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C H E M I C A L  P H Y S I C S

Improving potential energy surfaces using measured 
Feshbach resonance states
Karl P. Horn1†, Luis Itza Vazquez-Salazar2†, Christiane P. Koch1, Markus Meuwly2*

The structure and dynamics of a molecular system is governed by its potential energy surface (PES), representing 
the total energy as a function of the nuclear coordinates. Obtaining accurate potential energy surfaces is limited 
by the exponential scaling of Hilbert space, restricting quantitative predictions of experimental observables from 
first principles to small molecules with just a few electrons. Here, we present an explicitly physics-informed ap-
proach for improving and assessing the quality of families of PESs by modifying them through linear coordinate 
transformations based on experimental data. We demonstrate this “morphing” of the PES for the He ‐ H2

+ complex 
using recent comprehensive Feshbach resonance (FR) measurements for reference PESs at three different levels of 
quantum chemistry. In all cases, the positions and intensities of peaks in the energy distributions are improved. 
We find these observables to be mainly sensitive to the long-range part of the PES.

INTRODUCTION
The potential energy surface (PES) representing the total energy of a 
molecule is a fundamental concept for characterizing the dynamics 
both in the gas and condensed phase (1, 2). With high-quality PESs, 
the computation of experimental observables becomes possible with 
predictive power at a quantitative level. On the other hand, while es-
sential measurable observables such as reaction cross sections, ther-
mal rates, or relaxation times directly depend on it, the PES itself 
cannot be observed. This raises the question of how to obtain the most 
accurate PES for a given system. From an electronic structure per-
spective, it is known that within the Born-Oppenheimer approximation 
and neglecting relativistic and quantum electrodynamic corrections 
(3) full configuration interaction (FCI) calculations with large basis 
sets provide the highest quality for the total energies of a molecule. 
However, the unfavorable scaling of FCI with the number of electrons 
and basis functions prevents its routine use for constructing full-
dimensional PESs for any molecule consisting of more than a few 
light atoms. Alternatively, one may approach the question from an 
experimentalist’s perspective and argue that the “most accurate PES” 
is the one that best describes physical observations. Such an approach 
has been developed for diatomic molecules: the rotational Rydberg-
Klein-Rees (RKR) method solves the “inversion problem” of obtain-
ing the potential energy curve given spectroscopic information (4). 
Rotational RKR has also been applied to triatomic van der Waals 
complexes (5, 6) but cannot be extended to molecules of arbitrary 
size. Solving the “inverse problem,” i.e., determining the PES given 
experimental observables and an evolution equation from which 
these observables are calculated has in general turned out to be very 
difficult in chemical physics (7). This concerns both the choice of ob-
servables and the actual inversion procedure.

An alternative that is not particularly sensitive to the dimensional-
ity of the problem is to reshape the PES which was first done by trial 
and error (8, 9) and eventually lead to “morphing” PESs (10). This 
method exploits the topological relationship between a reference and 

a target PES. Provided that calculations with the reference PES yield 
qualitatively correct observables 𝒪calc when compared with experi-
mental observations 𝒪exp, the squared difference ℒ = ∣𝒪calc − 𝒪exp∣2 
can be used to reshape the PES through linear or nonlinear coordi-
nate transformations (morphing) (10). It capitalizes on the correct 
overall topology of the reference PES and transmutes it into a new 
PES by stretching or compressing internal coordinates and the energy 
scale, akin to stretching and bending a piece of rubber. Alternatives 
for reshaping PESs are machine learning-based methods such as Δ–
ML (11), transfer learning (12, 13), or differential trajectory reweight-
ing (14). Morphing has been applied successfully to problems in 
spectroscopy (15), state-to-state reaction cross sections (16), and 
reaction dynamics (17) for systems with up to 6 atoms (18). Near-
quantitative, full-dimensional reference PESs from electronic struc-
ture calculations have, however, so far rarely been available for direct 
comparison. For scattering experiments with He −H+

2
 such a PES is 

now available (19). On the other hand, for weakly interacting triatom-
ic van der Waals complexes, accurate PESs were determined from fit-
ting well depths and positions of radial minima to parametrized 
functions (20). However, these studies relied heavily on explicitly 
available long-range information of the intermolecular interactions. 
The present work approaches the problem from a broader perspec-
tive, formulates and solves it as a machine learning-based task, and 
applies it to recently measured scattering data covering a wide range 
of intermolecular energies.

