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Operator controllability refers to the
ability to implement an arbitrary unitary
in SU(N) and is a prerequisite for uni-
versal quantum computing. Controllabil-
ity tests can be used in the design of
quantum devices to reduce the number
of external controls. Their practical use
is hampered, however, by the exponen-
tial scaling of their numerical effort with
the number of qubits. Here, we devise a
hybrid quantum-classical algorithm based
on a parametrized quantum circuit. We
show that controllability is linked to the
number of independent parameters, which
can be obtained by dimensional expressiv-
ity analysis. We exemplify the applica-
tion of the algorithm to qubit arrays with
nearest-neighbour couplings and local con-
trols. Our work provides a systematic ap-
proach to the resource-efficient design of
quantum chips.

1 Introduction

Universal quantum computing [1] requires con-
trollability on the quantum processing unit, so
that every quantum logic gate can be imple-
mented. A common layout in hardware platforms
such as those based on superconducting circuits
achieves this by combining two-qubit couplings
with local drives for each qubit of the array [2, 3].
While effective, this approach becomes demand-
ing for larger arrays, due to both the physical
space needed for each control as well as the asso-

ciated calibration. Controllability tests can help
identify less resource-intensive architectures that
are still capable of performing the same quantum
gates [4].

Controllability in general studies the dynamics
that can be implemented in a quantum system
driven by a set of controls [5, 6, 7]. In particu-
lar, a system is pure-state controllable if it can
reach all final states. Alternatively, an (evolu-
tion) operator controllable system is capable of
implementing every unitary gate, a necessary fea-
ture for universal quantum computing. Tests for
these two different types of controllability rely
on computing the rank of the dynamical Lie al-
gebra of the Hamiltonian [5] or utilize methods
based graph theory [8, 9, 10, 4]. For small sys-
tem sizes, the tests can be carried out analyti-
cally [11, 12, 13, 14]. For some high- and infinite-
dimensional systems, controllability can be deter-
mined using induction arguments [15, 16, 9, 17].
Beyond these special cases, a numerical approach
is possible in principle [4], but is limited by the
exponential scaling of the Hilbert space dimen-
sion with respect to the number of qubits. In
other words, the accuracy and feasibility of con-
trollability tests for increasing system size suffer
from the curse of dimensionality.

Here, we present a hybrid quantum-classical
controllability test, for both pure-state and op-
erator controllability of qubit arrays. The hybrid
method we propose evaluates the controllability
of the qubit array by measurements on a quan-
tum device, either the system to be studied with
an extra auxiliary qubit or one that mimics the
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dynamics of the original system. This opens up
a new way of designing controllable qubit arrays
with fewer resources, helping to address the is-
sue of scalability. To do so, we harness the com-
putational power of quantum circuits to extract
information directly from the qubit array under
study. While our controllability test relies on the
same mathematical foundations as the Lie rank
condition, its design circumvents issues that arise
in the construction of the dynamical Lie algebra,
in particular the orthonormalization calculations
it entails. Mapping the classical operations of our
hybrid quantum-classical algorithm to a quantum
device would further expand the size of the qubit
arrays whose controllability we can determine.

Parametric quantum circuits constitute the ba-
sis of many algorithms, for example variational
algorithms for solving computationally hard opti-
mization problems [18, 19]. The circuits consist of
a set of parametric gates that can be used to mea-
sure a cost function. After a classical optimiza-
tion, the parameters are updated to give a new
cost value, continuing the feedback loop of the
algorithm. It is necessary to include enough in-
dependent optimization parameters to reach the
best possible solution. However, minimizing the
number of parametric gates and circuit depth is
also key in the era of noisy quantum devices [20].
In order to reduce the noise of the circuit while
maintaining its optimization capability, every re-
dundant parameter should be identified and re-
moved from the circuit. This goal is related to the
dimensional expressivity of the circuit and can
be achieved with dimensional expressivity analy-
sis [21, 22], a hybrid quantum-classical algorithm
to systematically find redundant parameters.

In order to leverage dimensional expressivity
analysis to test for controllability, we define a
parametric quantum circuit based on the archi-
tecture of a given qubit array with local controls
and qubit couplings. We then use dimensional
expressivity analysis to quantify the number of
independent parameters which is related to the
controllability of the original qubit array. We
provide a complete description of how to carry
out the hybrid controllability test on a quantum
circuit, opening the possibility of obtaining infor-
mation of the controllability of a quantum device
before it is built.

The manuscript is organized as follows. The
basic concepts of controllability analysis and

parametric quantum circuits are briefly reviewed
in section 2. The pure-state controllability test
is presented in section 3, including its derivation,
definition and showcase examples. Section 4 ex-
tends the test to operator controllability, making
use of the Choi-Jamiołkowski isomorphism. Sec-
tion 5 concludes.

2 Theoretical background
To define controllability tests for qubit arrays,
we combine the notions of system controllability
and circuit expressivity. For the sake of a self-
contained presentation, we briefly recap the basic
concepts in this section.

2.1 Controllability
We consider quantum systems linearly coupled to
external controls. They are described by traceless
Hamiltonians of the form

Ĥ(t) = Ĥ(t;u1, ...um) = Ĥ0 +
m∑
j=1

uj(t)Ĥj , (1)

where uj(t) are the controls and Ĥj are the con-
trol operators. The Hamiltonian (1) generates
the time evolution operator Û(t) such that for
any state |ψ(0)⟩ in the Hilbert space H, |ψ(t)⟩ =
Û(t) |ψ(0)⟩ . Given an initial state |ψ0⟩, the set of
all final states |ψ(T )⟩ that can be reached in finite
time 0 < T <∞ with controls uj(t) is called the
reachable set R|ψ0⟩ of the system. The system is
said to be pure-state controllable if R|ψ0⟩ = SH

(with SH the unit sphere on H), i.e., if every nor-
malized state is reachable from any initial state
|ψ0⟩ [5]. For physical systems this condition is
not dependent on the initial state, which means
that pure-state controllability is also independent
of the state in which the system is initialized. In-
deed, the evolution operators Û that can be im-
plemented on such systems form a group. This
implies that for every evolution Û in the group,
Û−1 must also be contained in the group of fea-
sible evolutions. If we assume that every state
|ϕ⟩ ∈ H can be reached from a certain initial
state |ψ0⟩, then for every state |ϕ⟩ there exists an
evolution Û|ψ0⟩,|ϕ⟩ such that |ϕ⟩ = Û|ψ0⟩,|ϕ⟩ |ψ0⟩.
Therefore given any initial state |ϕi⟩ and final
state |ϕf ⟩ we can always generate an evolution

|ϕf ⟩ = Û|ψ0⟩,|ϕf⟩Û
−1
|ψ0⟩,|ϕi⟩ |ϕi⟩ (2)
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In particular this proves that if all states are
reachable from a certain initial state in a closed
system, every state is reachable from any other
state.

Pure-state controllability is the relevant type
of controllability when we are interested in are
state transfers, i.e., evolving the system from an
initial state to a certain target state. It is equiva-
lent to proving that all state transfers are possible
in a system. This, however, is not the strongest
type of controllability that can be defined. Pure-
state controllability is sufficient to guarantee that
there will always be evolution operators Û|ψ0⟩,|ψf⟩
to connect any two states |ψ0⟩ and |ψf ⟩, yet not
enough to ensure that it is possible to generate
every operation Û in the special unitary group
SU (d), where d = dim(H). Pure-state controlla-
bility does not guarantee that simultaneous state-
to-state transfers are always possible. To study
this property we consider the so-called operator
controllability. A system with controls as de-
fined in (1) and Hilbert space dimension d is op-
erator controllable if for every unitary evolution
Ûtarget ∈ SU(d) there exist a final time T ≥ 0,
a phase angle φ ∈ [0, 2π) and a set of controls
{uj}mj=1 such that Ûtarget = eiφÛ(T ;u1, ...um).

