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Pump-probe spectroscopy of chiral vibrational
dynamics
Denis S. Tikhonov1,2†, Alexander Blech3†, Monika Leibscher3, Loren Greenman4,
Melanie Schnell1,2*, Christiane P. Koch3*

A planar molecule may become chiral upon excitation of an out-of-plane vibration, changing its handedness
during half a vibrational period. When exciting such a vibration in an ensemble of randomly oriented molecules
with an infrared laser, half of themolecules will undergo the vibration phase-shifted by π compared to the other
half, and no net chiral signal is observed. This symmetry can be broken by exciting the vibrational motion with a
Raman transition in the presence of a static electric field. Subsequent ionization of the vibratingmolecules by an
extreme ultraviolet pulse probes the time-dependent net handedness via the photoelectron circular dichroism.
Our proposal for pump-probe spectroscopy of molecular chirality, based on quantum-chemical theory and dis-
cussed for the example of the carbonyl chlorofluoride molecule, is feasible with current experimental
technology.
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INTRODUCTION
Polyatomicmolecules are often chiral, i.e., they exist in a left-handed
and a right-handed version that cannot be superimposed by rota-
tions and translations. The two conformers differ markedly in
their chemical and biological behavior including a preference of
handedness in amino acids and sugars in living organisms that is
not yet understood (1). While handedness refers to the nuclear scaf-
fold, molecular chirality is governed by the electronic structure of
the molecule — left-handed molecules are separated from right-
handed ones by a potential barrier. The height of this barrier deter-
mines the time scale over which the two conformers interconvert.
Molecular chirality would be static only for infinitely high potential
barriers. In real molecules, the lifetimes of a molecule as a specific
enantiomer span a huge range (2). The barrier can be overcome by
tunneling, vibrational excitation, or excitation to an achiral (and
thus barrierless) electronically excited state. The corresponding in-
terconversion dynamics may be exploited in asymmetric photo-
chemistry (3). It is also at the core of proposals for coherent
spectroscopies, for example, to measure the effect of parity violation
(2, 4) or to coherently control enantiomeric purification (5, 6, 7).
None of these proposals has been realized in an experiment as of

yet. This may be attributed to twomain factors— (i) the complexity
of the process involving chiral-to-achiral excitation, dynamics in the
achiral state, and achiral-to-chiral deexcitation, all of which have to
be driven selectively, and the choice of suitable molecules (8); and
(ii) the lack of diagnostic tools for chirality-changing dynamics, in
particular when the molecules are randomly oriented. The latter has
been remedied by the advent of chiral vector observables that
require only electric dipole transitions (9), and among these, pho-
toelectron circular dichroism (PECD) (10–12) is particularly

versatile and suitable to monitor ultrafast dynamics (13–15). The
complexity of studying interconversion dynamics can be reduced
by separating the transitions between chiral and achiral states
(15–17) and intermediate dynamics. However, fragmentation (16)
and dissociation (15, 17) do not provide a viable route toward study-
ing interconversion because the molecules are ripped apart. A more
benign approach depositing less energy into themolecules is needed
to probe interconversion dynamics, for example, using vibrational
excitation.
Here, we suggest, based on state-of-the-art quantum-chemical

calculations, to induce and probe chiral vibrational motion:
achiral molecules have a symmetry plane in their equilibrium geom-
etry but oscillate between left-handed and right-handed configura-
tions during out-of-plane (OOP) vibrational motion (cf. Fig. 1).
While the eigenstates are either symmetric or antisymmetric with
respect to the symmetry plane and thus racemic, coherent superpo-
sition states are chiral (18–20) and change their handedness as a
function of time. This can be probed, for example, with ultrafast

Fig. 1. Creation of a chiral vibrational wave packet in a planar molecule.
Raman excitation (magenta arrows) of a superposition of the two lowest levels
of the OOP vibration via a prochiral electronically excited state with vibrational
level ∣v〉. In our example of carbonyl chlorofluoride (COFCl), ξ is the distance of
the carbon atom from the O-F-Cl plane, and the vertical dotted lines at ± 〈 0 ∣ ξ ∣
1〉 indicate the maximal average displacement of the vibrational wave packet.
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PECD (12–15). For a single molecule, the chirality is largest when
probing at themaximal average OOP displacement, indicated by the
vertical dotted lines in Fig. 1 for the simplest superposition involv-
ing only the ground and first excited level. However, for an ensem-
ble of molecules with random orientations, the chirality will average
out, yielding zero net enantiomeric excess. We show that Raman
excitation in the presence of a static electric field yields a nonvan-
ishing time-dependent enantiomeric excess, reflecting chiral vibra-
tional motion in an ensemble of randomly oriented achiral
molecules. We calculate the time-dependent PECD for the
example of planar carbonyl chlorofluoride (COFCl) and discuss
the requirements of a corresponding pump-probe study.

RESULTS
Focusing on the simplest superposition, ∣ψ(t)〉 = c0∣0〉 +
c1e� iðE1� E0Þt=hj1i, the largest OOP displacement is obtained for
equal weights. Assuming the molecule initially in its ground vibra-
tional state, such a superposition can, in principle, be prepared by
an infrared (IR) pulse or via ultraviolet (UV) Raman excitation.
However, IR excitation does not produce a nonzero enantiomeric
excess, as shown in the following. In both cases, the laser-molecule
interaction depends on the orientation of themolecular axes relative
to the laser polarization

Ĥint ¼ � EðtÞ Rðw; u; xÞ m̂

where m̂ is the electric dipole moment in the molecular frame, E(t)
is the electric field in the laboratory frame, and R is the rotation
matrix connecting the two coordinate systems, dependent on the
Euler angles φ, θ, and χ (21).
The net enantiomeric excess 〈 〈 ξ 〉 〉 (t) in a gas-phase sample is

obtained by averaging the mean OOP displacement, 〈 ξ 〉 (t) =
〈 ψ(t) ∣ ξ ∣ ψ(t)〉, over all molecular orientations (22). For an isotropic
ensemble, the net enantiomeric excess is zero after rotational aver-
aging for both IR and Raman excitation, because at least three mu-
tually orthogonal fields are required to break the spatial symmetry
(see section SI.B in the Supplementary Materials for a detailed ex-
planation) (23). One option to fulfill this requirement is to apply a
weak static electric field in conjunction with a circularly polarized
Raman pulse. The direction of the relevant dipole moments, deter-
mined by the symmetry of the corresponding wave functions, is
schematically shown in Fig. 2. In the presence of Estatic and assuming

the molecules to be in thermal (rotational) equilibrium at temper-
ature T, the distribution of Euler angles is given by the Boltzmann
factor p(φ, θ, χ) = exp[EstaticR(φ, θ, χ)μ00/(kBT )] with
m00 ¼ h0 j m̂ j 0i the dipole moment of the molecule in the
ground state, which lies in the molecular plane (see Fig. 2). Realistic
field strengths are small on the scale of thermal excitations, and the
Boltzmann factor can be approximated