The He −H+
2
 molecular complex is an ideal proxy for the present 

work owing to the fact that the PES can be calculated rigorously at the 
highest level of quantum chemistry (FCI). The complex is also inter-
esting in itself, and the current status of experimental and computa-
tional spectroscopy and reaction dynamics has recently been reviewed 
(21). He −H+

2
 , which is isoelectronic to H3, is stable in its electronic 

ground state and features a rich reaction dynamics and spectroscopy. 
Experimentally, near-dissociation states (22, 23) and the low-
resolution spectroscopy were reported for both, He −H+

2
 and 

He −D+
2
 (24). Assignments of the vibrational bands were possible 

by comparing with bound state calculations using a FCI PES (19). 
Only recently, it was possible to estimate the dissociation energy of 
∼1800 cm−1 from spectroscopic measurements (24). This compares 
with earlier bound state calculations using the FCI PES predicting a 
value of D0 = 1784 cm−1 (19). This value was confirmed from a 
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subsequent focal point analysis resulting in D0 = 1789(4) cm−1 for 
para −H+

2
 (25). Furthermore, a range of reactive collision experi-

ments was carried out which yielded total and differential cross sec-
tions, depending on the vibrational state of the diatomic (21) but with 
marked differences between observed and computed results. In par-
ticular, computationally predicted sharp reactive scattering resonanc-
es have not been found experimentally as of now (21). The role of 
nonadiabatic couplings is of considerable current interest as a means 
to clarify the role of geometric phase in reaction outcomes and as a 
source of friction in the formation of the He −H+

2
 complex in the 

early universe. This provides additional impetus for a comprehensive 
characterization of this seemingly “simple” system.

The present work uses all very high-quality experimentally 
measured (26) Feshbach resonances for He −H+

2
 to morph PESs. 

Feshbach(-Fano) resonances arise if a bound molecular state on a PES 
of a closed channel couples to scattering states in an open channel (27, 
28). The recoil translational energy is determined from measurements 
which are expected to probe large spatial areas of a PES and the un-
derlying intermolecular interactions (28). The redistribution of ener-
gy due to the Feshbach resonances has recently been mapped out 
comprehensively for He −H+

2
 and Ne −H+

2
 with coincidence velocity 

map imaging of electrons and cations, yielding very favorable agree-
ment between theory and experiment (26). In these experiments, the 
ionic molecular complexes are generated at separations of up to 10 a0 
between the rare gas atom and the molecular ion, confirming that the 
experiment indeed probes a large spatial extent of the PES, including 
its long-range part.

Here, morphing is applied to initial PESs ranging from essentially 
exact FCI (apart from non–Born-Oppenheimer, relativistic, quantum 
electrodynamic, and remaining basis set effects) to medium- and 
lower-level methods, that is, multireference configuration interaction 
including the Davidson correction (MRCI + Q) and second-order 
Møller-Plesset perturbation theory (MP2). This allows determining 
the sensitivity of the PES and information content in the experimental 
observables about local and global features of the PES and to assess 
the performance of lower-level methods (e.g., MP2) compared with 
FCI. Starting from a PES of sufficiently high quality, the changes in-
troduced by morphing can be related to parts of the PES that are 
probed by the experiments. At the same time, additional experimen-
tal observables, probing primarily the bound region for He interact-
ing with H+

2
 , will be required for morphing at the lower levels of 

quantum chemical theory.

RESULTS
The three PESs considered in the present work, in decreasing order of 
rigor, were determined at the FCI, MRCI + Q, and MP2 levels of the-
ory, using Jacobi coordinates R (distance between the center of mass 
of the H+

2
 and He), r (distance between the two hydrogen atoms), and 

θ (the angle between the two vectors �⃗R and r⃗ ), see Fig. 1A. To set the 
stage, scattering calculations with the FCI PES are considered which 
give quite satisfactory results when compared with the experimental 
data (Fig. 2A and Table 1). The measured kinetic energy distributions 
feature a series of peaks which reflect the rovibrational quenching as-
sociated with the decay of the Feshbach resonances (26). On average, 
the positions of the peak maxima are reproduced to within 10.8 cm−1, 
whereas the maximum intensities, Imax, of P(E) differ by 20.9 arbitrary 
units (a.u.; blue squares in Fig. 2A).

Next, morphing was applied to all three PESs, including the FCI 
PES. The FCI PES has been validated with respect to experiment (22–
24, 26) and therefore can serve as a suitable proxy for changes re-
quired for PESs at the MRCI + Q and MP2 levels of theory. Two 
morphing strategies were considered (Fig. 1B): For morphing M1, the 
total energy was decomposed into one-body (�(1)

i
) , two-body (�(2)

i
) , 

and three-body (𝒱(3)) contributions

and the morphing transformation was applied only to 𝒱(3)(R, r, θ). It 
should be noted that 𝒱(3)(R, r, θ) is defined as the difference between 
the total energy and the one- and two-body terms without implying a 
physical origin of the three-body contribution, such as an Axilrod-
Teller interaction. Approach M1 is motivated by the assumption that 
all diatomic potentials �(2)

i
 are of high quality so that changes are only 

required in the higher-order correction three-body term. In the sec-
ond approach, called “M2,” the PES is globally modified, including the 
two-body contributions. In other words, for M1 and M2, the morph-
ing transformation (Eq. 4) is applied to 𝒱(3)(R, r, θ) and to 𝒱(R, r, θ), 
respectively. The reduction of the total loss and the associated param-
eter values are reported in figs. S1 and S2.