Note that for both types of controllability there
are no restrictions on the final time T ≤ ∞ at
which state transfers, respectively unitary op-
erations, are implemented. Consequently, this
time T , while always finite, can be arbitrarily
large. The question of controllability only in-
quires whether it is possible at all to perform the
desired dynamics. Similarly, it does not impose
any restrictions on the maximum amplitude that
the controls uj(t) from (1) can take. Finite am-
plitude is a physical restriction that impacts the
final time required to perform the different oper-
ations, but does not mathematically change the
controllability of the system.

If the Hamiltonian of the system is known,
there exist algebraic and numerical tests tailored
for both types of controllability [23, 24, 25, 5, 4].

2.2 Dimensional expressivity
Parametric quantum circuits have multiple ap-
plications, as they constitute the base for vari-
ational quantum algorithms [26]. Their design
and study are pivotal factors in the efficiency of
the algorithms. In particular, parameter depen-
dence and the set of final states that can be pro-

duced are two key topics that determine the ca-
pability of the algorithms. Lacking some neces-
sary parametric gates leads to unsuccessful algo-
rithms, whereas including too many dependent
parameters is detrimental for the purpose of op-
timization. We introduce here notions and def-
initions related to these issues that are relevant
for the controllability tests.

A parametric quantum circuit is a protocol im-
plemented on a set of qubits that are initialized
in a state |ψ0⟩. It consists of a sequence of logic
gates Ĝj , some of which depend on real parame-
ters ϑk. We consider a parametric quantum cir-
cuit as the map C(ϑ⃗) that identifies an array of
parameters ϑ⃗ in the parameter space P ∋ ϑ⃗ with

C(ϑ⃗) = Ĝm(ϑ⃗)...Ĝ0(ϑ⃗) |ψ0⟩ . (3)

C(ϑ⃗) implicitly depends on the circuit’s initial
state |ψ0⟩1. An example of a parametric quan-
tum circuit is found in Figure 1. Note that the
amount of parameters on which each gate Ĝj(ϑ⃗)
depends may vary from zero to the total number
of parameters, e.g.

Ĝ0(ϑ1, ϑ2) = P̂ (ϑ1) exp
(
−iϑ2

2 X̂
)
ĤP̂ (−ϑ1),

(4)
with the phase gate P̂ and the Hadamard gate Ĥ.
For the sake of simplicity, we have chosen units
such that ℏ = 1.

The expressivity of a parametric quantum cir-
cuit is its ability to produce states that are rep-
resentative of the full Hilbert space of the sys-
tem [27, 28]. Here, we focus on the dimen-
sional expressivity exprdim, i.e. the dimension
of C (P) as a real differentiable manifold [21]. As
such, the maximal dimensional expressivity for a
circuit with complex Hilbert space dimension d
is max(exprdim) = 2d − 1, which accounts for
the real variables of the complex d-dimensional
Hilbert space minus the normalization constraint.

Another important point is the concept of re-
dundant parameters. In a quantum circuit C(ϑ⃗),
a parameter ϑj is considered redundant if small
perturbations on ϑj produce final states on C(ϑ⃗)
that can also be achieved by keeping ϑj con-
stant and varying the rest of the parameters ϑk as
needed [22]. Minimizing the number of redundant

1This is in contrast to many commonly used definitions
of a circuit that only consider the gate sequence and not
the device initialization.
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parameters is therefore a relevant matter in the
design of parametric quantum circuits. Fewer re-
dundant parameters may result in more resource-
efficient circuits that can produce the same mani-
fold of states. If a parameter ϑ1 is redundant with
another parameter ϑ2, then the converse is also
true. We are free to choose one of the two param-
eters to remain constant while varying the other
one at will. The latter is then called independent.
Mathematically, the dimensional expressivity of
a circuit C(ϑ⃗) is also equal to the number of ele-
ments in the maximal set of independent param-
eters in the circuit. While the cardinality of the
maximal set for a certain circuit C(ϑ⃗) is fixed,
there may exist multiple maximal sets. Locating
and eliminating redundant parameters results in
a minimal circuit with the same local dimension
in the manifold of reachable states.

Redundant parameters and dimensional ex-
pressivity are studied through the real Jacobian
JC of C(ϑ⃗). Assuming a total of N parameters,
it takes the form

JC(ϑ⃗) =



| |
Re∂1C(ϑ⃗) · · · Re∂NC(ϑ⃗)

| |

| |
Im∂1C(ϑ⃗) · · · Im∂NC(ϑ⃗)

| |


, (5)

where the elements ∂kC represent the partial
derivatives of C with respect to ϑk. Re∂kC and
Im∂kC denote the real and the imaginary part of
∂kC, respectively. By definition, the dimensional
expressivity is equal to the rank of JC(ϑ⃗). In
terms of JC , a parameter ϑj is redundant with re-
spect to the other parameters {ϑi}i ̸=j at a point ϑ⃗
if the j-th column of JC(ϑ⃗) is linearly dependent
with respect to the set of all the other columns
of JC(ϑ⃗), i.e. if the rank of JC(ϑ⃗) as a matrix re-
mains the same after removing the j-th column.

A systematic approach, for an ordered array of
parameters ϑ⃗, relies on the partial real Jacobians
JC,n(ϑ⃗)

JC,n(ϑ⃗) =



| |
Re∂1C(ϑ⃗) · · · Re∂nC(ϑ⃗)

| |

| |
Im∂1C(ϑ⃗) · · · Im∂nC(ϑ⃗)

| |


, (6)

|0⟩

|0⟩

|0⟩

R̂0 (ϑ0)

R̂3 (ϑ3)

R̂2 (ϑ2)

R̂1 (ϑ1)

· · ·

· · ·

· · ·

R̂0 (ϑk)

R̂3 (ϑk+1)

R̂2 (ϑk+2)

R̂1 (ϑk+3)

· · ·

· · ·

· · ·

Figure 1: Three-qubit example of the parametric circuit
CP SC(ϑ⃗) (14) for testing pure-state controllability with
initial state |000⟩ in the qubits’ logical basis. Each layer
(only two displayed in the diagram) includes an entan-
gling gate R̂0 and a sequence of local gates R̂j (with
j ≥ 1), one for every control present in the qubit array.

containing only the first n columns of JC(ϑ⃗). If
∂1C(ϑ⃗) ̸= 0 then ϑ1 is independent and we initial-
ize the set of independent parameters as N1 :=
{ϑ1}; otherwise, N1 := ∅. Then we can iterate
over the following step. If rank(JC,k+1(ϑ⃗)) >

rank(JC,k(ϑ⃗)), then ϑk+1 is independent and
we update the set of independent parameters
Nk+1 = Nk ∪ {ϑk}. Else, ϑk+1 is redundant
and Nk+1 = Nk. After all N parameters have
been checked, the set NN is a maximal set of in-
dependent parameters and its cardinality is the
dimensional expressivity of the circuit. The re-
dundant parameters can be then removed from
the circuit by setting them to a suitably chosen
constant value.

The dimensional expressivity analysis follows
this approach and provides an efficient method to
find a maximal set of independent parameters on
a quantum circuit [21, 22]. As a hybrid quantum-
classical algorithm, it mixes measurements on the
actual circuit and classical computations for the
ranks. Instead of calculating the ranks of JC,n,
this method retrieves the entries of the matrices

SC,n(ϑ⃗) = JTC,n(ϑ⃗)JC,n(ϑ⃗), (7)

which are n × n matrices whose rank equals the
one of JC,n(ϑ⃗). The elements of SC,n(ϑ⃗) can be
determined via measurements on the circuit with
the inclusion of a single auxiliary qubit, no matter
the number of qubits in the original circuit [21].
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3 Pure-state controllability test using
dimensional expressivity
This section introduces the novel connection be-
tween the dimensional expressivity of quantum
circuits and the pure-state controllability of quan-
tum systems. We present the design of a circuit
associated to a controlled system that allows us
to check its pure-state controllability. We include
two examples to showcase its functionality.

