pc and the lowest Pe2 .

2. Optimization of coherence test rf pulse

For demonstrating the coherence of the optimal circu-
larization pulse, we start the sequence with a superposition
of levels 52c and 50c. We have to adapt the optimal pulse in
order to additionally preserve the population of 50c. In the
static field F0, the Stark frequency in the n ¼ 50 manifold
is only Δ=2π ¼ 10 MHz smaller than ωrf=2π. Therefore,
the rf pulse also affects the state of the atoms in the n ¼ 50
manifold. The first 40 ns of the optimal pulse transfer 50c
into a spin coherent state jθ;ϕi50. We optimize the last
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FIG. 12. dc response of the mixers. Left: Measurement of the
ratio SrkðVÞ=SrkðV0

rÞ, where SrkðVÞ is the amplitude of the signal
SrkðtÞ when the voltage VrðtÞ is set to V for k ¼ 1 (black squares),
k ¼ 2 (orange circles), k ¼ 3 (blue upward triangles), and k ¼ 4
(green downward triangles). Right: Measurement of the ratio
SikðVÞ=SikðV0

i Þ, where SikðVÞ is the amplitude of the signal SikðtÞ
when the voltage ViðtÞ is set to V (same color code). We choose
k ¼ 3 to determine frðVÞ and fiðVÞ.
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FIG. 13. Scaling factor optimization. Populations of the 52c
(black), 52e1 (red), and 52e2 (green) states obtained after
optimizing the parameter of the rotation part of the circularization
pulse, for different values of the scaling factor λ.
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73 ns of the pulse so that they induce a rotation that maps
jθ;ϕi50 into 50c.
In the frame rotating at frequency ωrf=2π, a rf field of

fixed phase and amplitude induces a rotation of the
effective spin defined by the rotation vector,

τΩ52 ¼ τ

0
B@

Ω52
rf cosϕ

Ω52
rf sinϕ

0

1
CA;

where ϕ is the phase of the pulse and Ω52
rf the Rabi

frequency, proportional to the rf amplitude. In the
n ¼ 50 manifold, due to the detuning Δ, the same pulse
induces a rotation of the effective spin defined by

τΩ50 ¼ τ

0
B@

Ω50
rf cosϕ

Ω50
rf sinϕ

Δ

1
CA;

where Ω50
rf ¼ ð50=52ÞΩ52

rf .
To ensure that jθ;ϕi50 is rotated to 50c at the end of the

pulse,we replace the single 73 ns pulse of constant amplitude
(phase ϕ, Rabi frequencyΩ52

rf;0) by two pulses of duration τ1
and τ2, with same phase ϕ but different amplitudesΩ52

rf;1 and
Ω52

rf;2, such that

τ1 þ τ2 ¼ 73 ns;

τ1Ω52
rf;1 þ τ2Ω52

rf;2 ¼ ðτ1 þ τ2ÞΩ52
rf;0: ðF1Þ

The condition (F1) ensures that the two-amplitude pulse
induces in the n ¼ 52 manifold the same rotation as the
constant amplitude pulse. By tuning the ratio between Ω52

rf;1

and Ω52
rf;2 and τ1 and τ2, it is possible to ensure at the same

time that the part of thewave function in then ¼ 50manifold
returns into 50c at the end of the pulse. We optimize
experimentally fΩ52

rf;1;Ω52
rf;2; τ1; τ2g, with the constraint

(F1) until the pulse transfers 50c into 50c [measured
efficiency 98.2(5)%].
We implement the time reversal of the preparation pulse

[first 113 ns of Fig. 3(a) in the main paper] by inverting the
amplitude of one of the quadratures and programming the
pulse backward in time. Experimentally, we fine-tune
again the values of fΩ052

rf;1;Ω052
rf;2; τ

0
1; τ

0
2g of the time-reversed

pulse to ensure that it transfers 50c into 50c [measured
efficiency 98.2(8)%] and 52c into 52m2 [measured effi-
ciency 88.1(9)%].

3. Optimization of the pulse preparing
the superposition 52m1 and 52c

The first part of the pulse produces a superposition of a
spin coherent state and of the rf dressed state that
adiabatically evolves into 52m1 when the rf is turned

off. The second part of the pulse brings the spin coherent
state to 52c, and slowly switches off so that population of
the dressed state ends up in 52m1.
The optimization process is similar to that of the

circularization pulse. First, we globally rescale the first
80 ns of the pulse with a scaling factor (leading to
λ ¼ 0.925). Then, we adjust the amplitude of the two
quadratures during the last part of the pulse to optimize the
transfer of the spin coherent state into the circular state. To
ensure that the other part of the wave function adiabatically
follows the instantaneous dressed state of the rf, we vary
linearly VrðtÞ and ViðtÞ between t ¼ 80 ns, t ¼ t1 ¼
136 ns, and t ¼ 167 ns. By varying the values of Vrðt1Þ
and Viðt1Þ characteristic of the linear ramps, we optimize
the probability to end up in 52c, without affecting the
probability to end up in 52m1 at the end of the pulse. Note
that the final ramp is slightly longer than in the simulation
to compensate for the shape of fr and fi (Fig. 12): the rf
field amplitudes FrðtÞ and FiðtÞ go to zero faster than the
amplitude of VrðtÞ and ViðtÞ.
However, this optimization was not sufficient to obtain a

perfect balance between 52c and 52m1. We found that
the final population of 52m1 is very sensitive to the amplitude
of the optimal pulse during its first 4 ns. At this timescale,
we can no longer correct the frequency response of the
mixer by a global scaling factor λ. We need to rescale
independently the amplitude of the driving voltage [VrðtÞ →
αVrðtÞ andViðtÞ → αViðtÞ] for t < 4 ns. Figure 14 presents
the final population of 52m1 as a function of the scaling
factor α. For α ¼ 2.8, we obtain a final population of
Pm1