pðw; u; xÞ � 1þ EstaticRðw; u; xÞm00=ðkBTÞ ð1Þ
We use perturbation theory (PT) in the following, which nicely

captures the essence of the suggested excitation scheme. A Raman
transition requires PT to second order and involves the transition
dipole moments m0v ¼ h0 j m̂ j vi and mv1 ¼ hv j m̂ j 1i, where v
can be a symmetric or antisymmetric vibrational level in an elec-
tronically excited state (see Fig. 1). Averaging a second-order
process over the rotational distribution Eq. 1 results in triple prod-
ucts of both electric fields and molecular dipole moments (see
section SI.C in the Supplementary Materials),

hhjiiðtÞ/ h0 j j j 1isinðv01tÞ
t2

T
1þ erf

t
t

� �� �2

� ½Estatic�ðEL1 � EL2Þ�½m00 � ðm0v � mv1Þ�

ð2Þ

where we have assumed a circularly polarized Gaussian pulse with
duration τ and polarization directions EL1/2. Here, ω01 denotes the
OOP vibrational frequency, and the erf(x) is the error function,
which becomes approximately constant for t > 1.5τ. As for many
enantio-sensitive observables (9), this expression separates into
products of the fields in the laboratory frame and molecular quan-
tities in the molecular frame, which independently determine the
amount of enantiomeric excess. The triple product of the fields is
maximized by choosing all three fields orthogonal to each other,
e.g., a static field along the z direction and a Raman pulse circularly
polarized in the xy plane. If the intermediate state∣v〉 is totally sym-
metric (A′), then only the molecular frame components ma

0v, m
b
0v,

and mc
v1 can be nonzero, i.e., μ0v lies in the ab plane, and μv1 is per-

pendicular to it (see Fig. 2). In general, μ0v does not have the same
direction as μ00, and thus, the triple product [μ00 · (μ0v × μv1)] is
nonzero. The same argument holds for antisymmetric (A′′) inter-
mediate states, where the elements mc

0v, m
a
v1, and mb

v1 do not
vanish by symmetry. Raman excitation in the presence of a weak
static electric field can thus induce chiral wave packets with nonvan-
ishing time-dependent enantiomeric excess in an ensemble of ran-
domly oriented planar molecules. Excitation of the vibrational
superposition with a circularly polarized IR pulse in the presence
of a static electric field does not result in a net chiral signature.
Within first-order PT, rotational averaging results in (Estatic ·
EL)(μ00 · μ01), which vanishes because μ00 and μ01 are orthogonal
because of molecular symmetry (details are found in section SI.D
in the Supplementary Materials).
We now show that the nonvanishing time-dependent enantio-

meric excess created by UV Raman excitation in the presence of a
static field can be probed by a time-delayed ionizing pulse via
PECD. PECD refers to the forward-backward asymmetry of photo-
electron angular distributions (PADs) upon ionization of chiral
molecules with left and right circularly polarized (LCP/RCP) light
(10). Denoting the laboratory-frame photoelectron momentum by
k and following the convention in (24), it is given by the normalized

Fig. 2. Molecular geometry together with the dipole moments relevant for
creating a chiral vibrational wave packet. Molecular frame representation of
the permanent (μ00) and transition (μ0v and μv1) dipole moments of COFCl for a
symmetric vibrational level ∣v〉.
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dichroic difference

PECDðkÞ ¼
PADLCPðkÞ � PADRCPðkÞ
½PADLCPðkÞ þ PADRCPðkÞ�=2

ð3Þ

For an achiral molecule, PECD is zero, while for a chiral mole-
cule, PECD changes sign if one enantiomer is exchanged by the
other. If a chiral wave packet is excited in an achiral molecule,
then an oscillation of the PECD with the vibrational period is ex-
pected, provided that the probe pulse is sufficiently short.
The top panel of Fig. 3 displays PECD in a sample of COFCl

molecules at a rotational temperature of 1 K as a function of the
time delay t between the Raman excitation and the extreme ultravi-
olet (XUV) probe pulse. Velocity map images (VMIs) of PECD, i.e.,
the projection of Eq. 3 onto the yz plane, are shown for four time
delays in the bottom panels of Fig. 3. The photoelectron asymmetry
is presented in terms of the maximum dichroic difference along in-
dividual polar angles on the VMI detection plane, normalized

relative to the mean photoelectron intensity. Expressing PECD in
terms of a single number by integrating over the forward and back-
ward hemispheres as commonly done in experiments (25–27) is not
possible here (see section SII.C in the Supplementary Materials).
The pump pulse is assumed to be Gaussian with a peak intensity
of 1013 W/cm2 and 150 fs full width at half maximum (FWHM),
circularly polarized in the xy plane, and resonant to excited-state
vibrational levels v = 20, 21 (because PECD is a differential measure-
ment, contributions from other transitions that might be driven by
the Raman pulse cancel out). The probe pulse, with 5 fs FWHM and
applied after a time delay t, is also circularly polarized in the xy
plane. Its central frequency of 16.98 eV is chosen such that PECD
is maximal. With these parameters, the energy dependence of the
PAD is in good approximation given by the ionizing pulse spectrum
(see section SII.C in the Supplementary Materials). The static elec-
tric field is taken along the z direction with a field strength of 5 × 105
V/cm, which can be achieved, e.g., in modern Stark decelera-
tors (28).

DISCUSSION
The chiral pump-probe signal in Fig. 3 oscillates with a beat period
of around 50 fs, as expected from the frequency of the OOP vibra-
tion. These oscillations confirm a net switch of handedness in the
molecular ensemble on the time scale of the vibrational motion.
Under the assumptions made above, the maximum PECD is of
the order of 1.5%. This is an order of magnitude smaller than
what has been observed in chiral molecules such as fenchone (12,
13) but is well within the capabilities of current photoelectron de-
tection (27). The strength of PECD could be increased by optimiz-
ing the probe pulse, e.g., by using a polarization-shaped pulse (29,
30), which wouldmaximize the asymmetry in the PAD. Alternative-
ly, the chirality of the individual molecules could be increased by
creating a vibrational superposition with larger maximal OOP dis-
placement. While this has the chance to increase PECD, it may
suffer from possible chiral zeros, because PECD can exhibit sign
changes even if the handedness of the light and the molecule are
kept fixed (31, 32). In addition, it comes at the expense of suitably
tailoring the Raman excitation. A third option would be to amend
the static electric field by an additional nonresonant laser pulse to
increase the degree of orientation (33).
For the prediction of Fig. 3 to be observable, the coherent vibra-

tional dynamics should not be washed out by decoherence. Mech-
anisms with time scales that are potentially of the order of 1 ps or
below are rotational dephasing arising from rovibrational energy
differences and intramolecular vibrational energy redistribution
(IVR). A full account is provided in section SIII in the Supplemen-
tary Materials. We find the time scale for rotational dephasing to
exceed 1 ps already at 70 K, becoming even larger for the cold en-
sembles that we consider. IVR is due to anharmonic coupling
between different vibrational modes. Using ab initio molecular
dynamics methods at the B3LYP-D3/def2-SVP level of theory, we
find the relevant time scale to be ∼3.5 ps, comparable to what has
been found for the C─O stretch mode in hexafluoroacetone (34)
and sufficiently large for the coherent pump-probe spectroscopy
that we suggest.
Other candidate molecules besides COFCl include formic acid,

which has been used in enantioselective fragmentation (16) but
comes with a somewhat shorter vibrational period of 32 fs, and