Morphing M1 applied to the FCI PES leaves most of the peak posi-
tions unchanged, see filled versus open blue symbols in Fig. 2D, but 
improves the peak heights considerably (by 30%) as demonstrated in 
Fig. 2E and Table 1 (rightmost column). These improvements are ac-
commodated by reshaping the underlying PES as shown in Fig. 3A: In 
the long-range (R > 3.0 a0), the anisotropy of the morphed FCI-PES is 
somewhat decreased due to reshaping the PES around θ = 90∘ (T-
shaped geometry) and De is decreased by ∼50 cm−1. One-dimensional 
(1D) cuts along the rHH and R coordinates for a given angle θ show 
that changes in the PES become more substantial for larger rHH with 
small changes in the depth of the potential wells but maintaining the 
overall shape (figs. S3 and S4). The changes with respect to R are no-
ticeable for R < 3.0 a0 with distortions of the energy contours at differ-
ent angles θ but maintaining the overall shape of the curves. For 
increasing R, the changes are negligible compared with the original 
PES, reflecting the accurate treatment of the long-range interaction 
(fig. S3). 2D projections of the combined changes of rHH and R at dif-
ferent angles show that the most pronounced modifications in the 
shape of the PES concern regions for rHH larger than the equilibrium 
geometry of H+

2
 (figs. S5A, S6A, and S7A).

FCI calculations of entire PESs with sufficiently large basis sets are 
only feasible for few-electron systems. For larger systems, quantum 
chemical methods such as Møller-Plesset perturbation theory, multi-
reference configuration interaction, or coupled cluster-based tech-
niques need to be used instead. As reported in the two rightmost 
columns of Table 1, the initial MRCI + Q and MP2 PESs reproduce 
experimental peak positions within 10.3 and 13.1 cm−1 compared 
with 10.8 cm−1 from the FCI PES, and for the peak intensities, the and 
root mean squared errors (RMSEs) are 23.9 and 22.4 compared with 
20.9 a.u. from using the highest level of electronic structure theory. 
On the other hand, the dissociation energy is smaller by more than 
10% compared with the FCI PES due to partial neglect of correlation 
energy in the MRCI + Q and MP2 methods. This confirms that Fesh-
bach resonances are not particularly informative with regard to fea-
tures of the PES around the minimum energy structure (R ∼ 3.0 a0), 

V (R, r, θ)=�
(1)

He
+�

(1)

H
+�

(1)

H+
+

�
(2)

HeH
(rHeH)+�

(2)
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(rHeH+)+�

(2)

H+
2

(rH+
2
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although the wave functions sample this region extensively, see fig. S8. 
In other words, although an important characteristic of a PES such 
as the stabilization energy of the complex differs by 10% or more, 
the energies and intensities measured in collision experiments are 
matched within similar bounds.

Morphing M1 applied to the MRCI + Q and MP2 PESs supports 
this observation. The loss function evaluated in module (5) of the op-
timization, see Fig. 1, decreased by 74 and 88% for the two cases, with 
improvements in the intensities by up to 50% for the MP2 PES, see 
Table  1 (far right column). However, the resulting PESs are clearly 
unphysical, with pronounced distortions in particular for the MP2 

PES (see Fig. 3C), and dissociation energies either increased by 40% 
for MRCI + Q or decreased by 30% for MP2, respectively. Low-
resolution experiments (24) provide an estimate for the dissociation 
energy D0 ∼ 1800 cm−1, compared with D0 = 1794 cm−1 from bound 
state calculations on the initial FCI PES (19) which features a well 
depth of De ∼ 2820 cm−1. This value of De serves as a reference for the 
remainder of the present work.

The percentage changes of the parameters [α, β, ε] scaling (R, r, V) 
provide further information about the transformation induced 
by morphing the initial PESs. For the FCI PES, they are (−0.6, 
−3.6, 0.0)% compared with (−0.6,11.6, 1.0)% for the MRCI + Q and 

Fig. 1. Morphing of ab initio potentials based on experimental data. General flowchart of the morphing procedure (A): Module (1) implements the calculation of 
ab initio points for the system under study, the triatomic He − H

+
2

 with the definition of the respective coordinates indicated. Module (2) represents the fitting of the points 
obtained from the previous step using the reproducing kernel Hilbert space (RKHS) method, with the functional form used to approximate the given PES. Module (3) cor-
responds to the scattering calculations performed with the potential obtained in module (2), calculating the eigenstates of the Hamiltonian. Module (4) postprocesses the 
results of the scattering calculations to yield P(E) with examples for three values of j′ displayed. Module (5) evaluates the loss function (Eq. 5) for morphing, comparing the 
experimental values of the energy distributions with the results of the scattering calculations. Module (6) carries out the actual morphing procedure, as explained in (B). 
Morphing results in a new potential, and the procedure continues until the value of the loss function in module (5) does not improve further. The termination conditions 
are ℒ/ℒ0 ≤ λM1 = 0.3 or ℒ/ℒ0 ≤ λM2 = 0.4 for M1 and M2, respectively where ℒ0 is the loss function of the unmorphed energy distribution, see fig. S1. (B) Morphing 
module (6) for procedures M1 (three-body) and M2 (global).
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(0.3, −9.7, 0.1)% for the MP2 PES. The most notable changes concern 
the H+