3.1 Circuit expressivity and pure-state control-
lability
We consider a qubit array with Hamiltonian (1).
We identify the drift Ĥ0 as the time-independent
part, which includes the local free-qubit Hamilto-
nians and some time-independent couplings be-
tween them. Similarly, the operators Ĥj with
1 ≤ j ≤ m are coupled to the m different external
controls acting on the system. In order to use di-
mensional expressivity analysis to determine con-
trollability of a qubit array, it is necessary to de-
fine a parametric quantum circuit that can be run
on the system, according to the different controls
at disposal. If we can show that all normalized
states in the Hilbert space are reachable from a
certain initial state using only gates generated by
the system’s controls, we have proven pure-state
controllability.

A straightforward choice for the possible para-
metric gates in the circuit is

R̂j(α) := exp
(
−i α2 Ĥj

)
, 0 ≤ j ≤ m, (8)

i.e. rotations around either the drift Ĥ0 or the
control operators Ĥj (1). The gates R̂0(α) can
be implemented by letting the system evolve un-
der its time-independent drift Hamiltonian Ĥ0 for
a certain time t = α

2 . For the other gates, R̂j(α)
with j ≥ 1, we make use of the local controls. In
these gates the Ĥ0 contribution can be neglected
by assuming that the controls can be chosen such
that ∥uj(t)Ĥj∥ ≫ ∥Ĥ0∥. A realistic approach to
the R̂j(α) implementation is to consider short ro-
tations with intense controls uj(t), so that the Ĥ0
contribution is insignificant in comparison. The
amplitude of uj(t) is usually adjusted externally
and it has no imposed restriction.

We want to design a parametric quantum cir-
cuit CPSC(ϑ⃗), starting with an arbitrary initial
state |ψ0⟩ ∈ H and exclusively composed of the

rotation gates R̂j(ϑk). We then use dimensional
expressivity analysis to measure the dimensional
expressivity of the system. If it is maximal, i.e.
exprdim = 2d−1 for dim(H) = d, we have a man-
ifold of reachable states with local real dimension
2d − 1. This manifold is a subset of H. We now
prove that it is in fact the whole unit sphere of
H. If we assume that the gates R̂j(α) are cyclic
and that every parameter ϑk is used in a single
rotation gate in the circuit, we can treat each ϑk
as if it had periodic boundaries, i.e. ϑk ∈ S1. For
an array of n parameters ϑ⃗ the parameter space
verifies

P ∼= S1 × · · · × S1︸ ︷︷ ︸
n

∼= Tn. (9)

This implies that P is a connected, com-
pact set without boundary. Assume a circuit
CPSC(ϑ⃗) that has maximal dimensional expres-
sivity. Then, the manifold of reachable states
CPSC(P) ⊆ H is a connected, compact manifold
without boundary and with maximal local real
dimension. Consequently CPSC(P) = SH ⊂ H.
Thus, the system is pure-state controllable.

So far, we have found a sufficient condition for
pure-state controllability. We now want to iden-
tify a condition for non-controllable systems. To
this end, we need to prove that there are some
states that are not reachable by any of the pos-
sible dynamics that we can implement with the
different operators Ĥj and their nested commu-
tators. Hypothetically, we could do a sequence of
the rotation gates (8) around the drift, the con-
trol operators and their nested commutators and
test if all of them are linearly independent. How-
ever, generating the exponential of the commuta-
tor of two control operators (or one control oper-
ator and the drift) exp

{
i β[Ĥj , Ĥk]

}
is no trivial

task. It may require optimal control to generate
a specific rotation for the exact angle β and the
chosen commutator [Ĥj , Ĥk]. Instead, we access
the different commutators by concatenating a se-
ries of multiplications, as in the Baker-Campbell-
Hausdorff formula:

exp
(
i αÂ

)
exp

(
i βB̂

)
= exp

(
iαÂ+ iβB̂

− αβ

2 [Â, B̂]− i α2β

12 [Â, [Â, B̂]]

+ i αβ2

12 [B̂, [Â, B̂]] · · ·
)
. (10)

Assume that we have a parametric quantum cir-
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cuit consisting of a sequence of n rotations,

Cnseq(ϑ⃗) := exp
(
−i ϑnÂn

)
· · · exp

(
−i ϑ1Â1

)
|ψ0⟩
(11)

with Âj ∈ {Ĥk}mk=0 ∀1 ≤ j ≤ n. We can use
Eq. (10) multiple times on the exponential se-
quence on the right-hand side of Eq. (11) to ex-
press it as a single exponential dependent on ϑ⃗,
the different operators Aj and their nested com-
mutators. Assume as well that the dimensional
expressivity in the circuit exprdim(Cnseq(ϑ⃗)) = dn
is less than the maximum possible. We define a
new parametric circuit by adding one more rota-
tion to the chain of operations,

Cn+1
seq (ϑ⃗, ϑn+1) := exp

(
−i ϑn+1Ân+1

)
Cnseq(ϑ⃗).

(12)
If the dimensional expressivity of Cn+1

seq and Cnseq
are the same for every ϑn+1 ∈ R and every
Ân+1 ∈ {Ĥk}mk=0, then the number of linearly
independent ∂jC(ϑ⃗) remains the same. In other
words, we are not able to find more linearly inde-
pendent operators and thus, the dimensional ex-
pressivity of the system cannot be increased. This
means that the manifold of reachable states does
not have a maximal local dimension and hence
there will be some states to which our initial state
cannot evolve. Therefore the system is not pure-
state controllable.

There may be cases where, for given Cnseq(ϑ⃗)
and Ân+1, there exist two different parameters
ϑn+1 and ϑ̃n+1 such that

exprdim
(
Cn+1
seq (ϑ⃗, ϑn+1)

)
> exprdim

(
Cn+1
seq (ϑ⃗, ϑ̃n+1)

)
.

(13)

This is common in cases where ϑ̃j = 0 for every
1 ≤ j ≤ n + 1. Looking at Eq. (10), note that
using repeated parameters (e.g. α = β) will make
the coefficients preceding the commutators have
the same absolute value (e.g. α2β = αβ2). This
is evidently unfavorable to generate more linearly
independent ∂jC(ϑ⃗) due to the symmetries cre-
ated.

In principle, it would be necessary to prove that
the expressivity of Cn+1

seq does not increase for any
ϑn+1 ∈ R. However, as long as there exists one
ϑn+1 that increases the dimensional expressivity
for an operator Ân, the set of {ϑ̃n+1} ⊂ R that
would not raise the expressivity will have mea-
sure zero. This can be justified as follows. As-
sume that the first n parameters are independent

(i.e. det (Sn) ̸= 0), with n less than the maxi-
mal dimensional expressivity, and that there ex-
ist some parameters that can increase the expres-
sivity. This implies that the analytic function
f(ϑ⃗) := det (Sn+1) is not constant 0. The set of
parameters that would not increase the expressiv-
ity belong to f−1(0). With the regular level set
theorem [29], f−1(0) is an n-dimensional mani-
fold in the (n + 1)-dimensional parameter space
P. Thus, the set of parameters that would not
increase the expressivity has Lebesgue measure
zero in P. In other words, by choosing ϑn+1 ran-
domly we increase the dimensional expressivity
with probability 1.

The next section uses these ideas to systemati-
cally design quantum circuits that can be used
to determine for a controlled quantum system
whether it is pure-state controllable or not.