Fig. 3. Pump-probe spectroscopy of light-induced chirality. Maximum PECD
signal at various polar angles normalized to the mean photoelectron intensity
(top). Differential photoelectron spectra in the velocity map image (VMI) yz
plane for the four times indicated by dashed vertical lines in the top panel. The
crosses correspond to the polar angles shown in the top panel.
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salts of the third main group such as AlCl3. Substitution with two
electron-withdrawing groups (halogens or CF3) and one electron-
donating (like CH3) would make them more polar while keeping
the boiling point low (35–37), important for use in molecular
beams. The latter facilitate low vibrational and rotational tempera-
tures, increasing the effective orientation in the static electric field
and reducing rotational dephasing.
To summarize, we have laid out the principles for studying chiral

vibrational dynamics in a gas-phase ensemble of planar, i.e., achiral
molecules. Nonzero enantiomeric excess will be obtained if the field
configuration, used to create the chiral vibrational superposition,
ensures the characteristic triple products in rotational averages
(9). Such a configuration can be realized with a static electric
field, such that the molecules are uniaxially oriented, and an ultra-
short circularly polarized Raman pulse that creates the vibrational
wave packet, ideally with its polarization plane perpendicular to the
static field. The induced time-dependent chirality can be probed by
PECD upon ionization with a sufficiently short, time-delayed, cir-
cularly polarized pulse. The chiral signals that we predict on the
basis of quantum-chemical calculations for the test case of planar
COFCl are readily observable, and a corresponding experiment is
feasible with existing technical capabilities. Such studies of time-de-
pendent chirality, following the change of handedness in the course
of vibrational motion, would provide a stepping stone to lastly
realize long-standing proposals for chiral molecules, including the
measurement of parity violation (2, 4) and enantiomeric purifica-
tion with light (5–7).

METHODS
The electronic properties of the neutral molecule, i.e., potentials and
dipole moments as a function of the OOP mode ξ, are calculated at
the B3LYP level of theory (38–41) with the cc-pVTZ basis set (42),
making use of the Tamm-Dancoff approximation (43) for the
excited state, using Orca 4 (44). The vibrational eigenstates and
(transition) dipole moments μ00, μ0v, and μv1 are obtained by nu-
merically solving the vibrational Schrödinger equation using a dis-
crete variable representation (45) for the ground and excited
electronic state. The vibrational frequency of the electronic
ground-state OOP mode and the UV absorption spectrum repro-
duce the available experimental data for COFCl (see section SII,
A and B, in the Supplementary Materials for details) (46–50).
To describe ionization, the transition dipole moments for the

bound-continuum transition are needed. The bound-state orbitals
of COFCl required to this end have been calculated within the
Hartree-Fock approximation using MOLPRO (51, 52) with the
aug-cc-pVTZ basis set (53) for a set of molecular configurations
along the OOP coordinate. The continuumwave functions and ion-
ization matrix elements have been obtained with ePolyScat (54, 55)
in the frozen-core static-exchange approximation following (29, 30,
56). Ionization is assumed to be instantaneous, keeping the molec-
ular configuration fixed at its equilibrium structure except for the
OOP vibration. The instantaneous PAD of the vibrating molecule
is then obtained by averaging the ionization matrix elements over
the OOP coordinate. The interaction with both pump and probe
pulse is treated perturbatively, which is justified because by very
small transition moments. PADs are calculated for different Euler
angles and then averaged over the rotational distribution (1) (see
also section SII.C in the Supplementary Materials).

The IVR lifetime was estimated using quantum-chemical molec-
ular dynamics simulations done with Orca 4 (44) at the B3LYP-
D3BJ/def2-SVP (38–41, 57, 58) level of theory. The initial coordi-
nates of the nuclei were taken as displacements along the OOP co-
ordinate ξ with all other modes in their equilibrium geometry, while
the velocities were assigned using a Maxwell-Boltzmann distribu-
tion at a temperature of 300 K. More details are available in
section SIII.C in the Supplementary Materials.

Supplementary Materials
This PDF file includes:

Sections I to VI
Figs. S1 to S11
Tables S1 to S4
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I. GENERAL CONSIDERATIONS

A. Geometry of the envisioned experiment

The proposed experiment is sketched in Figure S1: Two oppositely charged electrodes (indicated by the red and green
rings with ”+” and ”−” for the charges) create a static electric field with strength Estatic. A circularly polarized UV
pulse, for example the 4th harmonic of a Ti:Sa laser, is sent to a sample of planar molecules such that its polarization,
specified by the two orthogonal electric fields EL1 and EL2, is orthogonal to the static electric field. Hence the triple
product Estatic · [EL1 ×EL2] ̸= 0. The electric field tends to orient the molecules by their permanent dipole moment
µ00, while the UV pump pulse creates a coherent chiral vibrational wavepacket by resonant Raman excitation of the
out-of-plane vibration. The resulting time-dependent chirality can be probed by a circularly polarized XUV probe
pulse with the same propagation direction as the UV pump pulse. The probe ionizes the molecular ensemble, and
photoelectron angular distributions (PAD) are measured using velocity map imaging (VMI). Recording PADs with
both helicities of the probe pulse and taking their difference allows for quantifying the produced enantiomeric excess
in terms of photoelectron circular dichroism (PECD). Figure S1 shows one possible configuration that would allow to
use the static electric field of the VMI for Estatic. Other field configurations might exist that are more suitable for a
given experimental setup.