2  vibrational coordinate rHH for MRCI + Q (+12.0%) and MP2 
(−10.0%). Such large changes are problematic since the many-body 
expansion used for morphing M1, cf. Eq. 1, relies on the quality of the 
two-body contributions, i.e., the H+

2
 and HeH+ potential energy 

curves. However, MP2 underestimates the experimentally determined 

dissociation energy of the HeH+ two-body interaction by 285 cm−1 
(fig.  S9) and accounts for an overall error of ∼500 cm−1 in De for 
He −H+

2
 . On the other hand, the two-body term for H+

2
 agrees to 

within 3 cm−1 between the three methods with remaining differences 
compared with experiment primarily due to neglect of non–Born-
Oppenheimer contributions (fig. S10), relativistic corrections, quantum 
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Fig. 2. Comparison of calculated energy distributions P(E) from unmorphed and morphing M1 PESs with experimental results. P(E) obtained from experiment 
[black, data taken from (26)] and full coupled channels calculations using the unmorphed and M1-morphed PESs for FCI (A), MRCI + Q (B), and MP2 (C). Computed results 
for the initial (blue, green, and red dashed) and best (blue, green, and red solid) morphed PESs are reported, with the residuals for the peak positions (Eexp − Ecalc) and 
fraction of error in the peak heights 

[(

P(E)exp − P(E)calc

P(E)calc

)]

 for each PES shown in (D) and (E). The statistical measures for all models are summarized in Table 1. The experimental 
uncertainties are 3.5 cm−1 for the peak positions and ∼10% for peak heights.

Table 1. Dissociation energies (De in cm−1) for He + H
+

2
 , coordinates for the minimum energy structures, Re and re, and root mean squared errors 

(RMSEs) for the peak positions and heights of the kinetic energy spectra for all initial and morphed PESs using both M1 and M2 methods. In all cases, 
the equilibrium geometry is linear He − H

+
2

 , i.e., θ = 0 or θ = 180∘.

Surface De (cm−1) Re/a0 re/a0 RMSE (E) (cm−1) RMSE (I) (a.u.)

FCI initial 2818.9 2.97 2.07 10.8 20.9

FCI morphed (M1) 2772.0 2.95 2.07 11.9 13.7

FCI morphed (M2) 2819.1 2.99 2.07 10.8 13.8

MRCI + Q initial 2557.3 2.98 2.07 10.3 23.9

MRCI + Q morphed (M1) 3414.7 2.98 2.08 12.2 21.9

MRCI + Q morphed (M2) 2557.0 3.00 2.03 8.9 17.6

MP2 initial 2494.0 2.99 2.07 13.1 22.4

MP2 morphed (M1) 1685.6 2.93 2.12 12.8 10.9

MP2 morphed (M2) 2492.8 2.97 1.74 10.0 11.8

MP2 morphed (PES to 
PES)

2502.3 2.98 2.06 13.0(7) 22.9
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electrodynamic effects, and remaining basis set incompleteness. To 
summarize, while M1 morphing improves the match between experi-
mentally measured and calculated observables, it modifies the PES for 
the lower-level methods in an unphysical way. This is attributed to the 
fact that M1 morphing operates on the three-body term only and can 
thus not compensate for inaccuracies in the two-body contributions 
to the overall PES. In contrast, for FCI, the changes for all characteris-
tics of the morphed PES are moderate, underscoring the accuracy of 
both, the initial and morphed PESs from FCI calculations.

To reduce the dependence of the morphed PESs on the quality of 
the two-body contributions, morphing M2 was carried out. M2 mor-
phing acts globally and independently on each of the internal degrees 
of freedom, see Fig. 1. This makes M2 less prone to overcompensatory 
effects as observed for M1 morphing. For the MRCI + Q PES, the 
improvement in the observables amounts to ≈14% for the peak posi-
tions and ≈26% for the peak heights. At the same time, the changes in 
the PES are moderate, see Fig. 4B, and the dissociation energy does 
not change (Table 1) although the energy scaling parameter, ε, was 
allowed to vary. Similarly, for MP2, the RMSE for the positions and 
heights of the peaks improve by about 22 and 47%, respectively. Con-
trary to M1, morphing M2 does not substantially modify the well 
depth as reflected by the value of De, see Table 1. For FCI, morphing 
changes De by 0.2 cm−1, which is plausible as increasing the basis set 
from aug-cc-pv4z to aug-cc-pv5z changes De by 5 cm−1 (fig. S11) and 
expected smaller changes when further increasing to the aug-cc-pv6z 
basis. This is confirmed for MRCI + Q calculations for which De 
changes by 2.5 cm−1 between aug-cc-pv5z and aug-cc-pv6z bases, see 
fig. S12.

