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Abstract: Microwave three-wave mixing allows for enantiomer-selective excitation of randomly
oriented chiral molecules into rotational states with different energy. The random orientation of
molecules is reflected in the degeneracy of the rotational spectrum with respect to the orientational
quantum number M and reduces, if not accounted for, enantiomer-selectivity. Here, we show how to
design pulse sequences with maximal enantiomer-selectivity from an analysis of the M-dependence of
the Rabi frequencies associated with rotational transitions induced by resonant microwave drives. We
compare different excitations schemes for rotational transitions and show that maximal enantiomer-
selectivity at a given rotational temperature is achieved for synchronized three-wave mixing with
circularly polarized fields.

Keywords: microwave three-wave mixing; chiral discrimination; degeneracy, quantum control

1. Introduction

Chiral molecules cannot be superimposed with their mirror image by rotation and
translation; they exist in left- and right-handed forms called enantiomers. While the
two enantiomers typically have different bio-chemical behavior, they share almost the
same physical properties; in particular, they have practically identical spectra. Several
techniques for the detection of enantiomers exploiting the interaction of the molecules
with electromagnetic radiation have recently been developed. Since these techniques do
not rely on the inherently weak interaction with the magnetic field of the radiation, they
have a sufficiently high sensitivity for applications in the gas phase. Among these are
ultrafast spectroscopies based on photoelectron circular dichroism [1,2], high-harmonic
generation [3,4], enantiomer-selective control of molecular rotation [5–7] and resonant
phase-sensitive microwave three-wave mixing [8–11]. These techniques are based on light-
matter interaction in the dipole approximation, where the enantiomer-selective observable
arises as a triple product of molecule-specific vectors which changes sign under exchange
of the two enantiomers, independent of the molecular orientation [12,13]. In addition to
detecting enantiomeric excess, microwave three-wave mixing (3WM) can also be used
to selectively excite enantiomers to different energy levels [14–17]. This can serve as a
precursor for the separation of enantiomers and the preparation of an enantio-pure sample
out of a racematic mixture [18,19]. The enantiomer-selective excitation proceeds in a cyclic
way involving three rotational states, corresponding to the enantiomer-selective triple
product of the three non-vanishing Cartesian components of the molecular dipole moment,
µa, µb and µc, of which one changes sign under exchange of the two enantiomers [20].
The sign change causes constructive interference for one enantiomer and destructive
interference for the other [18,20–25].

In order to distill a single enantiomer from a racemic mixture, an enantiomer-selectivity
of close to 100% is required in the state transfer to the separate energy levels. In experiments,
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the efficiency is mainly limited by two factors. One is the temperature of the sample, i.e.,
the rotational states which are addressed in a three-wave mixing process are typically
thermally populated. First demonstrations of enantiomer-selective state transfer chose
one of the rotational levels with a large thermal weight as the starting point for the three-
wave mixing [14–16]. Since thermal population in the excited states of the cycle cannot be
coherently coupled, the contrast is reduced. The second limitation is due to degeneracies
within the rotational spectrum. Denoting the rotational quantum number by J, every
energy level of a rigid asymmetric top consists of 2J + 1 states with different values of
the orientational quantum number M. As a result, some of the parallel cycles fail to close,
and cycles with different M involve different Rabi frequencies. This limits the efficiency of
enantiomer-selective population transfer, even in the absence of thermal population in the
excited states [22].

The problem of temperature can be solved by addressing levels which are sufficiently
excited such that their thermal population vanishes [24,26]. Alternatively, the thermal
population in the excited levels can be eliminated prior to the three-wave mixing, for
example by optical pumping of an electronic transition [17]. The limitation due to the
orientational degeneracy can also be mitigated—it requires a sufficiently large number
of electric fields that break the corresponding symmetry [27]. This has been shown by
analyzing the controllability of finite dimensional subsystems of quantum asymmetric
tops [27,28]. Such an analysis allows one to determine the minimal number of microwave
fields which is necessary to control enantiomer selective rotational dynamics [27]. It also
establishes the polarization directions and the frequencies of the required control fields.
However, it cannot determine the actual pulse shapes, or the order of pulses in a sequence of
microwave excitations which separates the enantiomers of a racemic mixture into different
rotational states.

In the present study, we show how to derive pulse sequences with maximal enantiomer-
selectivity from a quantitative analysis of the population dynamics of degenerate rotational
states induced by resonant microwave fields. Forfeiting complete controllability, we identify
simpler pulse sequences than those of Ref. [27] which nevertheless lead to full enantiomer
selectivity. We furthermore show how the analysis of the rotational dynamics allows us to
extend the excitation schemes of Ref. [27] and predict the pulse parameters, in particular
the duration of the required pulses, for different experimental conditions and different
molecular species.

The paper is organized as follows: In Section 2, we summarize the properties of a
rigid asymmetric top and its interaction with microwave fields. For a better understanding
of the underlying rotational dynamics, we recall how rotational dynamics induced by
a single microwave field depends on the quantum number M of the rotational states
(Section 3). These insights can be utilized to construct sequences of microwave pulses that
result in complete enantio-selective populations transfer despite the presence of degenerate
states, independent of the general controllability of the system. In Section 4, we present
two examples: in Section 4.1, we show that a combination of three different three-wave
mixing cycles addresses all degenerate initial states and leads to complete enantio-selection.
In Section 4.2 we explore enantio-selective population transfer with circular polarized
microwave fields. The effects of rotational temperature and pulse duration are discussed in
Section 4.3. In Section 5, we summarize our results and conclude.