3.2 Controllability test

Given a system with operators Ĥj with 0 ≤ j ≤
m (cf. Eq. (1)), we define the parametric quan-
tum circuit

CPSC(ϑ⃗) =
(
nl−1∏
j=0

R̂m(ϑj(m+1)+m)...

R̂1(ϑj(m+1)+1)R̂0(ϑj(m+1))
)
|ψ0⟩ ,

(14)
where |ψ0⟩ is the initial state of the circuit, m
the total number of controls in the system and
nl the number of layers in the circuit. A dia-
gram of this circuit is shown in Figure 1 for a
three-qubit example. The initial state |ψ0⟩, cho-
sen and fixed at the start of the circuit, can be
any pure state. The number of layers nl should
be decided at the start of the algorithm. All gates
in CPSC(ϑ⃗) are parametric with different param-
eters ϑk, ranging from ϑ0 to ϑnlm−1. Each of
the nl layers in the circuit has a similar archi-
tecture: It starts with the rotation R̂0 around
the drift Hamiltonian, an entangling gate if it
includes time-independent qubit couplings, and
then a sequence of local gates, from R̂1 to R̂m,
that use all the different controls sorted by a cho-
sen order.

The pure-state controllability test for a system
evolving under the Hamiltonian (1) is then de-
fined as follows: If the circuit (14) reaches max-
imal expressivity, the system is controllable. A
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Start

System with
m controls

and dim(H) = d

Layer number nl;
ϑ̃ and |ψ0⟩.

Define CPSC(ϑ̃)

Run DEA

exprdim = 2d− 1 ?

Yes

PSC

No Last m+ 1
parameters
redundant?

Yes

Not PSC

No

nl = nl + 1

Figure 2: Flowchart for the pure-state controllability
algorithm. The yellow rhomboids show the initial inputs
necessary to define the circuit CP SC(ϑ⃗).

schematic flowchart of the pure-state controlla-
bility test is shown in Figure 2. If the maximum
expressivity of 2d − 1 for a Hilbert space with
dim(H) = d has not been met with nl layers, an-
other layer can be added (encompassing a full set
of rotation gates with their respective new pa-
rameters) and the test can be repeated for the
new circuit with nl + 1 layers. By definition, the
dimensional expressivity can only augment at the
rate of one per parameter ϑj at maximum. For
a system with m controls, there are a total of
m+ 1 parameters per layer. Therefore, the mini-
mum number of layers needed to reach maximum
expressivity for m controls is

nl,min =
⌈2d− 1
m+ 1

⌉
. (15)

Since layers may have some redundant parame-
ters, the dimensional expressivity may not neces-
sarily rise at the maximum rate and more layers
may have to be included. Consequently, the algo-
rithm is best started with the minimum number
of layers required to achieve maximum expressiv-
ity and additional layers shall be concatenated as
needed.

It may as well happen that the dimensional ex-
pressivity remains the same even with the inclu-
sion of a new layer. In this case the test stops,
as the dimensional expressivity will not further
increase. In instances where the dimensional ex-
pressivity reaches a plateau, it is necessary to
double-check using a different array of random
parameters ϑ⃗ and repeat this comparison with

the nl- and nl + 1-layered circuits, following the
reasoning explained in section 3.1. Using a ran-
dom set of parameters will yield an answer on
whether the expressivity can be increased or not
with probability 1. If the dimensional expressiv-
ity remains at a value less than 2d− 1 for a suffi-
ciently large set of different random parameters,
then the system is labelled not pure-state control-
lable and the test concludes.

The algorithm will always end with an affirma-
tive or negative result regarding pure-state con-
trollability. The loop in Figure 2 will be ex-
ited under one of the following conditions: Either
maximal dimensional expressivity is reached or a
last layer exclusively composed of redundant pa-
rameters is found. In other words, the method
ends when the finite upper bound of the dimen-
sional expressivity has been reached or when the
expressivity before and after the addition of a new
layer remains the same. Since the dimensional
expressivity is always an integer, the loop must
conclude in a finite number of iterations.

Parameters with repeated values in the same
rotation gates (e.g. ϑp = ϑq on gates R̂j(ϑp) and
R̂j(ϑq) for a certain j) are usually detrimental to
reach maximum expressivity. A trivial example
is the case of ϑ⃗ = 0⃗, where the maximum possi-
ble dimensional expressivity of CPSC (⃗0) is always
m+ 1, with m the number of local controls.

A more detailed description of the algorithm
can be found in Appendix A. This includes step-
by-step pseudo code and the indication which
parts of the method can be performed classically
and which parts with quantum computations.

3.3 Examples

To illustrate the described algorithm, we consider
a four-qubit array with the following Hamilto-
nian:

Ĥ4q(t) =
3∑
j=0
−ωj2 σ̂

j
z+

2∑
k=0

Jk,k+1σ̂
k
xσ̂

k+1
x +Ĥctrl(t)

(16)
The first term encompasses the free-qubit Hamil-
tonians and the second one contains the time-
independent couplings. The qubit frequencies ωj
and the coupling strengths Jk,k+1 have been cho-
sen to fit the ones normally used in superconduct-
ing circuits [30] and their exact value can be found
in Table 1. The last operator, Ĥctrl(t), contains
all the relevant information about the controls,
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Coupling strengths (MHz)

J0,1 J1,2 J2,3
170 220 150

Qubit frequencies (GHz)

ω0 ω1 ω2 ω3
. . 5.40 5.30 5.42 5.37

Table 1: Parameters for the Hamiltonian (16). The fre-
quencies and the coupling strengths have been chosen
in a range that is common for superconducting circuits.

including their number and type. We choose two
configurations of controls to study two separate
systems with Hamiltonian (16), one that is pure-
state controllable and one that is not.

First, we assume the controls from Eq. (16) to
be

Ĥctrl(t) = u1(t)σ̂1
x + u2(t)σ̂2

x. (17)

This system is operator controllable, as proven by
the Lie algebra rank condition [5] and the graph
method [4]. This in particular implies that it is
also pure-state controllable. A diagram of the
system may be found in Figure 3.

Since the system only has two controls, each
layer of the circuit will have exactly 3 gates—the
entangling gate involving the drift and the two
related to the local controls coupling to σ̂1

x and
σ̂2
x, respectively. We have chosen |ψ0⟩ = |0000⟩

(in the logical basis of the free qubits) as the ini-
tial state of the circuit and nl = 11, matching the
minimal number of layers to obtain maximum di-
mensional expressivity (cf. Eq. (15)). For a cir-
cuit acting on a four-qubit array, it has a value
of exprdim = 31. We have generated a random
set of parameters ϑ⃗ ∈ [0, 2π]33 (since in this case
(m + 1) · nl = 33). We have classically simu-
lated the parametric quantum circuit and calcu-
lated the SCP SC ,n(ϑ⃗) matrices from Eq. (7). We
have both determined the redundant parameters
in the circuit and estimated the dimensional ex-
pressivity.

In these simulations, the maximum dimen-
sional expressivity is steadily reached, with ev-
ery layer raising it by 3. The maximum value
of exprdim = 31 is achieved with the first pa-
rameter of the last layer, proving that the system
is pure-state controllable. In this example the
minimum number of layers that we had chosen
was enough to reach maximum expressivity. The
same behaviour has been observed for all the dif-

ω0 ω1 ω2 ω3

X̂0X̂1 X̂1X̂2 X̂2X̂3

X̂1 X̂2

Figure 3: Four-qubit system that is pure-state control-
lable, cf. Eqs. (16) and (17).

ferent random sets of parameters ϑ⃗ tested. The
same configuration of gates was further tested us-
ing different random initial states |ψ0⟩, yielding
similar results.