For the optimal morphing parameters, M2 applied to the MRCI + 
Q PES yields an enlargement of R by ∼1%, whereas rHH is reduced by 
1.9% and ε remains unaffected. The reduction in rHH leads to a small 
increase in the height of the barrier between the two wells of the po-
tential (Fig.  4B) and a corresponding increase in the energy of the 
transition state, as observed in the minimum energy path (MEP), see 
fig. S13, for the angular coordinate. This effect is compensated by a 
positive displacement of the values of R (fig. S14) for the MEP. On 
the other hand, for the MP2 surface, the morphing parameters are 
(+0.6, +19.0, −0.04)%. The large positive value for β results in a 

displacement of the H+
2
 bond length to a shorter equilibrium value 

(figs. S15 and S16). For the R coordinate, the values are also reduced, 
while the barrier height remains unchanged (fig. S14). As for M1, in 
the MP2 and MRCI + Q PESs, the largest changes are observed in the 
rHH coordinate. However, in the M2 method, scaling of the global PES 
results in a better performance for the calculation of the observable 
and a better physical description.

Morphing one PES into another one can probe the flexibility of the 
morphing transformation as a whole. To this end, the MP2 PES was 
morphed to best compare with the FCI PES in a least squares sense 
according to method M2, i.e., by finding parameters (α, β, ε) that min-
imize (VFCI(R, r, θ) − εVMP2(αR, βr, θ))2 without specifically weighting 
low- or high-energy regions in the fit. In this case, no experimental 
data were used in the refinement. Rather, the performance of the 
morphed PES was tested a posteriori. This optimization procedure re-
duces the RMSE between the FCI and unmorphed versus morphed 
PES by about 30% (from 138 to 87 cm−1; see fig. S17). The changes in 
the topology of the surface in Fig. 5C indicate that the morphed MP2 
PES is “pulled toward” the FCI PES: Consider, for example, the isocon-
tours for −400 cm−1 for which the original MP2 isocontour (blue) is 
far away from the FCI target contour (red), whereas the morphed PES 
(gray) is deformed toward the gray target isocontour. Closer inspec-
tion reveals this to occur for all the other isocontours in Fig. 5C as well. 
The barrier separating the [He-HH]+ and [HH-He]+ minima is re-
duced, which is also seen in the MEP (see fig. S18).

The results of the scattering calculations performed with the sur-
face from the PES-to-PES morphing procedure (Fig. 5A) are overall 
slightly inferior to those obtained from the initial FCI and MP2 PESs, 
when compared with the experimental data: A negligible increase of 
the RMSE for the peak positions (<1%) and intensities (2.2%) is 
found. Moreover, the fact that the morphing transformation increases 
the well depth by merely 10 cm−1 indicates that a morphing transfor-
mation operating only on distances and the energy is not sufficiently 
flexible to accommodate global changes between topologies as differ-
ent as FCI versus MP2. Some further improvement may be obtained 
by more heavily weighting data points in the attractive region com-
pared with the repulsive well which was, however, not considered in 
the present work.

CBA

Fig. 3. Comparison between unmorphed and morphed M1 PESs. Projections of the PESs for rHH = 2.0 a0 for the three methods studied here. Isocontours for un-
morphed PESs [FCI (A, blue), MRCI + Q (B, green), and MP2 (C, red) from left to right] are shown as dashed lines, whereas the M1-morphed PESs are solid lines. The zero of 
energy is set by the value at r = 2.0 a0 and R = ∞. Energies are in cm−1.
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The results indicate that at all levels of theory improvements in 
describing the experimental observables are possible. At the same 
time, morphing applied in the fashion done here provides a stringent 
test to probe the quality of an initial PES at a quantitative level—with 
higher initial levels of theory, the changes that need to be accommo-
dated decrease and specific deficiencies of a particular quantum 
chemical approach can be unveiled.

DISCUSSION 
Given that essentially exact quantum calculations are possible for the 
He −H+

2
 complex (19, 24, 26), the present results highlight what can 

and cannot be learned about molecular PESs—the central concept in 
classical and quantum molecular dynamics—from accurate and rath-
er comprehensive experimental data based on Feshbach resonances. 

One hallmark of such quantum scattering resonances is the large 
spatial extent of the PES which the resonance wave function probes 
(fig. S8 and discussion in the Supplementary Materials). In this re-
gard, the kinetic energy spectrum obtained from the decay of the 
Feshbach resonances differs from spectroscopic observables, typically 
involving bound states sensitive to restricted spatial regions of 
the PES (10).

In addition to the actual changes of the PES, a comparison of the 
two morphing procedures used provides insight into the relationship 
between the PES, the information provided by specific observables, 
and how this information can be used to improve an initial PES. First, 
the much better performance of morphing the global interaction en-
ergy instead of restricting to the three-body contributions reveals the 
importance of corrections already at the level of two-body interac-
tions. Moreover, the physically meaningful changes to the PES 

A B

C D

Fig. 4. Results of morphing method M2. Distributions P(E) (A and C) obtained from experiment [black, data taken from (26)] and full coupled channels calculations using 
the unmorphed (dashed lines) and M2-morphed (solid lines) PESs (B and D) for MRCI + Q (A and B), and MP2 (C and D). The RMSE for the peak positions and heights are 
reported in Table 1. The projections of the PES (B and D) are shown for r = re (see Table 1) with the zero of energy set for the r value considered and R = ∞. Energies are in 
cm−1. The changes in the PES suggest that the observables are primarily sensitive to the long-range part and the repulsive wall of the PES.
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identified by the global morphing concern essentially the anisotropy 
in the long range. To this end, comparatively small changes of the 
PESs result in notable improvements in the agreement between calcu-
lated and measured observables. This is in line with the expectation 
that Feshbach resonance wave functions mainly probe the anisotropy 
of the PES in the long range. Both observations taken together suggest 
extending the morphing transformation to include higher order 
terms (e.g., αr → α1r + α2r2 + ⋯) or nonlinear terms (akin to a neural 
network activation function) in the coordinate transformation. In-
cluding the angular degree of freedom θ in the morphing transforma-
tion as well yields further improvements, see figs.  S19 to S21 and 
discussion in the Supplementary Materials.