2. Asymmetric Top and Its Interaction with Microwave Radiation

In general, rigid chiral molecules, i.e., chiral molecules in their electronic and vibra-
tional ground state are asymmetric top molecules with the rotational Hamiltonian

Ĥrot = AĴ2
a + BĴ2

b + CĴ2
c , (1)



Symmetry 2022, 14, 871 3 of 17

where Ĵa, Ĵb and Ĵc are the angular momentum operators with respect to the principle
molecular axes, and A > B > C are the rotational constants. The eigenfunctions of an
asymmetric top are determined by

Hrot|J, τ, M〉 = EJ,τ |J, τ, M〉 . (2)

Since Equation (2) does not have an analytical solution, the asymmetric top eigen-
functions are typically expressed in terms of symmetric top eigenfunctions which admit a
closed form via Wigner D-matrices [29]. The molecule becomes a prolate or oblate sym-
metric top with the eigenfunctions |J, Ka, M〉 or |J, Kc, M〉 for B = C, respectively A = B.
The symmetric top wavefunctions are characterized by the rotational quantum number
J = 0, 1, 2... and the quantum numbers M = −J,−J + 1, ..., J and K = −J,−J + 1, ..., J
which describe the orientation with respect to a space-fixed and molecule-fixed axis, respec-
tively. The eigenfunctions of the asymmetric top are given by superpositions of symmetric
top eigenstates,

|J, τ, M〉 = ∑
K

cJ
K(τ)|J, K, M〉, (3)

where K-states with the same J and M are mixed, and τ = −J,−J + 1, ..., J. In rotational
spectroscopy, the asymmetric top states are usually denoted by |J|Ka |,|Kc |,M〉. We therefore
use this notation to characterize the asymmetric top eigenstates (The two notations relate
to each other as follows: For a given J, the asymmetric top states with lowest energy can be
denoted either by |J|Ka |=0,|Kc |=J,M〉 or, using the quantum number τ, by |J, τ = −J, M〉, the
ones with largest energy by |J|Ka |=J,|Kc |=0,M〉 or |J, τ = J, M〉. The states in between can be
matched accordingly). The eigenenergies EJ,τ of an asymmetric top do not depend on the
quantum number M and thus each rotational level is 2J + 1-fold degenerate.

The interaction of the molecules with an electromagnetic field in the electric dipole
approximation is given by

Ĥint = −~̂µ · ~E(t) (4)

with the electric field
~E(t) = ~eE(t) cos(ωt + φ) , (5)

where~e denotes the polarization direction, E(t) the temporal shape, ω the frequency and

φ the phase of the field. Note that ~̂µ
T
= (µ̂x, µ̂y, µ̂z) is the molecular dipole moment in

space-fixed coordinates. The transformation of the interaction Hamiltonian into molecule
fixed coordinates is given by [29],

µ̂x =
µa√

2

(
D1
−10 − D1

10

)
+

µb
2

(
D1

11 − D1
1−1 − D1

−11 + D1
−1−1

)
− i

µc

2

(
D1

11 + D1
1−1 − D1

−11 − D1
−1−1

)
,

µ̂y = −i
µa√

2

(
D1
−10 + D1

10

)
+ i

µb
2

(
D1

11 − D1
1−1 + D1

−11 − D1
−1−1

)
+

µc

2

(
D1

11 + D1
1−1 + D1

−11 + D1
−1−1

)
,

µ̂z = µaD1
00 −

µb√
2

(
D1

01 − D1
0−1

)
+ i

µc√
2

(
D1

01 + D1
0−1

)
, (6)

where D J
MK denote the elements of the Wigner D-matrix. We consider the interaction of an

asymmetric top with microwave radiation and assume that the frequency is resonant to a
particular rotational transition, i.e. ω = EJ′ ,τ′ − EJ,τ . We assume that only rotational states
with EJ′ ,τ′ and EJ,τ are addressed by the interaction. In broadband microwave spectroscopy,
this assumption is typically justified for frequencies larger than about 50 MHz [8,9,14–16].
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In order to investigate the population transfer between the rotational states induced
by microwave pulses, we numerically solve the time-dependent Schrödinger equation,

ih̄
d
dt
|ψ(t)〉 = (Hrot + Hint(t))|ψ(t)〉 , (7)

using the Chebychev propagation technique [30] and the basis of the asymmetric top
eigenfunctions, i.e.,

|ψ(t)〉 = ∑
J,τ,M

aM
J,τ(t)|J, τ, M〉. (8)

The transition matrix elements between two asymmetric top states can be expressed
in terms of those of the symmetric top eigenstates,

〈J′′τ′′M′′|D1
MK|J′τ′M′〉 = ∑

K′ ,K′′
cJ′

K′

(
cJ′′

K′′

)∗
〈J′′K′′M′′|D1

MK|J′K′M′〉 (9)

with

〈J′′, K′′, M′′|D1
MK|J′, K′, M′〉 =

√
2J′′ + 1

√
2J′ + 1(−1)M′′+K′′

×
(

J′ 1 J′′

M′ M −M′′

)(
J′ 1 J′′

K′ K −K′′

)
. (10)

The M-dependence of the transition matrix elements is due to the first Wigner 3j-
symbol in Equation (10). While this dependence is well-known, it is useful to recall the
corresponding rotational dynamics. This will allow us to better understand microwave
three-wave mixing and to construct fully enantiomer-selective pulse sequences in the
presence of degenerate states. In Section 3, we therefore first discuss how the M-dependence
of the transition matrix elements and the polarization of the microwave pulses affect
the population transfer between the rotational states. In Section 4, we then apply these
results and design pulse sequences that allow for complete enantiomer-selective population
transfer despite the degeneracy of the rotational spectrum.