¼ 0.502ð6Þ.
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FIG. 14. Optimization of the first lobe of the cat state pulse.
Populations of the level m1, m2, m3, e2, e1, and c as a function of
the scaling factor α with which we amplify the first 4 ns of the
pulse. Increasing α increases the final population of 52m1 and
decrease the final population of 52c (until eventually the SCS part
of the wave function no longer reaches the north pole at the end of
the pulse, leading to an increase of Pe1 ).
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4. Optimization of the time-reversed
pulse recombining the 52m1 and 52c

To measure the coherence of the superposition of 52m1

and 52c, we program the time reversal of the pulse of
Fig. 4(a). In principle, as the pulse of Fig. 4(a) performs the
transfer

j52m2i →
1ffiffiffi
2

p ðj52m1i − j52ciÞ

and the evolution is unitary, the time-reversed pulse must
perform the transfer

j52ci → 1ffiffiffi
2

p ð−j52m2i þ j52m2i⊥Þ;

j52m1i →
1ffiffiffi
2

p ðj52m2i þ j52m2i⊥Þ;

where j52m2i⊥ is a state orthogonal to j52m2i. Therefore,
as we vary the relative phase of the superposition of j52ci
and j52m1i before applying the time-reversed pulse, one
should observe constructive and destructive interferences in
the amplitude of probability to end up in j52m2i. The
visibility of this interference pattern gives the degree of
coherence of the superposition.
Experimentally, we find that if we simply program

VrðtÞ → −Vrð−tÞ and ViðtÞ → Við−tÞ, the resulting pulse
transfers the state 52c into 52m2 with a probability pc→2 ¼
0.61ð2Þ and the state 52m1 into 52m2 with a probability
p1→2 ¼ 0.28ð1Þ. This would lead to a strong limitation of
the visibility of the interference. The remaining population
is found to be in 52m1 [pc→1 ¼ 0.25ð1Þ for 52c and in
p1→1 ¼ 0.56ð2Þ for 52m1]. To optimize the contrast of the
fringes, we add after the time-reversed pulse an additional
rf pulse, tuned on the 52m1 − 52m2 transition, whose phase
is chosen to decrease pc→2 and increase p1→2. With this
additional pulse, we obtain pfinal

c→2 ¼ pfinal
1→2 ≈ 0.44.

APPENDIX G: ELECTRIC FIELD NOISE
AND EXTRAPOLATION TO ZERO FIELD

Because of the differential Stark effect between the levels
52m2, 52m1, and 52c, the visibility of the fringes of
Figs. 3(b) and 4(b) is very sensitive to the electric field
noise. To quantify this effect, we vary the time delay
between the two rf pulses that prepare and recombine the
“cat states” (j50ci þ j52m2i or j52ci − j52m1i, respec-
tively) and measure, for each delay, the visibility of the
fringes. The longer the atoms stay in the superposition, the
more sensitive the relative phase is to the electric field,
reducing the visibility of the fringes. To calibrate the
sensitivity of the relative phase to the electric field, we
record the fringes for two slightly different values of the
static electric field [4]. Figure 15 shows the visibility as a
function of the phase sensitivity ξ [in rad/(mV/m)] for the

two superpositions. Assuming a Gaussian electric field
noise, we expect the visibility V to be

V ¼ V0e−ð1=2Þξ
2σ2F ;

where σF is the variance of the electric field noise and V0

the intrinsic visibility in the absence of noise. A fit to
the experimental data gives V0 ¼ 1.00ð1Þ [and σF ¼
13.4ð1Þ mV=m] for the superposition j50ci þ j52m2i. For
the superposition j52ci þ j52m1i, we findV0 ¼ 0.97ð2Þ and
a slightly cleaner field σF ¼ 11.6ð1Þ mV=m (the two sets of
data have been recorded at a few months time interval).
By symmetry, the phase sensitivity of the preparation

of the superposition is half that of the full process of
preparation and recombination. As a result, the degree of
coherence C of the superposition j52ci − j52m1i after the
rf pulse is

C ≥ V0e−ð1=2Þðξ0=2Þ
2σ2F ≈ 93%;

where ξ0 is the phase sensitivity for the shortest Δt. The
final fidelity F is then

F ¼ 1

2
ðPc þ Pm1

þ 2C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PcPm1

p Þ ≥ 0.93:

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

0.2

0.4

0.6

0.8

1.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0.2

0.4

0.6

0.8

1.0

Fr
in
ge
vi
si
bi
lit
y

(b)

Fr
in
ge
vi
si
bi
lit
y

(a)

ξ [rad/(mV/m)]

FIG. 15. Visibility as a function of the field sensitivity.
Visibility of the fringes measuring the coherence of (a) j50ciþ
j52m2i and (b) j52ci þ j52m1i, as function of the phase
sensitivity of the fringes to the electric field ξ. The points are
experimental (with statistical error bars), the line is a Gaussian fit
of the form V ¼ V0 expð−ξ2σ2F=2Þ, where V0 is the intrinsic
visibility that the fringes would have in the absence of electric
field noise.
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