The present work provides information about the behavior of 
molecular PESs from lower (MP2) to very high (FCI) levels under 
morphing. It would also be interesting to characterize the effect of 
using different basis sets in the quantum chemical calculations. As 
an example, MRCI + Q calculations using the aug-cc-pV5z and aug-
cc-pV6z basis sets changes the interaction energy between He and 
H+

2
 by 2.5 cm−1, see fig.  S12, compared with a well depth De = 

2557 cm−1. Hence, for the basis sets used in the present work, the 
effect is expected to be small. However, if smaller basis sets need to 
be used, as will be the case for larger systems, the effect will be con-
siderably larger.

It is valuable to juxtapose the present effort to improve molecular 
PESs using experimental data with earlier work on van der Waals 
complexes between rare gas atoms and diatomic molecules. This ap-
proach was based on heavily parametrized functions including de-
tailed expressions for the long-range part of the intermolecular 
interactions in which primarily the well depths and positions of the 
minima of the radial strength functions and the steepness of the re-
pulsive wall were allowed to vary (20, 29). Such a strategy was success-
ful in fine-tuning PESs but also relied on an appreciable amount of 
detailed information: For example, more than 20 parameters are re-
quired to define the long range interaction between the rare gas and 

the diatomic molecule. In addition, uncertainties in the parameter 
values provided information about their sensitivity to experimental 
observables.

Contrary to this, the present work adopts a more holistic approach 
that also scales well to larger systems by deforming the entire PES to 
embed experimental observables. No particular physical meaning is 
attributed to the morphing parameters, and reporting uncertainties 
on them is of less immediate interest also because it is evident that 
multiple valid and meaningful solutions to the problem exist in gen-
eral. At a more qualitative level, it is expected that the uncertainty on 
the well depths is appreciable because the experiments are not direct-
ly sensitive to this feature of the PES. The technique capitalizes on the 
fact that full-dimensional, global PESs can now be computed at suffi-
ciently high levels of quantum chemistry (13), and obtaining a flexible 
machine learning-based rendering either from (reproducing) kernel 
representations or from neural networks is feasible (30, 31). The ap-
proach followed here can be easily scaled to larger systems, whereas 
the earlier “fine-tuning” strategies are typically limited to small sys-
tems. The present work extends the morphing methodology beyond 
spectroscopic observables to using experimental scattering cross sec-
tions. In the future, it will be interesting to combine observables 
whose dynamics are sensitive to different parts of the PES: sampling 
wide areas of configurational space (e.g., Feshbach resonances), state-
to-state properties probing narrow ranges of the PES, such as spectro-
scopic transitions in the well, and near-dissociation states probing the 
high-energy regions of the well, to name a few.

At a fundamental level, the present findings raise the question how 
much and what experimental data are required to completely charac-
terize a molecular PES. The present work proposes several PESs with 
comparable average performance on the scattering observables, al-
though the shapes and local characteristics of the PESs differ greatly, 
illustrating that the information contained in the Feshbach resonanc-
es is not sufficient to uniquely define the PES. In particular, informa-
tion on the bound-state region is missing. One possible way to answer 

A

B

C

Fig. 5. PES-to-PES morphing. (A) Cross sections obtained from experiments [black, data taken from (26)] and scattering calculations on the unmorphed MP2 (dashed 
light red) and the morphed (gray) PESs for M2 PES-to-PES morphing procedure with the FCI PES as target. (B) Same as (A) but comparing the best morphed PES (gray) to 
the unmorphed FCI surface (solid blue). (C) 2D projections of the PES for r = 2.0 a0 for unmorphed FCI (solid blue), unmorphed MP2 (dashed light red), and best-morphed 
PES (gray). The zero of energy is set to the value of the PES at rHH = 2.0 a0 and R = ∞. Energies are in cm−1. All data points are equally weighted; the performance of the 
morphing transformation may be changed by differentially weighting attractive and repulsive regions of the PES.
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the question which combination of observables is suited to complete-
ly characterize the dynamics of a molecular system has been devel-
oped in quantum information science and is referred to as quantum 
process tomography (32). This has to be distinguished from the “to-
mography of Feshbach resonance states” (26) which referred to the 
simultaneous measurement of multiple reaction products. Quantum 
process tomography goes substantially further by providing a mathe-
matical prescription to completely characterize a quantum dynamical 
process. It has been adapted to molecular systems, for example, in the 
context of ultrafast spectroscopy. It is, however, still an open question 
how to adapt it to two- or many-body processes such as molecular 
scattering. In future work, quantum process tomography could be ap-
plied to the quest of uniquely defining a PES by making use of the 
mapping between the real-space representation of the molecular 
Hamiltonian and qubits (33). This should allow for a systematic ap-
proach to identify the most important measurements which would 
then provide additional data for morphing PES.