Second, we present a system that is not pure-
state controllable, whose control operators are

Ĥctrl(t) = u1(t)σ̂0
x + u2(t)σ̂2

y + u3(t)σ̂3
z , (18)

cf. Figure 4. The dimension of its Lie alge-
bra L can be found following the method de-
scribed in Ref. [5]. To this end, a basis of
L must be generated, whose cardinality will be
equal to the dimension of the Lie algebra. Given
a system following Equation (1), we can com-
pute a basis by starting with a linearly indepen-
dent set of the elements of zeroth order: The
drift Ĥ0 and the control operators Ĥj (for 1 ≤
j ≤ m). We complete the basis by includ-
ing the nested commutators of the elements of
zeroth order that are linearly independent, i.e.
[Ĥj1 , [Ĥj2 , ...[Ĥjk , Ĥjk+1 ]...]]. Since the dimension
has an upper bound, this method must converge
in a finite number of iterations. In the case of
Equations (16) and (18), we reach a dimension of
dim(L) = 120 < dim(su(16)) = 255, which only
proves that the system is not operator control-
lable. The system would be pure-state control-
lable if and only if

dim (Lie ([ρ0,L])) = 2 dim(H)− 2 (19)

with ρ0 = |0000⟩ ⟨0000| [5]. We confirm that
the system is not pure-state controllable since
dim (Lie ([ρ0,L])) = 28 < 30 for the current sys-
tem. Even though there are more local controls
than in the first example, the system is not con-
trollable due to their positions. Similarly as be-
fore, we create a circuit with four gates (related
to the drift and the three local controls) per layer.
We choose a minimum number of layers nl = 8
(different to the one before due to the different
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ω0 ω1 ω2 ω3

X̂0X̂1 X̂1X̂2 X̂2X̂3

X̂0 X̂2 Ẑ3

Figure 4: Four-qubit system that is not pure-state con-
trollable, cf. equations (16) and (18).

number of controls), |ψ0⟩ = |0000⟩ and a set of
random parameters ϑ⃗ ∈ [0, 2π]32.

At the end of the last layer the dimensional ex-
pressivity yields a total of 29 out of the 31 that
would imply pure-state controllability. Follow-
ing the flowchart depicted in Figure 2 we have
added a new layer (nl = 9) with a new set of ran-
dom parameters and repeated the dimensional ex-
pressivity analysis. According to our simulation,
the new layer contains only redundant parame-
ters (i.e. the expressivity remains at 29), which
stops the algorithm and means that the system is
not pure-state controllable. To verify the valid-
ity of this outcome, we have repeated the test for
multiple different random sets of parameters. In
every instance the same result is reached, which
leads to the conclusion that the system is indeed
not pure-state controllable, as discussed in sec-
tion 3.1.

4 Operator controllability test using
dimensional expressivity analysis

Operator controllability is the relevant type of
controllability for a qubit array in order to per-
form all quantum logic gates. Its connection to
the dimensional expressivity of a circuit is less
evident, since dimensional expressivity is related
to the different states that can be reached. The
Choi-Jamiołkowski isomorphism [31, 32] allows to
bridge the gap with a map between operators on
a Hilbert space H and states in H⊗H. It is used,
for example, in quantum process tomography, al-
lowing to employ techniques from state tomogra-
phy to operators [33]. Similarly, by doubling the
number of qubits, we can exploit the channel-
state duality between operators in the original
system and states in the bipartite extended sys-
tem for controllability analysis.

4.1 Lifting pure-state to operator controllabil-
ity via the Choi-Jamiołkowski isomorphism

Let us assume a qubit array with Hamiltonian
(1) for which we seek to determine operator con-
trollability. This system with Hilbert space H
and dimension dim(H) = d will henceforth be re-
ferred to as the original system. We then define a
bipartite extended system in H⊗H composed of
the original system and the same number of aux-
iliary qubits. To simplify the argument, we first
assume no dynamics over the auxiliary qubits.
Later we extend our discussion to include some
local Hamiltonians on the auxiliary qubits. Given
any operator Ô ∈ L(H⊗H), we write ÔA to indi-
cate that the operator only acts non-trivially on
the partition of the original system (A), i.e.

ÔA = Q̂⊗ 1d (20)

for some operator Q̂. Analogously, we write
ÔAB for operators that act non-trivially on both
partitions (the original system and the auxiliary
qubits). Neglecting the local contributions of the
auxiliary qubits, the Hamiltonian of the extended
system is given by

ĤA(t) = Ĥ(t;u1, ...um)⊗ 1⊗q
2 (21)

where q is the number of qubits in the original
system.

We assume that the extended system can be
prepared in a maximally entangled state,

|ψME⟩ =
d−1∑
i=0

1√
d
|ei⟩ ⊗ |ei⟩ , (22)

where {|ei⟩}d−1
0 is an orthonormal basis of H.

We define the circuit on the extended system

CAOC(ϑ⃗) :=
k∏
j=0

(
R̂Am(ϑj(m+1)+m)...

R̂A1 (ϑj(m+1)+1)R̂A0 (ϑj(m+1))
)
|ψME⟩ .

(23)
The rotations R̂Ak (α) are given by the drift (k =

0) and the control operators (1 ≤ k ≤ m) of the
original subsystem:

R̂Ak (α) := exp
(
−i α2 Ĥk ⊗ 1⊗q

2

)
, 0 ≤ k ≤ m,

(24)
with Ĥk given in Eq. (1).
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|ψME⟩

q0

q1

q2

q3
q4
q5

· · ·

· · ·

· · ·

· · ·
· · ·
· · ·

R̂A
0 (ϑ0)

R̂∗
3 (ϑ3)

R̂∗
2 (ϑ2)

R̂∗
1 (ϑ1) · · ·

· · ·

· · ·

· · ·
· · ·
· · ·

R̂A
0 (ϑk)

R̂∗
3 (ϑk+3)

R̂∗
2 (ϑk+2)

R̂∗
1 (ϑk+1) · · ·

· · ·

· · ·

· · ·
· · ·
· · ·

Figure 5: Parametric circuit for the extended sys-
tem required to perform the operator controllability test
(23) for a three-qubit system. The qubits qi with
i = 0, 1, 2 constitute the original system, whereas qj

with j = 3, 4, 5 are the auxiliary qubits.

A visual representation of the circuit is found in
Figure 5. The parameter space P ∋ ϑ⃗ is assumed
to be connected and compact without boundary
(e.g. with every coordinate ϑi being cyclic). The
final state of the circuit will always be of the form

CAOC(ϑ⃗) = 1√
d

d−1∑
i=0
|ei⟩ ⊗

(
Û(ϑ⃗) |ei⟩

)
, (25)

with Û(ϑ⃗) a unitary operator depending on the
circuit’s parameters.

Our goal is to prove that dimensional expressiv-
ity of the extended system is enough to determine
operator controllability of the original system. To
this end, we make use of the Choi-Jamiołkowski
isomorphism [31, 32, 34]. The map it describes is
written as

Λ(Â) :=
(
1LH ⊗ Â

)
(|ϕ⟩ ⟨ϕ|)

=
∑
i,j

|ψi⟩ ⟨ψj | ⊗ Â
(
|ψi⟩ ⟨ψj |

) (26)

for any operator Â in the Hilbert space of linear
operators on the Liouville space and the unnor-
malized state |ϕ⟩ =

∑
i |ψi⟩⊗|ψi⟩, with {|ψi⟩}d−1

i=0
an orthonormal basis of H.

Identifying Â in Eq. (26) with Û(ϑ⃗) in Eq. (25),
we know that

Û(P) ∼= Λ(Â)

=
d−1∑
i,j=0
|ei⟩ ⟨ej | ⊗

(
Û(P) |ei⟩ ⟨ei| Û(P)†

)
.