3. M-Dependence of the Population Transfer between Rotational States

In the following, we consider a rotational subsystem consisting of the asymmetric
top states |202M〉, |313M〉 and |312M〉. Transitions between these rotational states have
been utilized in microwave experiments for enantiomer selective excitation [15]. To recall
how population transfer between rotational states depends on the orientational quantum
number and for the sake of clarity, we assume in this subsection that a single microwave
pulse interacts with the asymmetric top. Moreover, only one rotational level is taken to be
occupied initially such that

ρ(t = 0) =
1

2J0 + 1

J0

∑
M=−J0

|J0, τ0, M〉〈J0, τ0, M| . (11)

Figure 1 shows the population dynamics |aM
J,τ(t)|2 for the different initial states during

the interaction with a linearly polarized field along the laboratory-fixed z-axis. We assume
microwave fields with constant amplitude and with frequencies ω = E312 − E313 in Figure 1a
and ω = E312 − E202 in Figure 1b. The relevant rotational states are sketched on the top,
with the initially occupied states indicated by colored circles. Since for a z-polarized field,
only transitions with ∆M = 0 occur, the dynamics is divided into five individual two-level
systems with Rabi frequencies

h̄Ω = |〈J′, τ′, M|µzE0|J, τ, M〉| ∝
∣∣∣∣( J 1 J′

M 0 −M

)∣∣∣∣. (12)
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The Rabi frequencies, and thus the time required for complete population transfer
depends on the quantum number M. For transitions with ∆J = 0, cf. Figure 1a,

h̄Ω ∝
∣∣∣∣( J 1 J

M 0 −M

)∣∣∣∣ =
∣∣∣∣∣ M√

(2J + 1)(J + 1)J

∣∣∣∣∣ . (13)

The Rabi frequency is thus proportional to |M|, i.e., for states with |M| = 3, three Rabi
cycles occur at the time when one Rabi cycle is completed for states with |M| = 1, as can be
seen in Figure 1a. Moreover, for ∆J = 0, transitions with M′ = M′′ = 0 are forbidden. As a
result, it is not possible to obtain complete population inversion between the levels 313 and
312 with a single resonant microwave pulse. For transitions with ∆J = 1, cf. Figure 1b, the
Rabi frequencies are proportional to

h̄Ω ∝
∣∣∣∣( J 1 J + 1

M 0 −M

)∣∣∣∣ =
∣∣∣∣∣
√
(J + M + 1)(J −M + 1)√
(2J + 3)(2J + 1)(J + 1)

∣∣∣∣∣. (14)

Here, Ω is maximal and the Rabi cycle fastest for M = 0. Rabi cycles with larger M
are slightly slower, as can be seen in Figure 1b. The Rabi frequencies differ by irrational
factors, namely Ω ∝

√
9−M2. Thus, only approximate population inversion for the two

rotational levels can be obtained in finite time.
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Figure 1. Population transfer between the rotational states |313M〉 and |312M〉 (a) and |202M〉 and
|312M〉 (b) driven by a z-polarized microwave field. The rotational manifolds are depicted in the
top panels. Colored circles represent the initial states. The lower panels show the population of the
rotational states. Green, blue, red, and black lines correspond to states with M = 0, |M| = 1 and
|M| = 2 and |M| = 3 (only in panel (a)), respectively.

If we consider the interaction of an asymmetric top with a single microwave pulse,
the polarization direction does not influence the rotational dynamics since we can always
choose the quantization axis to be parallel to the polarization direction. However, three-
wave mixing relies on the interaction of chiral molecules with three orthogonally polarized
fields. To understand the underlying rotational dynamics, it is important to study the
population transfer induced by fields which are polarized perpendicular to the quantization
axis (here chosen to be the z-axis). We therefore consider the interaction of an asymmetric
top with x-polarized microwave pulses in Figure 2.
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Figure 2. Population transfer between the rotational states |313M〉 and |312M〉 (a) and |202M〉 and
|312M〉 (b) as in Figure 1 but for an x-polarized field. Green lines correspond to states with M = 0, solid
and dashed blue, red and black lines to states with M = ∓1 and M = ∓2 and M = ∓3, respectively.