+-

μ00

Estatic
EL1

EL2

μ0v

μv1Pump pulse

Probe pulse

Electrons

Figure S1 Example of a field configuration to realize the proposed pump-probe spectroscopy in an
experiment. Electric field coils create the static electric field as well as the extraction field to image the photoelectrons
resulting from the ionization of the planar molecules, taken to be COFCl here. The UV pump pulse prepares the vibrational
superposition via a Raman excitation, whereas the probe pulse ionizes the (time-dependent) superposition.

mailto:melanie.schnell@desy.de
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B. Minimum number of fields to realize enantiomeric excess

To produce a broken parity, chiral state in a molecule, we need to create a superposition state from two (or more)
levels of opposite parity [20]. One example of such states can be the vibrational states of the molecule, for instance the
ground (|0⟩) and first excited (|1⟩) states of the out-of-plane (OOP) vibration of the COFCl molecule (for definition
of the OOP coordinate see also Fig. S3). Let us assume the molecule to be initially in state |0⟩. The superposition
state after the excitation, for a single molecule with a particular orientation in space, is given by

|ψ(t)⟩ ≈ |0⟩+ c
(n)
1 exp(−iω01t)|1⟩, (1)

where ℏω01 the energy difference between the two levels. The coefficients c
(n)
1 are calculated with time-dependent

perturbation theory of order n,

c
(n)
1 (t) = − i

ℏ
∑
v ̸=1

∫ t

t′′
dt′⟨1|Ĥint(t

′)|v⟩ exp [−iωv1(t
′ − t′′)] c(n−1)

v (t′). (2)

Here, ℏωv1 is the energy difference between the vibrational states |v ̸= 1⟩ and |1⟩. In particular, we consider direct
excitation of the vibrational state |1⟩ with an IR-pulse, which corresponds to first order perturbation theory (n = 1),
and, alternatively, UV Raman excitation via virtual excited states, which is described by second order perturbation
theory (n = 2). The laser-molecule interaction is given by

Ĥint(t) = −E(t)R(φ, θ, χ) µ̂ , (3)

where µ̂ is the dipole moment in the molecular frame, E(t) the electric field in the laboratory frame, and R the
rotation matrix connecting the two frames and depending on the Euler angles ϕ, θ, χ,

R(ϕ, θ, χ) =

cos(χ) − sin(χ) 0
sin(χ) cos(χ) 0

0 0 1


︸ ︷︷ ︸

Rχ

·

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


︸ ︷︷ ︸

Rθ

·

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


︸ ︷︷ ︸

Rϕ

. (4)

For excitation with an IR pulse (n = 1) or a Raman pulse (n = 2), inserting Eq. (3) into Eq. (2) allows us to separate

c
(n)
1 into

c
(n)
1 (t) =

n∏
k=1

(
Ek · R (φ, θ, χ)µk

)
c̃
(n)
1 (t) , (5)

where c̃
(n)
1 (t) does not depend on the Euler angles and is calculated in detail in Sec. IC. The angular dependence is

expressed by the product
∏n

k=1

(
Ek ·R (φ, θ, χ)µk

)
, where Ek denotes the polarization direction and amplitude of the

field responsible for the kth order interaction, and µk = ⟨v′|µ̂|v⟩ is the corresponding transition matrix element. The

time-dependent part c̃
(n)
1 (t) does not depend on the Euler angles and is calculated in detail in Sec. I.C. For simplicity,

we assume here that in case of the UV Raman excitation the coefficients c
(n)
1 (t) result from a single intermediate state

|v⟩. A more general derivation of c
(n)
1 (t), including the sum over all intermediate states |v⟩, is presented below in Sec.

IC.
Observables for a molecule with given orientation are obtained as

⟨O⟩(t) = ⟨ψ(t)|Ô|ψ(t)⟩ = ⟨0|Ô|0⟩+ |c(n)1 |2⟨1|Ô|1⟩+ 2⟨0|Ô|1⟩ · Re
[
c
(n)
1 exp(−iω01t)

]
. (6)

We are interested in observables that are sensitive to the coherence of the state and assume without loss of generality
⟨0|Ô|0⟩ = ⟨1|Ô|1⟩ = 0 and ⟨0|Ô|1⟩ ̸= 0. Then

⟨O⟩(t) = 2|c(n)1 |⟨0|Ô|1⟩ cos(ω01t+ φ̃1) (7)

with c
(n)
1 = |c(n)1 | · exp(−iφ̃1). In order to relate ⟨O⟩(t), i.e., the signal produced by a single molecule at a given

orientation, to the macroscopic response of the system, we need to average over all the orientations that a molecule
in the gaseous sample can take. We describe the rotational average classically,

⟨⟨O⟩⟩(t) =
∫
dΩP (ϕ, θ, χ)⟨O⟩(t) , (8)



where
∫
dΩ =

∫ 2π

0
dϕ
∫ π

0
sin θdθ

∫ 2π

0
dχ denotes the integration over the Euler angles. In the presence of a static

electric field Estatic, the orientational distribution of the molecules in thermal equilibrium at temperature T is given
by

P (ϕ, θ, χ) =
1

Q
exp

(
−Erot

kBT

)
exp

(
Estatic · R(ϕ, θ, χ)µ00

kBT

)
, (9)

where Q is the partition function, Erot the (classical) rotational energy and µ00 the permanent dipole moment of
the molecule. Classical rotational averaging is valid as long as as the rotational spectrum is not resolved, i.e., for
time-scales shorter than the rotational period. The rotational period of the molecules around the principle axis α
(α = a, b, c) can be estimated as τrot,α ∝ B−1

α , where Bα is the rotational constant for rotation about that principle
axis. The shortest rotational period corresponds to the largest rotational constant, Ba = A. For COFCl, A = 12GHz,
and thus τrot,a = 8ps. This is much longer than typical pump-probe delays of a few hundred femtoseconds. Moreover,
we neglect a possible time-dependence of P (ϕ, θ, χ). This is justified if the interaction with the pump pulse is too weak
to create a rotational wavepacket that causes pronounced alignment. To test this assumption, we have calculated the
classical alignment factors of COFCl with a Monte-Carlo simulation for classical rigid rotors. We have found that
a pump pulse with an intensity of 1013 W/cm2 and a FWHM of 150 fs indeed does not create molecular alignment
within several ps, so that the assumption of a time-independent angular distribution function is justified.

Expanding the Boltzmann distribution to first order in the static field amplitude, the orientational distribution can
be approximated by

P (ϕ, θ, χ) ≈ P (0)
(
1 + P (1)(ϕ, θ, χ)

)
, (10)

where P (0) = 1
Q exp

(
−Erot

kBT

)
is the field-free isotropic distribution which does not depend on the Euler angles, while

P (1)(ϕ, θ, χ) =
Estatic · R(ϕ, θ, χ)µ00

kBT
(11)

describes the first-order orientation produced by the static field. Rotational Debye temperatures for COFCl, below
which the thermal ensemble cannot be described classically anymore, are around 0.5K. For rotational temperatures
above 1K, a classical treatment is thus well justified.