(27)
The operators Û(ϑ⃗) are unitary for every ϑ⃗ ∈ P,
hence purity-preserving. We transform the den-
sity matrix representation from Eq. (27) into a

pure-state representation, resulting in

Û(P) ∼=
d−1∑
i=0
|ei⟩ ⊗ Û(P) |ei⟩ ∼= CAOC(P). (28)

Therefore, there exists an embedding between the
evolutions Û(P) that are generated using a com-
bination of rotations given by the controls and
the final states of the circuit CAOC(P). A sys-
tem with traceless operators as in Eq. (1) and
dim(H) = d is operator-controllable if and only if
the manifold of the unitary evolutions that can be
generated ÛĤ is isomorphic to SU(d). Evidently,
Û(P) ⊆ ÛĤ ⊆ SU(d). Since the parameter space
P is connected and compact without boundary,
Û(P) = SU(d) if and only if dim(Û(P)) =
dim(SU(d)). Thus, using Eq. (28), the system
will be operator-controllable if dim(CAOC(P)) =
dim(SU(d)), i.e., if the dimensional expressivity
of the circuit CAOC(ϑ⃗) is d2 − 1.

From here we proceed analogously as the pure-
state controllability test from section 3.1. We
present the outline of the operator controllabil-
ity test in Figure 7. If the dimensional expres-
sivity is less than d2 − 1, we inspect the param-
eters in the last circuit layer. If they all are re-
dundant, the test ends and the system is deemed
not controllable. Indeed, if all parameters in the
last layer are redundant, we are unable to find
more linearly independent operators in the dy-
namical Lie algebra of the system. If the number
of linearly independent elements of the algebra
(i.e. number of independent parameters) is less
than dim(SU(d)), there exist some unitary op-
erations that cannot be implemented. Therefore,
the system is not operator controllable. This step
must be checked with multiple arrays of random
parameters ϑ⃗, as there may be a set of arrays of
parameters with measure zero over P that yield a
lower value for the dimensional expressivity. The
same arguments we used in section 3.1 apply here,
as CAOC(P) is a manifold of states in H⊗H.

If at least one parameter in the last circuit layer
is independent, the test continues. We iterate by
adding a new layer and calculating the circuit’s
expressivity. The algorithm will eventually come
to an end, either with maximal value for the di-
mensional expressivity or with a layer of redun-
dant parameters at the end of the circuit.

We now move to a more realistic setting that
incorporates dynamics in the auxiliary qubits.
We undertake this by including the drift of the
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|ψME⟩

q0

q1

q2

q3
q4
q5

· · ·

· · ·

· · ·

· · ·
· · ·
· · ·

R̂A
0 (ϑ0)

R̂B
0 (ϑ0)

R̂∗
3 (ϑ3)

R̂∗
2 (ϑ2)

R̂∗
1 (ϑ1) · · ·

· · ·

· · ·

· · ·
· · ·
· · ·

R̂A
0 (ϑk)

R̂B
0 (ϑk)

R̂∗
3 (ϑk+3)

R̂∗
2 (ϑk+2)

R̂∗
1 (ϑk+1) · · ·

· · ·

· · ·

· · ·
· · ·
· · ·

Figure 6: Circuit on the extended system required to
perform the operator controllability test (31) for a three-
qubit system. The qubits qi with i = 0, 1, 2 constitute
the original system, whereas qj with j = 3, 4, 5 are the
auxiliary qubits. The rotations R̂B

0 (cf. Eq. (32)) include
the free-qubit dynamics of the auxiliary qubits.

auxiliary partition. The new Hamiltonian of the
bipartite system is then

ĤAB(t) = Ĥ(t;u1, ...um)⊗ 1⊗q
2 +

q−1∑
j=0
−ωj2 σ̂

j+q
z ,

(29)
with

σ̂kz := 1⊗ ...⊗ 1⊗ σ̂z︸︷︷︸
k position

⊗1⊗ ...1. (30)

It results in the following circuit to test operator
controllability

CABOC (ϑ⃗) :=
k∏
j=0

(
R̂Am(ϑj(m+1)+m)...R̂A1 (ϑj(m+1)+1)

R̂B0 (ϑj(m+1))R̂A0 (ϑj(m+1))
)
|ψME⟩ ,

(31)
where

R̂B0 (α) := exp

i α2
q−1∑
j=0

ωj
2 σ̂

j+q
z

 . (32)

Note that the parameters ϑj(m+1) of the gates
R̂A0 and R̂B0 in the same layer j are always the
same because there is no active control over these
operators—they are due to the time-independent
part of the Hamiltonian. In other words, these
gates are implemented by letting the system
evolve a certain amount of time t = ϑj(m+1)/2.
The number of parameters per layer for a system
with m controls remains equal to m + 1, despite
having an extra rotation gate per layer. A dia-
gram of the new circuit is found in Figure 6.

Start

System with
m controls

and dim(H) = d

Add ancilla qubits

Layer number nl;
ϑ̃ and |ψ0⟩.

Define CAB
OC(ϑ̃)

Run DEA

exprdim = d2 − 1 ?

Yes

OC

No Last m+ 1
parameters
redundant?

Yes

Not OC

No

nl = nl + 1

Figure 7: Flowchart for the algorithm testing operator
controllability. The yellow rhomboids show the initial
inputs necessary to define the circuit CAB

OC (ϑ⃗).

If we choose an orthonormal basis for the B
partition consisting of the eigenstates of the aux-
iliary qubits, then

CABOC (P) ∼=
d−1∑
i=0

(
Û(P)eφi(ϑ⃗) |ei⟩

)
⊗ |ei⟩ .. (33)

The only difference between equations (28) and
(33) is the local phases φi(ϑ⃗), which are uniquely
determined for any array of parameters ϑ⃗. These
do not change the value of the dimensional ex-
pressivity since for any array ϑ⃗ there exists a
neighborhood in which

CAOC(ϑ⃗) ∼= CABOC (ϑ⃗). (34)

This implies the local dimension of the manifold
of reachable states to be identical, i.e., the di-
mensional expressivity to be the same. There-
fore, we can include the local Hamiltonians of the
auxiliary qubits in our calculations to describe
a more realistic model and still use the Choi-
Jamiołkovski isomorphism to design the paramet-
ric quantum circuit (31).

4.2 Controllability test

Once again we consider a qubit array with
traceless Hamiltonian (1) and the correspond-
ing extended system, composed of the original
q-qubit array and q more auxiliary qubits. We
assume the extra qubits to have arbitrary nat-
ural frequencies ωj , such that the Hamiltonian
of the extended system is given by Eq. (29) and
the parametric quantum circuit by Eq. (31). As
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shown in Figure 6 for a three-qubit example, for
a system with m controls the circuit has exactly
m + 1 parameters per layer. As for pure-state
controllability, it is encouraged to choose a num-
ber of layers nl that would a priori be sufficient
to reach the maximum dimensional expressiv-
ity. In the case of operator controllability, it is
dim(su(d)) = d2− 1, with d the Hilbert space di-
mension of the original system, d = 2q 2. Thus,
the condition for the minimum number of layers
to obtain the maximal dimensional expressivity
is

nl,min =
⌈
d2 − 1
m+ 1

⌉
. (35)

With the dimensional expressivity we find the
maximum number of linearly independent states
in H ⊗ H that can be generated in a neighbor-
hood of CABOC (ϑ⃗). This in turn yields information
about the maximum number of linearly indepen-
dent operators on H that can be generated by
the original system around the identity. Since we
know that these operators belong to the Lie alge-
bra su(d) we simply want to determine if we can
span all the d2− 1 dimensions in the algebra, i.e.
having operator controllability, or not.