For simplicity we consider only a single initial state, depicted by the black dots in
Figure 2a,b. For the simulation shown in Figure 2a, the initial state is |31,3,−3〉, and the
frequency of the microwave pulse ω = E312 − E313 . An x-polarized field induces transitions
with ∆M = ±1. Thus, the dynamics cannot be described by a two-level system. Instead,
the field couples all states connected by the dashed lines in the top panel of Figure 2a
and population is transferred through the complete manifold of M-states. Nevertheless,
complete population inversion occurs between the states 31,3,−3 and 31,3,3 with all states
in between only partially populated. This picture changes for transitions with ∆J = 1, as
shown in Figure 2b: Rapid oscillations between the states 31,3,−3 and 20,2,−2 with incomplete
population transfer are observed before other states are substantially populated. In this
case, population inversion between the states with maximal value of |M| (31,3,−3 and 31,3,3)
remains incomplete. The observation in both cases can be rationalized in terms of the three
Rabi frequencies relevant to the seven states that are coupled by the x-polarized pulse (note
the symmetry around M = 0). In Figure 2a, these are Ω1, Ω2 = 2Ω1 and Ω3 = 3Ω1, i.e.,
strictly periodic. In Figure 2b the ratio between the three frequencies Ω1, Ω2 and Ω3 is
irrational and thus not strictly periodic. Note that, for excitation with a single pulse, the
population transfer induced by x- and y-polarized fields is identical. The corresponding
transition matrix elements only differ by sign [24]. This will become important for cyclic
excitation with three orthogonal pulses.

Due to the spread of population over the complete M-manifold, excitation with a
combination of x- y and z-polarized fields does not result in closed three-level cycles and
thus poses a challenge to three-wave mixing. One way to overcome this problem is to use
circularly polarized fields with polarization ~eσ± = ~ex ± i~ey instead of linearly polarized
fields. The rotational dynamics resulting from interaction with σ+-polarized microwave
pulses is shown in Figure 3.
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Figure 3. Population transfer between the rotational states |313M〉 and |312M〉 (a) and |202M〉 and
|312M〉 (b) as in Figure 1 but for a σ+-polarized field. Green lines correspond to states with M = 0,
solid and dashed blue, red and black lines to states with M = ∓1 and M = ∓2 and M = ∓3, respectively.

A field with σ+-polarization allows for transitions with ∆M = +1 from the lower to
the higher level and with ∆M = −1 for the reverse process. With such transitions, the
rotational manifold decomposes into individual two-level systems. The M-dependence of
the Rabi frequencies for right-circularly polarized radiation is given by

h̄Ω ∝
∣∣∣∣( J 1 J

M 1 −(M + 1)

)∣∣∣∣ =
∣∣∣∣∣
√
(J −M)(J + M + 1)√

(2J + 2)(2J)J

∣∣∣∣∣. (15)

for transitions with ∆J = 0 and by

h̄Ω ∝
∣∣∣∣( J 1 J + 1

M 1 −(M + 1)

)∣∣∣∣ =
∣∣∣∣∣
√
(J + M + 2)(J + M + 1)√
(2J + 3)(2J + 2)(2J + 1)

∣∣∣∣∣ (16)

for transitions with ∆J = 1. In both cases, for different values of |M| the Rabi frequencies
differ by irrational factors. Complete population transfer between two rotational levels can
thus be achieved only approximately.

In summary, the calculations presented in this section illustrate three mechanisms by
which M-degeneracy affects rotational dynamics—forbidden transitions, M-dependence of
transitions-matrix elements and thus Rabi frequencies, and occurrence of sequential tran-
sitions for population transfer in case of x- and y-polarized pulses. With this knowledge,
we can already draw conclusions for the design of pulses leading to complete enantiomer
selective population transfer. The sequential transitions which occur in case of x- and
y-polarized pulses complicate the design of pulse sequences. While complete enantiomer-
selective population transfer is possible when using only linearly polarized fields, it comes
at the expense of rather complicated pulse sequences [27]. A more straightforward way
to construct a pulse sequence for complete enantiomer selective excitation is presented in
Section 4.1. Moreover, Figure 3 tells us that the simplest way to extend three-wave mixing
to a manifold of degenerate states is to apply a combination of circularly polarized fields
with a z-polarized field since this leads to a set of parallel three-level cycles. Due to the
M-dependence of the Rabi-frequencies, parallel cycles need to be synchronized to achieve
complete enantiomer selective excitation [27]. In contrast to excitation schemes with only
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linearly polarized fields, three-wave mixing using a combination of circularly and linearly
polarized fields can be adopted in a straightforward manner to different rotational sub-
systems. In Section 4.2, we apply it to those rotational transitions in the carvone molecule
which have been utilized in earlier microwave three-wave-mixing experiments [15].

4. Complete Enantiomer-Selective Excitation of Degenerate Rotational States

In the following, we make use of the insights from Section 3 to design pulse sequences
which induce complete enenatiomer-selective excitation despite the degeneracy of rota-
tional states. All results presented in this section are obtained by numerically solving the
time-dependent Schrödinger Equation (7). In Section 4.1, we design sequences of linearly
polarized pulses to achieve complete enantiomer selectivity. As mentioned in Section 3,
the construction of closed cycles for complete enantiomer selection is particularly difficult
in the presence of degenerate initial states if only linearly polarized pulses are used. We
therefore consider the most simple rotational subsystem, i.e. the manifold of J = 0 and
J = 1, in this subsection. Rotational subsystems with larger J will be considered in in
Section 4.2, where synchronized circularly polarized pulses are applied. The effects of
initial rotational temperature and of the pulse duration are discussed in Section 4.3.