As a result, the orientational average for an observable O is given by

⟨⟨O⟩⟩ ∝ 2|c̃(n)1 (t)|⟨0|Ô|1⟩ cos(ω01t+ φ̃1)

∫
dΩ

(
n∏

k=1

(Ek · R(ϕ, θ, χ)µk)

)[
1 +

En+1 · R(ϕ, θ, χ)µn+1

kBT

]
, (12)

with En+1 = Estatic and µn+1 = µ00. Evaluating the integrals according to Ref. [22], we find, depending on the
number of external fields,

N =1:
∫
dΩ(E1 · R(ϕ, θ, χ)µ1) = 0. This means that a single IR pulse (with E1 = EL1 and µ1 = µ01 in the notation

of the main text), inducing the transition |0⟩ → |1⟩, cannot produce a chiral signature for the ensemble,

N =2:
∫
dΩ
∏2

k=1(Ek · R(ϕ, θ, χ)µk) ∝ (E1 ·E2)(µ1 ·µ2). Such a configuration could be realized in two different ways
with both resulting, however, in a vanishing integral:

� IR excitation |0⟩ → |1⟩ combined with static field orientation (E1 == EL1, E2 = Estatic, µ1 = µ01, and
µ2 = µ00 in the notation of the main text). The integral vanishes because the permanent dipole moment
µ00 is in the molecular plane, whereas the transition dipole moment µ01 is orthogonal to the molecular
plane and therefore (µ00 · µ01) = 0.

� Raman excitation |0⟩ → |1⟩ without static field also does not yield a chiral signal (E1 = EL1, E2 = EL2,
µ1 = µ0v, and µ2 = µv1 in the notation of the main text). The integrand vanishes because the two
transition dipole moments are necessarily orthogonal to each other, as explained in more detail below in
Section ID.

N =3:
∫
dΩ
∏3

k=1(Ek · R(ϕ, θ, χ)µk) ∝
(
E1 · [E2 × E3]

)(
µ1 · [µ2 × µ3]

)
. These triple products do not necessarily

vanish, which is why N = 3 is the smallest number of fields that may result in a non-zero rotational average.
It requires three orthogonal (permanent or transition) dipole moments, with their triple product changing sign
under spatial inversion. One possibility to realize the corresponding field configuration is Raman excitation
with circular polarization in the presence of a static electric field perpendicular to the polarization plane of the
circularly polarized field. E1 = EL1, E2 = EL2, E3 = Estatic, µ1 = µ0v, µ2 = µv1, and µ3 = µ00 in the notation
of the main text.
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Figure S2 Raman excitation of vibrational states for COFCl: Ground and excited electronic potential surfaces along
the out-of-plane coordinate ξ with vibrational levels (data shown for the example of the COFCl molecule). The purple
arrows indicate the Raman excitation by the electric fields EL1 and EL2. The figure also shows the vibrational eigenfunctions
|0⟩ (green) and |1⟩ (blue/red). The purple bars (green line) indicate the theoretical (experimental) UV absorption spectrum
of COFCl, which is shown in more detail in Fig. S4.

C. Magnitude of the induced enantiomeric excess

After clarifying the conditions for observing enantiomeric excess in a sample of randomly oriented molecules, we now
estimate its magnitude. To this end, we utilize time-dependent perturbation theory (TDPT). The electric field driving
the Raman exciation is given by

E(t) = EL · (n1 cos(ωLt+ φ1) + n2 cos(ωLt+ φ2)) · exp
(
− t2

τ2

)
(13)

with EL1 = EL ·n1 and EL2 = EL ·n2. Here, EL is the electric field peak amplitude, n and φ are the polarization axes
and phases, ωL is the pulse carrier frequency, and τ the pulse duration, related to the full width at half maximum
(FWHM) by FWHM = 2

√
ln(2)τ . We consider Raman excitation from the ground to the first excited state of the

out-of-plane vibration in the electronic ground state via vibronically excited states |v⟩, |0⟩ → |v⟩ → |1⟩, see Fig. S2.
This requires TDPT to second order, with the corresponding wavefunction given by

|ψ⟩(t) = |0⟩+ c
(2)
1 (t) exp(−iω01t)|1⟩+

∑
v

c(1)v (t) exp(−iω0vt)|v⟩ ,



where ωlm = (Em − El)/ℏ is the angular frequency of the |l⟩ → |m⟩ transition. Invoking the rotating wave approxi-
mation, the expansion coefficients become

c(n+1)
m (t) = −i

∑
l≠m

R

µlm=µml︷ ︸︸ ︷
⟨m|µ̂|l⟩
ℏ

∫ t

−∞
E(t′) · exp(iωlmt

′) · c(n)l (t′)dt′ (14)

≈ −i
∑
l ̸=m

RµlmEL

2ℏ
(
n1 exp[−i sgn(ωlm)φ1] + n2 exp[−i sgn(ωlm)φ2]

)
·
∫ t

−∞
exp

[
− t

′2

τ2
− i∆lmt

′
]
· c(n)l (t′)dt′ ,

where ∆lm = ωlm − sgn(ωlm) · ωL is the detuning and µlm the transition dipole moment in the molecular frame,
and R = R(ϕ, θ, χ) is the rotation matrix (Eq. (4)), transforming the molecular frame into the laboratory fame.
Evaluation to first order yields the coefficients of the virtual states |v⟩,

c(1)v (t) = −iEL

2ℏ
{Rµ0v (n1 exp(−iφ1) + n2 exp(−iφ2))} ·

√
πτ

2

[
1 + erf

(
t

τ
+ i

τ ·∆0v

2

)]
· exp

(
−τ

2∆2
0v

4

)
,

where exp
(
− τ2∆2

0v

4

)
represents the spectral profile of the Gaussian-shaped laser pulse. The second order coefficient

cannot be evaluated analytically for non-vanishing detuning. We therefore estimate it approximately for zero detunings

and account for the spectral pulse profile by multiplication with the two exponents of the form exp
(
− τ2∆2

4

)
afterwards.

This procedure is equivalent to treating the excitation as resonant absorption at the specific transition frequencies
within the broad Gaussian spectrum of the pulse. With the time integral of the form

x∫
−∞

exp(−q2)(1 + erf(q))dq =

√
π

4
(1 + erf(x))2 ,

this results in

c
(2)
1 (t) ≈ −

∑
v

πτ2

4

(
1 + erf

(
t

τ

))2

· E
2
L

4ℏ2
· {Rµ0v (n1 exp(−iφ1) + n2 exp(−iφ2))} ·

· {Rµv1 (n1 exp(+iφ1) + n2 exp(+iφ2))} · exp
(
−τ

2∆2
0v

4
− τ2∆2

1v

4

)
. (15)

Inserting Eq. (15) into Eq. (12) yields rotationally averaged expectation values in second order TDPT,

⟨⟨O⟩⟩(t) =

2π∫
0

dϕ

π∫
0

sin(θ)dθ

2π∫
0

dχ⟨O⟩(t, ϕ, θ, χ)P (ϕ, θ, χ)

= 2⟨0|Ô|1⟩ sin(φ2 − φ1) sin(ω01t)E
2
LEstatic

πτ2

48ℏ2kBT
(
1 + erf (t/τ)

)2
·
∑
v

exp
(
−
(
τ2∆2

0v + τ2∆2
1v

)
/4
)
(µ00 · [µ0v × µ1v]) (n0 · [n1 × n2]) . (16)

Equation (16) reveals how to maximize enantiomeric excess: The Raman pulse should be circularly polarized since
| sin(φ2 − φ1)| = 1 is maximal for |φ2 − φ1| = π/2, and the static electric field and polarization axes should all be
mutually orthogonal to maximize n0 · [n1 × n2] = 1.