The operator controllability of a system evolv-
ing under the Hamiltonian (1) is determined as
follows: If the circuit (31) has dimensional expres-
sivity equal to d2−1, then the system is operator
controllable. Analogously to the pure-state con-
trollability test, if this value for the dimensional
expressivity is not reached, another layer should
be concatenated at the end of the circuit. If all
the new parameters in the last layer are redun-
dant, then the system is not operator controllable
(with a probability of measure 1); otherwise, the
process of concatenating layers shall be repeated.
The main steps of the algorithm is displayed in
Figure 7. Similarly to section 3.1, it is impor-
tant to to ensure the validity of a result of "not
operator controllable" by repeating the test for
different arrays of random parameters.

Analogous to Section 3, the pseudo code of the
algorithm can be found in Appendix A.

2We only claim that the value for the maximal dimen-
sional expressivity is d2 − 1 (with d = 2q) for the circuits
CAB

OC (31). Other parametric quantum circuits acting on
H ⊗ H could in principle reach higher values of expressiv-
ity, up to 22q+1 − 1

Coupling strengths (MHz)

J0,1 J1,2
170 220

Qubit frequencies (GHz)

Original Auxiliary

ω0 ω1 ω2 ω3 ω4 ω5
5.40 5.30 5.42 5.37 5.29 5.34

Table 2: Parameters for the Hamiltonian (36) and the
auxiliary qubits necessary for the circuit (31).

ω0 ω1 ω2

Ẑ0Ẑ1 Ẑ1Ẑ2

X̂0 Ŷ 1 X̂2

Figure 8: Example of a three-qubit system that is
operator-controllable, cf. Eq. (37)

4.3 Examples
In the following we consider a three-qubit array
with Hamiltonian

Ĥ3q(t) =
2∑
j=0
−ωj2 σ̂

j
z+

1∑
k=0

Jk,k+1σ̂
k
z σ̂

k+1
z +Ĥctrl(t).

(36)
The second term, containing the time-
independent two-qubit couplings, has been
modified to σ̂kz σ̂

k+1
z simply to showcase a qubit

interaction different from the one in the previous
examples. The qubit frequencies ωj and the
coupling strengths Jk,k+1 are listed in Table 2.
We take two different Ĥctrl(t) to study an
example that is operator controllable and one
that is not.

The first one is given by

Ĥctrl(t) = u1(t)σ̂0
x + u2(t)σ̂1

y + u3(t)σ̂2
x, (37)

see Figure 8. It is operator controllable as can
easily be proven by the Lie algebra rank condi-
tion [5] and the graph method [4].

Since we have 3 controls in the original three-
qubit system, the minimum number of lay-
ers needed to reach the maximum value of di-
mensional expressivity for the bipartite system,
exprdim = 63, is nl = 16 according to Eq. (35).
The orthonormal basis used to define the maxi-
mally entangled state |ψME⟩ is the logical basis of
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ω0 ω1 ω2

Ẑ0Ẑ1 Ẑ1Ẑ2

X̂0 Ŷ 1 Ẑ2

Figure 9: Example of a three-qubit system that is not
operator-controllable, cf. Eq. (38).

the free qubits. Last, we generate a random set of
parameters ϑ⃗ ∈ [0, 2π]64. Maximum dimensional
expressivity of 63 is found for the last parameter
of the last layer, confirming that the system is
operator controllable.

For the second example, we choose a different
set of controls,

Ĥctrl(t) = u1(t)σ̂0
x + u2(t)σ̂1

y + u3(t)σ̂2
z , (38)

see Figure 9, making the system not controllable.
We repeat the same procedure as before, since the
number of controls is again m = 3. At the end of
16 layers the circuit only reaches exprdim = 31,
which is less than the 63 needed for operator con-
trollability. We could add another layer to ver-
ify that every new rotation gate will have a re-
dundant parameter. However, in this case it is
sufficient to inspect the rank of the matrices Sn
from Eq. (7) in the last layers. We find that the
last independent parameter appears at the end
of the tenth layer, with all the remaining ones
being exclusively formed by redundant parame-
ters. This is a sufficient condition to determine
that the system is not operator controllable (as
long as it is verified with multiple sets of random
parameters).

We emphasize that it is important to corrobo-
rate every “not controllable” result with different
arrays ϑ⃗ chosen at random. Selecting ϑ⃗ in a non-
randomized fashion may lead to cases where the
dimensional expressivity is lower than the maxi-
mum value reached with other different parame-
ters. This would yield wrong results in terms of
controllability. It is easily rationalized in terms
of symmetries of the commutators [Ĥi, R̂

A
k (ϑj)].

These are linked to the partial derivatives of the
circuit ∂iCABOC (ϑ⃗) and to the dimensional expres-
sivity of the circuit. Performing further numeri-
cal tests on the previously discussed examples, we
have experimented with selecting parameters in-
stead of choosing them at random. Wrong results

with lower dimensional expressivity arose when
all the parameters were chosen to be the same,
e.g. ϑj = 1 for every j. In every instance, these
problems vanished as soon as we generated a new
set of random parameters.

Another important issue concerns the mini-
mum tolerance τ used to determine the rank of
the Sn matrices. More precisely, τ represents the
threshold at which the values of the singular value
decomposition of Sn are considered zero. τ is cru-
cial to determine the different redundant param-
eters and the expressivity of the circuit. If τ is
too high, then some linearly independent vectors
might be deemed dependent by mistake, which
would revert on a wrong lower value of the circuit
expressivity, potentially turning a controllable
system into a fake non-controllable one. Con-
versely, if τ is too small some errors might start to
add up to make linearly dependent vectors look
as if they were independent, falsely showing some
parameters as independent. This would in turn
raise the dimensional expressivity, usually above
the d2− 1 threshold that we know to be valid for
the case of the operator controllability test. To
avoid these cases, it is advisable to use operators
with similar orders of magnitude and try differ-
ent ranges for τ depending on the order of mag-
nitude of the operators Ĥj from Eq. (1). If the
dimensional expressivity analysis is performed on
quantum hardware, the tolerance τ will also de-
pend on the device noise. Indeed, the accuracy of
the measurements and the circuit dynamics will
take a toll on the accuracy of the rank of the ma-
trices Sn. Inevitably, noisier devices will require
higher tolerances to determine whether there are
redundant parameters (i.e. whether det(Sn) = 0)
or not.

5 Discussion and Conclusions

We have introduced two hybrid quantum-classical
algorithms to test pure-state and operator con-
trollability of qubit arrays. As opposed to usual
Lie rank and graph methods, the presented al-
gorithms are run directly on a quantum circuit
designed to mimic the dynamics of the quantum
system to be studied. The method is also devised
as an alternative to the cases where the dynam-
ical Lie algebra can no longer be evaluated ana-
lytically or numerically on a classical computer.
We have showcased the capabilities of the proce-
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dure with four paradigmatic examples that cover
all scenarios for pure-state and operator control-
lability.

A useful application of these tests is the
resource-efficient design of quantum chips. Our
algorithm provides a systematic way to deduce
the minimal number of local controls and qubit
couplings required to maintain controllability, as
a prerequisite of universal quantum computation.
In other words, it allows one to identify redundant
controls and thus to ease scaling up the quantum
chip size. Importantly, the tests allow to obtain
this information before the devices are built, as
long as the associated quantum circuit can be
implemented on a different device. Note that
while the rank analysis of the Sn matrices scales
with the size of the system Hilbert space, this
does not pose a fundamental limitation. It can
be overcome by mapping the rank computation
to a quantum device. More precisely, the quan-
tum device would then be used to find the lowest
eigenvalue of Sn in order to determine whether
a parameter is redundant or not. This permits
the efficient identification of redundant parame-
ters and the removal of their parametric gates in
the circuit. Noise in the device running our hy-
brid algorithm will limit the accuracy of the low-
est eigenvalue and thus determine the minimum
threshold for an eigenvalue to be considered zero.