4.1. Pulse Design Using Linearly Polarized Fields: Combination of Three-Wave Mixing Cycles

The smallest subsystem with three rotational levels consists of the state with J = 0,
i.e., the non-degenerate rotational ground state denoted by 000, and two excited rotational
levels with J = 1, namely 111 and 110, as shown in Figure 4.

110

111

000
M= −1    0     1 M=  −1    0      1 M=  −1    0      1

(i) (ii) (iii)

ω2

ω1

ω3

Figure 4. Three different three-wave-mixing schemes (i), (ii), and (iii) for the rotational levels
000, 111 and 110 with x-, y- and z-polarized pulses indicated by dashed, dotted, and solid lines,
respectively, the frequencies ω1, ω2 and ω3 by turquoise, orange and yellow lines, and the initial
states by black circles.

In a typical three-wave mixing pulse sequence, the first pulse creates a 50-50-coherence
between the ground state and one of the excited states. The second (twist) pulse trans-
fers the complete excited state population to the second excited state. Finally, the third
pulse induces the separation by causing constructive interference for one enantiomer and
destructive interference for the other in the respective rotational state. Starting with the
rotational ground state, interaction with such a sequence of three pulses, polarized in x-, y-,
and z- direction and with frequencies ω1, ω2 and ω3 induces complete enantio-selective
population transfer [24]. However, if the initial condition is given by

ρ(t = 0) =
1
3 ∑

M
|111M〉〈111M|, (17)

i.e., if the three degenerate states of level 111 are populated, such a three-wave mixing pulse
sequence cannot induce complete enantiomer selective excitation. This can be rationalized
with the help of Figure 4. A three-wave mixing cycle can be realized by three different
combinations of x-, y- and z-polarized microwave pulses, as seen in panels (i)–(iii). Here,
the transitions induced by x-, y-, and z-polarized fields are marked by dashed, dotted, and
solid lines, respectively, with the colors indicating the frequencies of the corresponding
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fields. The degenerate initial states are indicated by black circles. The three-wave mixing
cycle (i) only affects the initial state with M = 0, while the cycles (ii) and (iii) transfer the
population from the initial states with M = ±1. Thus, only one or two of the initially
populated states are part of each closed three-level cycle and therefore only part of the
initial population can be selectively transferred to different rotational states.

Figures 5a and 6a present the population transfer for the three-wave mixing cycle de-
picted in Figure 4i with Figure 5a showing the time-dependent population of each rotational
level averaged over the corresponding M-states for the two enantiomers (depicted by solid
blue and dashed red lines), whereas the population of the individual M-states is shown
in Figure 6a for one of the enantiomers. Cycle (i) results in complete enantiomer-selective
population transfer for the initial state |1110〉, whereas the initial states |111±1〉 are affected
only by the first pulse, depicted in dashed orange lines in Figure 4i. They are not part of
a complete three-wave mixing cycle and thus no enantiomer-separation occurs for these
initial states. As a result, the ground state |0000〉 is populated only by a single enantiomer at
final time, as shown in the top panel of Figure 5a. In the first excited state, no enantiomer-
separation is observed at all (middle panel), while only partial enantio-selectivity occurs in
the second excited state, as shown in the bottom panel.
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Figure 5. Population of the rotational levels 000 (top), 111 (middle) and 110 (bottom) averaged over
all M-states. The enantiomers (+) and (−) are presented by solid blue and dashed red lines. The
envelopes of the microwave pulses are indicated by the turquoise (ω = ω1), orange (ω = ω2) and
yellow (ω = ω3) shapes, and the polarization of the fields by the indices x, y and z. (a): Excitation
by the three microwave pulses indicated in Figure 4i; (b): Excitation by a combination of the two
three-wave mixing cycles depicted in Figure 4i,ii; (c): Excitation by a combination of all three cycles
(i), (ii) and (iii).

We quantify the overall selectivity by

S =
3

∑
i=1

∆pi(t f inal) , (18)

where ∆pi(t) = |p(+)
i − p(−)i |/|p

(+)
i + p(−)i | is the normalized population difference be-

tween the two enantiomers (+) and (−) in the three energy levels i = 000, 111, 110. For
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excitation with the three-wave mixing cycle (i), S = 0.33. The same amount of selectivity
can be obtained by cycles (ii) and (iii).
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Figure 6. Population of the individual M-states of the rotational levels 000 (top), 111 (middle) and 110

(bottom), shown for enantiomer (+). The purple lines represent states with M = 0, the green lines
present |M| = 1. The excitation schemes for panels (a–c) are the same as in Figure 5.

A better selectivity can be expected if cycle (i) is combined with cycles (ii) or (iii)
since all initial states are then addressed by a closed cycle. As an example, we combine
cycles (i) and (ii). The resulting population transfer is depicted in Figures 5b and 6b where
the pulse sequence starts with cycle (ii). The first pulse (dashed turquoise lines in Figure 4ii)
affects only the initial states |111±1〉 and creates a coherence between the states |111±1〉 and
|0000〉. The second pulse (solid yellow line) transfers the ground state population to the
second excited state. The third pulse, depicted by dashed orange lines in Figure 4ii, closes
the cycle and, at the same time, acts as the first pulse of cycle (i). By combination of the two
three-wave mixing cycles, complete separation of the enantiomers is achieved in levels 000
and 110, while the selectivity in level 111 is still incomplete. Overall, the selectivity increases
to S = 0.66. Although all initial states are part of closed cycles, complete enantiomer-
selectivity cannot be obtained. This is due to the population transfer being induced by x-
or y-polarized fields. As shown in Figure 2, an x-polarized field does not induce a Rabi
oscillation between two levels, but rather spreads the population over all M-states. Thus,
part of the population of the initial state |111−1〉 leaks from the cycle connecting |111−1〉,
|0000〉 and |1100〉. The same holds for the population from the initial state |1111〉.