D. Symmetry considerations

In this Section, we employ symmetry arguments to determine which components of the dipole and transition dipole
moments µ00, µ0v and µv1 are non-zero. We consider planar molecules of Cs symmetry, with the ab-plane as symmetry
plane and the molecular c-axis perpendicular to the symmetry-plane, then, the molecular axes a, b ∈ A′ and c ∈ A′′.



The Cartesian components of the molecular dipole moments are the projections onto the molecular axes, µa ∝ a,
µb ∝ b, µc ∝ c, and thus transform as the molecuar axis a, b and c. In order to determine the non-zero components of
the dipole and transition dipole moments, we separate the OOP vibronic states |0⟩, |1⟩, and |v⟩ into their vibrational
and electronic part,

|0⟩ = |0⟩vib|g⟩el , |1⟩ = |1⟩vib|g⟩el , |v⟩ = |v⟩vib|e⟩el .

The out-of-plane motion has A′′ symmetry, which means that the symmetry of the vibrational states along the OOP
coordinate is Γ(|0⟩vib) = A′ and Γ(|1⟩vib) = A′′, i.e. the ground vibrational state is symmetric while the first excited
state is anti-symmetric. Likewise, for the vibrational wavefunctions in the excited electronic state Γ(|v⟩vib) is either
A′ or A′′ for even v and odd v, respectively.

The components i, j, k = a, b, c of the dipole and transition dipole moments are then

µi
00 = ⟨0|µ̂i|0⟩ = ⟨0|vib⟨g|elµ̂i|g⟩el|0⟩vib ,
µj
0v = ⟨0|µ̂j |v⟩ = ⟨0|vib⟨g|elµ̂j |e⟩el|v⟩vib ,
µk
v1 = ⟨v|µ̂k|1⟩ = ⟨v|vib⟨e|elµ̂k|g⟩el|1⟩vib .

For each of the components to be nonzero, the product of the respective representations has to be fully symmetric,
i.e. transform according to A′ (Γ1 ⊗ Γ2 ⊗ . . . ⊗ ΓN = A′). Since, for Cs symmetry, A′ ⊗ A′ = A′′ ⊗ A′′ = A′, and
A′ ⊗A′′ = A′′ ⊗A′ = A′′, this translates into

Γ
(
µi
00

)
=

A′︷ ︸︸ ︷
Γ(⟨0|vib)⊗

A′︷ ︸︸ ︷
Γ(⟨g|el)⊗Γ(µ̂i)⊗

A′︷ ︸︸ ︷
Γ(|g⟩el)⊗

A′︷ ︸︸ ︷
Γ(|0⟩vib) = Γ(µ̂i) ,

Γ
(
µj
0v

)
=

A′︷ ︸︸ ︷
Γ(⟨0|vib)⊗

A′︷ ︸︸ ︷
Γ(⟨g|el)⊗Γ(µ̂j)⊗

A′′︷ ︸︸ ︷
Γ(|e⟩el)⊗Γ(|v⟩vib) = Γ(µ̂j)⊗ Γ(|v⟩vib)⊗A′′ ,

Γ
(
µk
v1

)
= Γ(⟨v|vib)⊗

A′′︷ ︸︸ ︷
Γ(⟨e|el)⊗Γ(µ̂k)⊗

A′︷ ︸︸ ︷
Γ(|g⟩el)⊗

A′′︷ ︸︸ ︷
Γ(|1⟩vib) = Γ(µ̂k)⊗ Γ(|v⟩vib)⊗A′ .

The excited electronic state is antisymmetric (Γ(|e⟩el) = A′′) because the electronic transition is n → π∗, and the
π-orbitals are antisymmetric with respect to the plane of the molecule. The symmetry of dipole moment components
is the same as for the molecular frame axes, i.e., µa, µb ∈ A′, whilst µc ∈ A′′. Thus, for the permanent dipole we have
only µa

00 and µb
00 available for being nonzero, and µc

00 = 0. If the virtual state is symmetric Γ(|v⟩vib) = A′, then the

requirement is Γ(µj
0v) = Γ(µ̂j)⊗A′′ and Γ(µk

v1) = Γ(µ̂k)⊗A′. These conditions can be fulfilled if j = c and k = a, b.

Similarly, if Γ(|v⟩vib) = A′′, then the conditions are inverted Γ(µj
0v) = Γ(µ̂j)⊗A′ and Γ(µk

v1) = Γ(µ̂k)⊗A′′, which is
fullfiled by j = a, b and k = c.

Orientation-averaged enantiomeric excess requires the triple product

µ00 · [µ0v × µv1] = εijk µ
i
00 µ

j
0v µ

k
v1

to be nonzero where we have used Einstein notation with εijk the Levi-Civita symbol, and i, j, k = a, b, c. Since
εijk ̸= 0 only for i ̸= j ̸= k ̸= i, the product is given by three different dipole moment components and these must be
allowed to be non-zero by symmetry. Therefore, the following combinations are allowed by symmetry:

� if Γ(|v⟩vib) = A′, then µa
00µ

b
0vµ

c
v1 and µb

00µ
a
0vµ

c
v1 can be nonzero,

� if Γ(|v⟩vib) = A′′, then µa
00µ

c
0vµ

b
v1 and µb

00µ
c
0vµ

a
v1 can be nonzero.

II. COMPUTATIONAL DETAILS FOR THE COFCL MOLECULE

A. Electronic structure

The quantum-chemical computations were performed at the B3LYP/cc-pVTZ level of theory [38, 39, 40, 42] using the
Orca 4 package [44]. The structure of COFCl was optimized in the ground electronic state, yielding the equilibrium
structure of the molecule given in Table S1 below. The harmonic frequency calculations confirmed the minimum. The
ten lowest excited states were computed using time-dependent density functional theory within the Tamm-Dancoff
approximation [43].
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Figure S3 Definition of the out-of-plane coordinate: The molecular frame of the COFCl molecule is defined by the
Cartesian coordinates a, b and c. The out-of-plane coordinate ξ is given by the distance of the C-atom from the molecular
plane spanned by the O, F, and Cl atoms.