METHODS
Potential energy surfaces
For the present work, three PESs were used. Full-dimensional PESs 
for He −H+

2
 were previously determined at the FCI/aug-cc-pV5Z and 

MRCI + Q/aug-cc-pV6Z levels of theory, respectively (19). The refer-
ence data were represented as a reproducing kernel Hilbert space 
(RKHS) (34, 35), which provides a highly accurate interpolation and 
allows to encode the leading order long-range behavior for large sepa-
rations. In addition, a third PES using the same underlying grid for 
determining reference energies at the MP2/aug-cc-pV5Z level and 
also represented as a RKHS was constructed for the present work. 
These calculations were carried out using the MOLPRO suite of codes 
(36). All PESs are represented as a sum of diatomic potential energy 
curves together with an explicit three-body interaction. The complete 
many-body expansion for the He −H+

2
 system is given in Eq. 1, where 

distances ri ∈ {rHeH, rHeH+, rH+
2
} in the two-body terms �(2)

i
 are the 

distances between the respective atoms, whereas for the three-body 
term 𝒱(3)(R, r, θ), the coordinate r is the H+

2
 separation rH+

2
 , R is the 

distance between He and the center of mass of the diatomic, and θ is 
the angle between the two distance vectors r⃗ and �⃗R . 𝒱(1) corresponds 
to the respective atomic energies. The energies �(1)

i
 and �(2)

i
 were 

also determined at the respective level of theory from electronic struc-
ture calculations, and the contributions �(2)

i
 were fitted to analytical 

expressions described in (19). The fitting parameters for the FCI and 
MRCI levels of theory were published before, and those for the MP2 
level of theory are provided in the Supplementary Materials. Combin-
ing all this information, the three-body contribution 𝒱(3)(R, r, θ) was 
obtained on the grid used in the electronic structure calculations for 
𝒱(R, r, θ) and represented as a RKHS.

Scattering calculations
Integral scattering cross sections and scattering wave functions for 
He −H+

2
 , resulting from a spatially distributed input wave packet, 

were evaluated using a home-written coupled-channel collision simu-
lation based on the renormalized Numerov method (37, 38). Details 
on these calculations have been given in earlier work (26), and only 
the salient features are presented here. The wave packet simulations 
use Jacobi coordinates with r⃗ the vector between the hydrogen atoms, 

�⃗R the vector from the dihydrogen center of mass to the helium atom, 
and θ the angle between the two vectors. With R =∣ �⃗R ∣ and r =∣ r⃗ ∣ , the 
total Hamiltonian is then

where μcmplx is the reduced mass of the three-body complex, μdiat is 
the reduced mass of the dihydrogen molecule, and V(R, r, θ) is the 
3D PES. The total wave function of the system Ψ( �⃗R , r⃗ ) is written as 
a product of R-​, r-​, and angularly dependent terms

see (26) for more details. Channels consist of tuples of quantum num-
bers v, j, and ℓ, corresponding to diatomic vibration, rotation, and 
orbital angular momentum, respectively. In Eq. 3, χdiat,v,j(r) designates 
the rovibrational eigenstates of the molecule. Starting from a given 
entrance channel, the Schrödinger equation is solved numerically to 
obtain the radial wave functions G(R) for the exit channel with quan-
tum numbers (v′, j′, ℓ′) connected with the entrance channel (v, j, ℓ). 
The total angular momentum, J⃗ tot = j⃗ + �⃗L , obtained from coupling 
diatomic and orbital rotation, and parity are conserved under the 
Hamiltonian (2).

In the experiments, the He −H+
2
 complex (plus a leaving electron) 

is formed by Penning ionization (He* + H2), and the scattering calcu-
lations considered in the present work describe the half-collision on 
the He −H+

2
 PES. The initial wave packet ϕ(R) along the R-​coordinate 

is approximated by Gaussian distributions centered around R ≈ 8 a0 
(26). The experiment prepares the input wave packet with jwp = 0,1 for 
para- and ortho-H2

+, respectively. However, as the system is prepared 
in a superposition of J-​states, individual simulations need to be car-
ried out for each possible value of J and partial wave ℓ. Then, the inte-
gral cross section is calculated as a weighted sum over the individual 
contributions for a given collision energy Ecol/kB ≈ 2.5 K. The J-​
weights, which were calculated separately (39), are shown in fig. S22. 
Experimentally, the initial state is prepared “in situ” whereby Penning 
ionization generates the He −H+

2
 complex. Thus, the initial state of 

the present quantum wave packet simulations is in fact the result of an 
incoherent decay of a population of He*−H2 complexes which leaves 
one with an unknown normalization. The experimentally observed 
quantity is a probability distribution P(E) which is dimensionless. 
Here, the computed intensities are scaled such as to best reproduce 
the experimentally measured ones.