Enantiomer-selective population transfer can be completed by adding the third excita-
tion scheme from Figure 4. The resulting rotational dynamics is shown in Figures 5c and 6c.
The corresponding pulse sequence consists of seven pulses: three pulses with x- y-, and
z-polarization are resonant with the transition 000 ↔ 111, two pulses, x- and z-polarized, are
resonant with 111 ↔ 110 and two pulses, y- and z-polarized are resonant with 000 ↔ 110. In
order to obtain complete selectivity, it is important to properly synchronize the three cycles
by using overlapping pulses and adjusting the field strengths. At t = 0, both enantiomers
are assumed to populate only level 111. At the end of the pulse sequence, enantiomer
(+) (blue lines) populates level 111, while enantiomer (−) (red lines) exists only in rota-
tional states belonging to level 110. The rotational ground state is empty. By combining
all three three-wave mixing cycles S = 0.98 is obtained, i.e., almost 100% enantiomer-
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selectivity. Note that a systematic optimization of the pulse parameters will allow to push
the enantiomer-selectivity even closer to 100%.

The sequence achieving essentially complete enantiomer-selectivity, cf. Figures 5c and 6c,
consists of seven different microwave fields. It is constructed by combining all the different
three-wave mixing schemes that exist for this rotational subsystem. This should be com-
pared to Ref. [27], where enantiomer-selective excitation for the same rotational subsystem
has been identified by means of a controllability study. In particular, five different fields, i.e.,
fields with different combinations of frequency and polarization, were found to be sufficient
for the system to be enantiomer-selective controllable [27]. While the minimal number
of different fields is given by controllability analysis, the actual pulse shapes or sequence
of pulses has to be determined by other means. In Ref. [27], a sequence of 12 individual
pulses (using five different combinations of frequency and polarization) has been shown to
yield complete enantiomer-selectivity. Controllability analysis on the one hand, and pulse
design resulting from knowledge of the rotational dynamics are thus two complementary
approaches to achieve a complete enantiomer-selective excitation (or any other desired
target) in the presence of degeneracies in the rotational spectrum. The pulse sequence
constructed here, while simpler than the pulse sequence found in Ref. [27], is challenging
for current microwave experiments due to the need to carefully adjust the field intensities
of overlapping pulses. Moreover, there is no automatic way to transfer these results to
rotational subsystems with larger J. To overcome these limitations, we consider in the
following a different excitation strategy, namely the use of circularly polarized fields.

4.2. Pulse Design with Circularly Polarized Fields

As discussed Section III, replacing the linear polarizations along x and y by circular
polarizations prevents the spread of the initial population over the M-manifold. An excita-
tion scheme using left- and right-circularly polarized pulses together with a z-polarized
pulse has already been proposed in Ref. [27], where this combination of microwave fields
was proven to lead to complete enantiomer-selectivity. Here, we extend this strategy
to a set of rotational states for which microwave three-wave mixing was demonstrated
experimentally [15], namely the 202, 313 and 312 states of carvone, depicted in Figure 7.

312

313

202

ω2

ω1

ω3

M=   -3    -2     -1     0      1     2     3 
Figure 7. Three-wave mixing with circularly polarized fields for the rotational levels 202, 313 and
312 with yellow, turquoise and orange lines indicating microwave fields with ω3 (z-polarization), ω1

(σ−-polarization) and ω2 (σ+-polarization). The initial states are indicated by black circles.

We assume that initially, all degenerate states of the lowest rotational level 202 are
equally populated, i.e.,

ρ(0) =
1
5 ∑

M
|202M〉〈220M| , (19)

c.f. the black circles in Figure 7, whereas levels 313 and 312 are empty. Such an ini-
tial condition can be realized by choosing the two excited rotational states in a vibra-
tional state ν > 0 [24,26] or by depleting excited rotational levels by laser excitation [17].
Figures 8 and 9 show the population transfer for different pulse sequences, with the aver-
age population of the three rotational levels for the two enantiomers plotted in Figure 8,
while Figure 9 shows the population of the individual M-states for a single enantiomer. In
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panel (a) of Figures 8 and 9, we show, for reference, the population transfer for a three-wave
mixing scheme with x-, y- and z-polarized fields which corresponds to an enantiomer-
selectivity of S ≈ 0.74, with enantiomeric excess of enantiomer (+) and (−) in the levels
313 and 312, respectively, and level 202 empty. Using σ+ and σ−-polarized fields instead of
the x- and y-polarized ones confines each of the initial states |202M〉 with M = −2, ..., 2 to a
single 3-level cycle, as seen in Figure 7. We take the first pulse, as before, to be a z-polarized
π/2-pulse, i.e., the pulse duration is chosen such that 50% of the population (averaged
over the M-states) is in level 312 and 50% remains in the ground state 202. The second and
third pulses are σ− and σ+-polarized, respectively, with pulse durations determined as
in a standard three-wave mixing scheme. The resulting average population is shown in
Figure 8b, and the population of the individual M-states can be seen in Figure 9b. The
excitation scheme leads to almost complete enantiomer-selection for the levels 312 and
313. However, about 20% of the population of both enantiomers remains in the lowest
level 202. This is already a clear advantage compared to the standard three-wave mixing
scheme with only linearly polarized fields. One could, for example, obtain a purified
sample by extracting the population of either level 313 or 312, each corresponding to a
single enantiomer. The overall incomplete enantiomer-selectivity can be rationalized as
follows: The first pulse leads to an average 50/50-coherence between the levels 202 and 313,
c.f. Figure 8b. However, as also illustrated in Figure 1, the Rabi frequencies of the two-level
transitions with different |M| are different, with transitions between M = 0 states having
the largest and transitions between M = ±2 states having the smallest Rabi frequency. This
results in population transfer of more than 50% for states with M = 0 and M = ±1 and
less than 50% for M = ±2, c.f. Figure 9b.