The molecular frame was chosen such that all atoms lie in the ab plane. The out-of-plane (OOP) coordinate ξ
corresponds the c-coordinate of the carbon atom, while all the other atoms (O, F, and Cl) are assumed to be frozen
at their equilibrium positions, cf. Figure S3. For the ground, first excited, and ground ionic potential energy surfaces
(PES), 100 points were computed with ξ ∈ [−0.9Å,+0.9 Å]. Along with the energies, the ground state dipole moment
µg(ξ) = ⟨g(ξ)|elµ̂|g(ξ)⟩el and transition dipole moment µge(ξ) = ⟨g(ξ)|elµ̂|e(ξ)⟩el were computed at each ξ. To provide
the quantum-chemical results here in a compact form, the energies V (ξ) and dipole moments µ(ξ) were approximated
by polynomials

f(ξ) =
15∑

n=0

fnξ
n . (17)

The approximation results are presented below in Section IV, with the polynomial coefficients listed in Tables S2, S3,
and S4. The quality of the approximation can be judged from Figures S9, S10, and S11.

B. Vibrational structure

To calculate the vibrational states |n⟩vib of the OOP motion in the ground and first excited state, the grid points
used in the electronic structure calculations were symmetrized along the mirror plane (ξ = 0) and then interpolated
to a uniform grid of 1000 points using cubic splines. The reduced mass for the OOP motion is given by

µ =
m(12C) · (m(16O) +m(19F) +m(35Cl))

m(12C) +m(16O) +m(19F) +m(35Cl)
.

With these parameters, the vibrational Schrödinger was solved for both electronic manifolds, using a discrete-variable
representation [45]. The vibrational states in the electronically excited state |v⟩vib were the symmetrized with
respect to ξ = 0. From the resulting vibronic wavefunctions, the vibrationally averaged permanent dipole mo-
ments µ00 = ⟨0|vibµg(ξ)|0⟩vib = ⟨0|vib⟨g|el|µ̂|g⟩el|0⟩vib and transition dipole moments µ0v = ⟨0|vibµge(ξ)|v⟩vib =
⟨0|vib⟨g|el|µ̂|e⟩el|v⟩vib, µ1v = ⟨1|vibµge(ξ)|v⟩vib = ⟨1|vib⟨g|el|µ̂|e⟩el|v⟩vib, corresponding to the Raman transition shown
in Figure S2, were computed.
The quality of the vibronic states was evaluated by comparison with the available experimental data for COF35Cl.

The experimental value for the out-of-plane fundamental vibrational transition (|0⟩ → |1⟩) is 667 cm−1, the value
obtained in our calculations was 662 cm−1 (relative error of 1%). From the |µ0v|2 values, the UV absorption spectrum
was also calculated. The comparison with the available band shape from the MPI-Mainz UV/VIS Spectral Atlas [50]
shows a good reproduction of the first UV band, cf Fig. S4.

C. Vibrationally averaged photoelectron angular distributions

For the calculation of photoelectron angular distributions (PAD), we have extended the procedure of Refs. [29, 30]
to explicitly account for the vibrational dynamics via vibrational averaging. Starting in the Born-Oppenheimer
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Figure S4 Absorption spectrum of COFCl: Experimental [50] (solid line with crosses) and calculated (violet boxes)
vibronic absorption spectra of COFCl. The green boxes in the negative range illustrate positions and intensities of the
vertical electronic spectrum computed from the equilibrium structure of the COFCl. The vertical line and the shaded area
around it illustrate the position of the 4th harmonic of a Ti:Sa laser with a wavelength of 810 nm and the bandwidth of a
Fourier-limited 10 fs pulse. The level of theory used was TDA-B3LYP/cc-pVTZ.

approximation, we write the vibronic state of the molecule as

|ψ⟩(t) =
∑
j

cj,g(t) e
−iωj,gt |j⟩vib |g⟩el +

∑
v

cv,e(t) e
−iωv,et |v⟩vib |e⟩el +

∑
v′

cv′,k(t) e
−iωv′,kt |v′⟩vib |k⟩el , (18)

where |g⟩el refers to the electronic ground state, |e⟩el to the electronically excited state, and |k⟩el is the electronic state
of the ion after photoionization with k = (k, ϕk, θk) the laboratory frame momentum of the emitted electron. |v⟩vib
represent the vibrational eigenstates in the corresponding PES with eigenfrequencies ωv,n. The expansion coefficients

of the electronic ground state, cj,g(t) =
∑

n c
(n)
j,g (t) (with c

(n)
j,g (t) introduced in Sec. I C), describe the chiral vibrational

wavepacket. We evaluate them up to second-order time-dependent perturbation theory according to Equation (14),
describing the Raman excitation by the pump pulse. Here, we solve the second-order time integral numerically.
Assuming one-photon ionization from the highest occupied molecular orbital by the circularly polarized XUV probe
pulse EI, we calculate the ionic expansion coefficients in Equation (18) by third-order perturbation theory,

c
(3)
v′,k(t) = −i

∑
j=0,1

∫ t

−∞
ei(ωv′,k−ωj,g)t

′
⟨v′|vib ⟨k|el EI(t

′) · R(ϕ, θ, χ) · µ̂ |g⟩el |j⟩vib c
(2)
j,g(t

′) dt′ , (19)

where R(ϕ, θ, χ) transforms the molecule-fixed dipole operator into the laboratory-fixed frame of reference. Hence,
the expansion coefficients depend on the orientation of the molecule, i.e., cv,n(t) ≡ cv,n(t;ϕ, θ, χ) for n = g, e,k.

Equation (19) implies an integral over the vibrational coordinate,

⟨v′|vib ⟨k|el µ̂ |g⟩el |j⟩vib =

∫
χ∗
v′,k(ξ)µkg(ξ)χj,g(ξ) dξ ,

where χj,g(ξ) and χv′,k(ξ) are the vibrational eigenfunctions in the neutral and ionic ground electronic states. In other
words, the vibrational dynamics is taken into account by averaging over the parametric dependence of the electronic
states on the nuclear coordinates, with the approximation that all nuclei are fixed except for the OOP motion, see
Fig. S3. For a given, fixed value of the OOP coordinate ξ, we follow the procedure of Refs. [29, 30] to evaluate the
electronic dipole matrix elements in Equation (19), µkg(ξ) = ⟨k(ξ)|el µ̂ |g(ξ)⟩el, by applying a single center expansion.
This yields the transition dipole moments to the electronic continuum state of the ion in the frozen-core Hartree-Fock



approximation. The calculation is performed with the ePolyScat program. It requires the electronic ground state
to be represented by a single Slater determinant [54, 55], which we calculate at the HF/aug-cc-pVTZ level of theory.
Thus, the continuum dipole matrix elements are calculated for different values of ξ by manipulating the molecular
geometry in the calculation of the ground state Slater determinant. This enables us to obtain vibronic transition dipole
matrix elements in terms of the overlap of vibrational nuclear wavefunctions, calculated as described in Sec. II B, and
the parametrized electronic dipole matrix elements. We use partial waves up to L = 80 to represent the bound orbitals
on the angular grid in order to ensure converged transition dipole matrix elements at photoelectron energies up to 20
eV.