Evaluation of the collision cross section due to the spatially distrib-
uted input wave packet can be accomplished by expanding ϕ(R) in a 
basis of eigenfunctions of Htot. To this end, the time-independent 
Schrödinger equation was solved on a discretized interval of 1002 en-
ergies ranging from 100 cm−1 below to 100 cm−1 above the dissociation 
threshold of the given entrance channel. Because full coupled-channel 
calculations are computationally demanding, the considered set of 

Htot = −
ℏ2

2μcmplx

∇2

�⃗R
−

ℏ2

2μdiat
∇2

r⃗
+ V (R, r, θ) (2)

ΨJMvj �( �⃗R , r⃗ )∝
∑

v�j� �
�

G
Jvj �

v�j� �
� (R)χdiat,v�j� (r)

j
∑

mj=−j

�
∑

m
�
=− �

C
JM

mjm �

Y
�,m �

(θ
R
,φ

R
)Y

j,mj
(θ

r
,φ

r
)

(3)
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initial wave packet quantum numbers J and ℓ was limited to (ℓ/J) ∈ 
{(0/0), (1/1), (2/2), (3/3), (4/4)} for para- and (ℓ/J) ∈ {(0/1), (1/1,2), 
(2/1,2,3), (3/2,3,4), (4/3,4,5)} for ortho-dihydrogen, respectively. For 
each coupled channel calculation, a converged basis set of diatomic 
rotational states up to jmax = 19 and diatomic vibrational states up to 
vmax = 5 was used.

Solving the Schrödinger equation in this fashion allows for calcu-
lating the channel-resolved integral cross section for each energy in 
the discretized interval. For a given output channel, the eigenenergy 
Ev′j′ℓ′ = Eint,v′j′ℓ′ + Ekin,v′,j′,ℓ′ can be decomposed into its internal and 
kinetic parts, respectively. By generating a histogram for all output 
channels (v′,j′,ℓ′), the cross section can be expressed as a function of 
kinetic energy, which can be compared with the experimental results. 
Next, the kinetic energy histogram is convoluted using a Gaussian en-
velope to account for the finite resolution in the experiments (26). 
Before convolution, and as shown in fig. S23, the computed peaks are 
sharp in Ekin, which is a signature of Feshbach resonances. It should 
be noted that experimental peaks are clearly distinguishable and ener-
getically match the theoretical predictions. However, the peak shapes 
and heights can vary, dependent on the histogram resolution and con-
volution width. In this work, only single initial vibrational excitations 
(v = 1) were considered, to exploit the experimental resolution of 
separate j′ peaks in the cross section as a function of kinetic energy 
(40). The final j′ distributions P(j′) for the unmorphed and M2-
morphed PESs are reported in fig. S24.

Morphing
The morphing transformation considered here is

In Eq. 4, the three parameters (α, β, ε) are used for energy (ε)– 
and geometry (α, β)–related scalings. For the purpose of this work, 
the angle θ was not modified. The morphing procedure described 
further below optimizes the values of (α, β, ε) such that the differ-
ence between observed and computed features of the resonances is 
minimized. Application of such a procedure modifies local features 
(e.g., slope and curvature) of the PES but maintains its global shape.

For morphing M1 and M2, the refinement with respect to ex-
perimental values is formulated as an optimization problem with a 
loss function

to be minimized. Here, E(j′) is the kinetic energy of each cross sec-
tion corresponding to an exit channel j′, and δhκ(j′) accounts for the 
difference in the peak heights between experimental and calcu-
lated values

where, δh(j′) is regularized by subtracting hnoise = 10.0 to avoid 
fitting experimental noise. By design, only values δh(j′) > 0 con-
tribute to the error. Here, Δh(j′) = ∣ hexp

(j′) − γhcalc
(j′)(α, β, ε)∣, 

where h(j′) is the peak height of the cross section corresponding to 

an exit channel j′. The parameter γ is recalculated after each itera-
tion to best match the experiment by performing an additional 1d 
minimization over the squared difference in peaks heights. The 
weights wE = 1 (cm−1)−1 and wh = 1 ensure that all terms and the 
total loss ℒ in Eq. 5 are dimensionless and can be used to bias 
the fit to better reproducing certain observables than others, which 
was, however, not done here.

The workflow to perform the optimization of Eq.  5 is shown 
schematically in Fig. 1. In the first step, ab initio points of the PES 
are used to generate a RKHS kernel. Depending on the morphing 
procedure chosen, a new RKHS needs to be generated (for M1) or 
the existing kernel will be reused (for M2). All kernels are construct-
ed and evaluated using the “fast” method (34). The obtained PES is 
passed to the scattering code to perform the wave packet propaga-
tion. Next, the resulting cross sections are processed and then com-
pared with the available experimental data. If the difference between 
experimental and calculated values matches a given tolerance, the 
cycle finishes; otherwise, the PES is modified by three parameters as 
described in Eq.  4 following the chosen morphing approach. The 
values of the parameters α, β, and ε were obtained by a nonlinear 
optimization using the NLopt package (41). For further details 
about the optimization procedure, see the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S32
Table S1
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