0.0
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(a)                           (b)                        (c)

Figure 8. Population of the rotational levels 202 (top), 313 (middle) and 312 (bottom) averaged over all
M-states for excitation by a three-wave mixing scheme with z-, x-, and y-polarized fields (a), with
z-, σ−- and σ+-polarized fields (b) and with z-, σ−- and σ+-polarized fields (c). Pulse durations are
adjusted to allow for synchronization of the individual Rabi cycles. The two enantiomers are depicted
by solid blue and dashed red lines, respectively. The envelopes of the microwave pulses are indicated
by the turquoise (ω = ω1), orange (ω = ω2), and yellow (ω = ω3) shapes. Note that the yellow pulse
is 10 times as intense as the other pulses.
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Figure 9. Population of the individual M-states for the rotational levels 202 (top), 313 (middle) and
312 (bottom) for enantiomer (+) for the same excitation schemes as in Figure 8. The solid and dashed
gray, black and green lines present the states with M = ∓3, ∓3 and ∓1, respectively. The states with
M = 0 are presented by the dotted purple lines (a–c).

One can account for the different Rabi frequencies by adjusting the pulse duration
such that every single M-state undergoes a 50/50-population transfer. To achieve that,
one has to wait for several Rabi cycles until all individual cycles are synchronized. Simi-
larly, the complete population transfer between the states 312 and 313 has to be synchro-
nized. The pulse durations were determined by a simple parameter optimization using the
NLopt software package [31]. Pulse shapes and maximal field strengths were kept fixed.
The resulting rotational dynamics is displayed in Figures 8c and 9c. The fully synchro-
nized three-wave mixing scheme with circularly polarized fields leads to almost complete
enantiomer-selective excitation—one enantiomer is entirely transferred to level 312 (dashed
red lines in Figure 8), while the second enantiomer ends up in level 313 (blue lines in
Figure 8). There is no population left in level 202 and the overall enantiomer-selectivity
amounts to S = 97%, limited—according to Equations (14)–(16)—by the Rabi frequencies
for the different transitions differing by irrational factors.

While it is possible to synchronize the transitions such that a 50/50-coherence is
obtained for all individual transitions with arbitrary accuracy, this comes at the expense
of longer pulse durations. Eventually, the pulse durations are limited by the coherence
time of the experiment, determined, e.g., by collisions of the molecules in the sample with
background gas. In practice, it is thus always necessary to find a compromise between
accurate synchronization and pulse duration. We discuss the relation between accuracy
and pulse duration in Section 4.3. At the same time, we inspect another factor relevant
in an experimental implementation. Most of the current microwave three-wave mixing
experiments are carried out for rotational states with thermal population. In Section 4.3, we
thus discuss also the effects of the initial temperature.

4.3. Rotational Temperature and Synchronization Time

So far, we have investigated the rotational dynamics of chiral asymmetric top molecules
assuming that only the lowest rotational state of the relevant subsystem is initially pop-
ulated. Typical microwave three-wave mixing experiments are carried out with thermal
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samples of chiral molecules [15,16]. Then, the initial rotational temperature of the molecules
has to be factored in. The initial density operator is given by

ρ(0) =
3

∑
i=1

Ji

∑
M=−Ji

pJi ,τi (T)|Ji, τi, M〉〈Ji, τi, M| , (20)

where the rotational levels are occupied according to the Boltzmann distribution,

pJi ,τi (T) =
1
Q

exp
(
−

EJi ,τi

kB, T

)
, (21)

with Q defined by ∑3
i=1 ∑Ji

M=−Ji
pJi ,τi (T) = 1 and |J1, τ1, M〉 = |2,−2, M〉 = |202M〉,

|J2, τ2, M〉 = |3,−2, M〉 = |313M〉 and |J3, τ3, M〉 = |3,−1, M〉 = |312M〉. In molecular beam
experiments, rotational temperatures in the range of 1 - 10 K can be achieved, which result
in non-neglibile initial thermal population of all rotational levels involved in the three-wave
mixing cycle. Figure 10 shows the maximal selectivity for the excitation schemes (a)–(c)
in Figure 8 in a semi-logarithmic plot for initial temperatures between T = 10 mK and
10 K. For T < 0.1 K, thermal occupation of the upper two levels becomes negligible and
the selectivity approaches its maximal value, whereas it gets exponentially reduced for
rotational temperatures T > 0.1 K. Importantly, the modified excitation scheme using syn-
chronized circularly polarized pulses (Figure 8c) results in a larger selectivity than standard
three-wave mixing with linearly polarized fields (Figure 8a) and three-wave mixing with
circularly polarized fields without synchronization of the individual three-level systems
(Figure 8b) for every temperature.
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Figure 10. Selectivity S, Equation (18) as a function of the initial rotational temperature. The green,
blue and orange dots depict the selectivity for the excitation schemes shown in Figure 8a–c.