In addition to its practical aspects, at the con-
ceptual level, our work has revealed the close
connection between the controllability of quan-
tum systems and the dimensional expressivity of
quantum circuits. In particular, this insight arises
from the relation between the states that can be
reached in a controllable system and the final
states that can be produced in a parametric quan-
tum circuit. The dimensional expressivity anal-
ysis allowed us to efficiently quantify the circuit
expressivity. Its search for redundant parameters
was essential in determining which controls con-
tributed to reach more states in the Hilbert space.
The link between the pure-state and operator
controllability test is the inclusion of the Choi-
Jamiołkovski isomorphism that creates a map be-
tween operators in a Hilbert space and the states
of the extended bipartite space.

Variational quantum algorithms have previ-
ously been used to improve the design of optimal
pulses in quantum systems [35]. Quantum opti-
mal control theory in general [7, 6] encompassses

both the design of the pulse shapes, i.e., control
synthesis, and controllability analysis. The con-
trollability tests described here thus extend the
use of parametric quantum circuits to the sec-
ond pillar of quantum optimal control. Quan-
tum optimal control is also closely related to sys-
tem characterization where controls can be in-
terleaved with free evolutions [36, 37] or applied
continuously [38].

In future work, it will be interesting to study
systems with non-local controls, e.g. tunable two-
qubit couplings. Moreover, it may be possible to
expand our approach to systems other than qubit
arrays. To this end, the key task will be to find a
mapping from the non-qubit system to the asso-
ciated quantum circuit that runs on a qubit ar-
ray. The problem of mapping certain dynamics to
a quantum circuit has already been a subject of
extensive research, for example, when using para-
metric variational algorithms for calculating the
electronic structure of molecules [39, 40] or their
quantum dynamics [41]. An interesting future
perspective is to explore the extension of our ap-
proach to the controllability of subgroups. This is
sometimes referred to as G-controllability, where
G is a subgroup of the unitary group U(n). This
would be relevant both to open quantum system
control and machine learning. While it is not
straightforward in the general case, our method
can likely be used to analyse certain cases of G-
controllability but dedicated work in this direc-
tion is needed to give a more definitive answer.
Finally, an intriguing question is how the removal
of redundant controls affects the minimum time
at which certain dynamics can be implemented,
i.e., the quantum speed limit of the system. A
controllable system with a new control added can
have the same or a lower minimum time for a
state transfer or unitary gate. Conversely, remov-
ing redundant controls might incur a higher min-
imum time. Most likely, quantum device design
will have to balance the requirements for control-
lability and operation speed.
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A Outline of the algorithm
This appendix includes an outline for the methods described in Figures 2 and 7 in the form of pseudo
code. Algorithm 1 displays the main steps for applying the dimensional expressivity analysis to a circuit
for the pure-state controllability test as defined in Equation (14) and the operator controllability
test given in Equation (31). There are two main differences between the two cases: The circuit
definition (including the rotation gates R̂j(α) and the initial state |ψ0⟩) and the maximum dimensional
expressivity exprdim that the circuit has to reach to determine whether the system is controllable or
not.

For a pure-state controllability test, one must set test_type = ′PSC ′. The circuit description is
passed in terms of a list of parameters para (ϑ⃗ from Equation (3)), a list of operators for the rotation
gates Ĝlist (given by the drift and the control operators, cf. Equation (8)), the initial state |ψ0⟩
(which can be chosen freely) and the parameter index last_lay at which the last circuit layer starts. A
numerical tolerance tol is also required for computing the rank of the matrices SC,n (cf. Equation (7).

For the operator controllability test, test_type should be ′OC ′. The circuit should be defined
including the auxiliary qubits, as depicted in Figure 6. This encompasses the definition of the generators
of rotations which are passed as Ĝlist. In this case, the initial state |ψ0⟩ must be the maximally
entangled state |ψME⟩ shown in Equation (22). The rest of the inputs are treated analogously to the
previous case.

Finally, for either type of controllability, the computation of the SC,n matrices can be done with
classical numerical calculations (as shown in Algorithm 2) or it may be achieved using real quantum
circuits, as seen in [21]. This manuscript showcases examples using the former one, although the latter
is the intended version for the devised hybrid quantum-classical controllability test.
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Algorithm 1: Controllability test using dimensional expressivity analysis
1 \\This method is defined for a circuit C(ϑ⃗) only containing parametric rotation gates R̂j(ϑj)

\\R̂j(ϑj) := exp
(
−i ϑj

2 Ĝj
)

\\C(ϑ⃗) := R̂
len(ϑ⃗)(ϑlen(ϑ⃗)) · · · R̂0(ϑ0) |ψ0⟩

Input:
• test_type: it can be ’PSC’ or ’OC’ depending on which controllability test should be run.
• para: array ϑ⃗ with all parameters ϑj .
• Ĝlist: list including all the operators Ĝj in matrix form.
• |ψ0⟩: initial state of the circuit.
• last_lay: parameter index at which the last layer starts
\\I.e. the last layer starts with R̂last_lay(ϑlast_lay)
• tol: tolerance for computing the matrix rank function.

2 hildim ← len(|ψ0⟩)
3 \\Expressivity right before the last layer

expr_bll ← Algorithm_2(para, Ĝlist, |ψ0⟩, last_lay -1, tol)
4 \\Expressivity of the total circuit C

expr_tot ← Algorithm_2(para, Ĝlist, |ψ0⟩, len(para), tol)
5 if test_type is ’PSC’ then
6 max_exp ← 2hildim− 1
7 else
8 max_exp ← hildim2 − 1
9 end if

10 if expr_tot ≥ max_exp then
11 test_result ← 1

\\System is controllable
12 else
13 if expr_tot > expr_bll then
14 test_result ← 2

\\Test is inconclusive. Repeat test for a circuit containing an additional layer
15 else
16 test_result ← 0

\\System is not controllable
17 end if
18 end if
19 Output:
• expr_tot: circuit dimensional expressivity
• test_result: 0, 1 or 2 depending on whether the system is not controllable, controllable or
the test is inconclusive. For inconclusive tests, one can repeat the algorithm adding a new
layer to the circuit.
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Algorithm 2: Classical calculation of rank(SC,n) (cf. Eq. (7)).
This classical algorithm can be replaced by measurements on a quantum device as defined in
[21].

1 \\This method is defined for a circuit C(ϑ⃗) only containing parametric rotation gates R̂j(ϑj)
\\R̂j(ϑj) := exp

(
−i ϑj

2 Ĝj
)

\\C(ϑ⃗) := R̂
len(ϑ⃗)(ϑlen(ϑ⃗)) · · · R̂0(ϑ0) |ψ0⟩

Input:
• para: array ϑ⃗ with all parameters ϑj .
• Ĝlist: list including all the operators Ĝj in matrix form.
• |ψ0⟩: initial state of the circuit.
• n: Dimension of the square matrix Sn to be calculated (cf. Eq. (7)).
• tol: tolerance used for computing matrix rank function.

2 hildim ← len(|ψ0⟩)
3 Jn ← zero_array[2hildim,n]
4 for j in 1, ..., n do
5 ∂Cj ← ∂C

∂ϑj
(ϑ⃗)

6 Jn[0 : hildim, j − 1] ← Re (∂Cj)
7 Jn[hildim : 2hildim, j − 1] ← Im (∂Cj)
8 end for
9 Sn ← JTn Jn

10 rank_Sn ← rank(Sn, tol) \\compute rank of matrix Sn with tolerance tol
11 Output:
• rank_Sn: rank of the matrix SC,n
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