The maximal enantiomer-selectivity that can be achieved in practice with the optimal
scheme employing synchronized circularly polarized fields also depends on how accurate
the individual Rabi cycles are synchronized. In the following, we discuss the relation
between accuracy and the pulse duration in more detail. Since we consider resonant
excitation, the population of the lowest states is given by p202M = cos2(Ωt), where the
Rabi frequency Ω, given in Equation (12), depends on M. Consider the first pulse in
excitation scheme (c), which is a z-polarized field that drives a ∆J = 1 transition, i.e., the
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M-dependence of the Rabi frequency is given in Equation (14). As shown in Figure 1b,
the first pulse simultaneously drives 2J + 1 two-level transitions. In the bottom panel
of Figure 9c, it can be seen that after the first pulse, the 50/50-coherence is reached for
all M-stats within an accuracy of 10%. Since the Rabi frequencies for different M-states
differ by irrational numbers, a 50/50-coherence can be obtained with arbitrary accuracy by
increasing the pulse duration.

In Figure 11, we show the pulse duration required to achieve a 50/50-coherence for all
M-states within an accuracy ε defined by p202M =

(
1
2 ± ε

)
p202M (t = 0). Transitions from

J = 1 to J = 2 (blue dots), J = 2 to J = 3 (orange dots) and J = 3 to J = 4 (yellow dots) are
considered, assuming a microwave field with an intensity of 10 W/cm2, comparable to
field intensities used in current microwave experiments [15]. A jump in the pulse duration
occurs whenever the number of Rabi cycles has to be increased to obtain a smaller value
of ε. Since the degeneracy increases with increasing J, the pulse duration required for very
accurate synchronization increases. For a rotational subsystem with initial state J = 1, a
50/50-coherence with an accuracy below one per cent can be achieved within less than
1 µs. Starting with rotational states with J = 2, one per cent accuracy already requires
a pulse duration of about 10 µs. This is of the same order as typical coherence times in
current microwave experiments. Of course, the absolute value of the pulse duration can in
principle be reduced by employing stronger pulses.
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Figure 11. Pulse duration required for achieving a 50/50-coherence for all M-states within accuracy
ε for transitions from |101M〉 to |211M〉 (blue dots), |202M〉 to |312M〉 (orange dots) and from |303M〉 to
|413M〉 (yellow dots) assuming a field intensity of I = 10 W/cm2.

5. Discussion and Conclusions

We have considered the problem that orientational degeneracy of randomly oriented
chiral molecules impedes complete enantiomer selective excitation of asymmetric top
molecules with resonant microwave three-wave mixing [22]. Complementing earlier
work using mathematical controllability analysis [27], we have shown how to solve this
problem based on a detailed analysis of the rotational dynamics. Our results are relevant
to microwave three-wave mixing experiments employing rotational transitions between
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degenerate rotational states [14–16]. The excitation schemes derived here will improve
the enantiomer selectivity in those experiments at the expense of replacing two of the
linearly polarized by circularly polarized microwave fields with their duration tuned to
synchronize transitions involving different M-dependent Rabi frequencies. One option
consists in combining all possible three-wave mixing cycles in a given rotational subsystem.
This leads to a simpler excitation scheme compared to Ref. [27]. However, since the
construction does not guarantee controllability, it is not obvious whether it can be applied
to arbitrary rotational subsystems. We have therefore also revisited the strategy derived
from controllability analysis in Ref. [27], adapting it to those rotational states of carvone
which have been addressed in microwave three-wave mixing experiments [15]. To estimate
the improvement in enantiomer selectivity that one can expect to observe in experiments,
we have compared different excitations schemes at thermal conditions. In line with Ref. [27],
we find that synchronized three-wave mixing with circularly polarized fields results in the
best selectivity at a given temperature. Moreover, we have identified the pulse duration
required for a desired accuracy of the rotational transfer. We emphasize that the excitation
schemes discussed here are feasible with current microwave technology and thus provide
a promising route to increase the efficiency of enantiomer-separation of chiral molecules by
microwave spectroscopy.

A recent three-wave mixing experiment [17] has followed a different path to circum-
vent loss of efficiency due to both thermal population in the excited rotational states and
orientational degeneracy: The experiment addresses rotational levels with J = 0 and J = 1
with the excited rotational levels depleted prior to the three-wave mixing. Of course,
in a typical molecular sample, only a small amount of molecules resides initially in the
rotational ground state. In view of enantiomer separation with electric fields only, it will
therefore be important to combine the optical depletion technique of Ref. [17] with the
pulse design presented here, in order to sequentially carry out several three-wave mixing
cycles and thereby address a larger set of rotational states.
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