In order to reduce the numerical effort in evaluating Equation (19), we approximate the shape of the ionizing pulse
by δ(t − tI) and assume the PAD to display a Gaussian energy dependence, which is given by the ionizing pulse
spectrum [56]. This neglects the energy dependence of the continuum dipole matrix elements. We have verified that
this is a reasonable approximation as long as the probe pulse duration is significantly shorter than the oscillation
period of enantiomeric excess, i.e., the ionization pulse is not longer than 5 fs. Of course, the latter is required in any
case, in order to resolve the chiral vibrational motion.

For a single molecule with given orientation, the laboratory-frame PAD at time t for a photoelectron with momentum
k is given in terms of the ionic expansion coefficients,

PAD(t;k;ϕ, θ, χ) =
∑
v′

∣∣∣c(3)v′,k(t;ϕ, θ, χ)
∣∣∣2 , (20)

where the sum runs over all populated vibrational states v′ in the ground electronic state of the ion. The orientation-
averaged laboratory-frame PAD is then obtained by integrating over the Euler angles,

⟨PAD⟩(t;k) =
2π∫
0

dϕ

π∫
0

sinθ dθ

2π∫
0

dχP (ϕ, θ, χ) PAD(t;k;ϕ, θ, χ) , (21)

where P (ϕ, θ, χ) describes the orientational distribution of the molecules, including the effect of the static electric field,
cf. Sec. I B. As explained in Sec. I B, it is well justified to take the orientational distribution to be time-independent —
this applies also to duration of the probe pulse. The integral over molecular orientations in Equation (21) is evaluated
numerically.

Photoelectron circular dichroism (PECD) is the forward-backward asymmetry visible in the dichroic difference of
PADs upon ionization with left- and right-circularly polarized (LCP/RCP) light. We quantify PECD according to
the convention of Ref. [24], i.e.

⟨PECD⟩(t;k) = ⟨PADLCP⟩(t;k)− ⟨PADRCP⟩(t;k)
(⟨PADLCP⟩(t;k) + ⟨PADRCP⟩(t;k))/2

. (22)

This convention is commonly used in experiments and often combined with an integration of the PADs over the forward
and backward hemisphere [12, 25, 26, 27]. The latter can result in smaller values, if the individual hemispheres contain
contributions to PECD with opposite signs, which cancel each other upon integration. In the proposed experiment,
we observe almost complete cancellation of PECD inside the hemispheres with the pulse parameters given in the main
text. In our understanding, this cancellation happens by chance for COFCl at the selected photoelectron energy, since
there is no symmetry requirement that forces this cancellation to occur.

The orientation-averaged PADs are cylindrically symmetric due to the cylindrical symmetry of the proposed exper-
imental setup (cf. Fig. S1). Hence, it does not matter if PECD is calculated from the PADs itself or from velocity map
images (VMI), i.e. the projection of Eq. (22) onto the yz-plane. However, due to the orientation of the molecules by
the static electric field, the dichroic differences are not antisymmetric with respect to the light propagation direction
as it is the case for randomly oriented molecules. For completeness, Fig. S5 shows polar plots of the orientation-
averaged laboratory frame PADs for the pump-probe delays that are marked in Fig. 3 of the main text, displaying
PADs obtained with a left- and a right-circularly polarized probe pulse and their normalized dichroic difference.
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Figure S5 Photoelectron angular distribution: Polar plots of the orientation-averaged laboratory frame photoelectron
angular distributions obtained with a left- and right-circularly polarized ionizing pulse and the corresponding dichroic
difference where θk is the polar angle of the photoelectron momentum. The latter has been normalized with respect to the
mean value of the corresponding PADs according to Eq. (22). The simulation parameters are the same as for the results
presented in Fig. 3 of the main text. The rows correspond to the time delays that are marked with dashed vertical lines in
Fig. 3 of the main text. The dichroic difference in the right column is shown as absolute value in percent, while the sign is
encoded in the color, i.e., red and blue corresponds to positive and negative values, respectively.



III. DEPHASING AND RELAXATION TIMESCALES

An essential aspect of the ultrafast experiments is the decay time of the signal, because it limits the timescale over
which the probe can monitor the effect induced by the pump pulse. Here, we consider mechanisms that may limit
observation of the vibrational coherence. To observe the motion of the chiral wavepacket, at least one period of the
out-of-plane vibration in COFCl, which is about 50 fs. Ideally, the shortest dephasing time should be at least an order
of magnitude larger. Since we also assume pump and probe not to overlap in time, all the dephasing times should be
larger than 1 ps in order to exclude detrimental effects of dephasing in the proposed experiment.

A. Collisional dephasing

Ultrafast experiments typically use either an effusive beam or supersonic expansion, both of which are hard to
model. Instead, one can estimate an upper bound to the collision frequency by using a simple equilibrium gas model
at elevated temperatures.

The collisional frequency in the ideal gas at equilibrium is given by [59]

1

τcoll
= 4σ

P√
πmkBT

,

where τcoll is the collision period, σ the collisional cross-section,m the mass of the molecule, P pressure, T temperature,
and kB Boltzmann’s constant. The upper boundary for the τcoll can be estimated by taking the P = 1 atm., T = 300 K,

and σ = πR2, where R = (

2.6︷ ︸︸ ︷
R(Cl . . .O)+

1.8︷ ︸︸ ︷
RVdW(Cl)+

1.5︷ ︸︸ ︷
RVdW(O))/2 ≈ 3 Å with R(Cl . . .O) being the distance between

Cl and O in COFCl (the largest interatomic distance), and RVdW are the van der Waals radii of the respective
atoms [60]. Such estimation gives τcoll ≈ 400 ps, which is much greater than the desired limit of 1 ps.

B. Rotational dephasing

To estimate the timescale of rotational dephasing, we assume rotations and vibrations to be decoupled due to their
different characteristic timescales and all vibrational-rotational transitions having the same transition matrix elements.
The oscillation of the chiral observable O (Eq. 16) at long times after the pump pulse (t≫ τ , when (1+erf(t/τ)) ≈ 2)
can be expressed as

I(t) = A · sin(ω01t) ,

where I is the intensity of the signal, ω01 the vibrational transition frequency in the electronic ground state, and A
amplitude of the observable’s (O) oscillation. However, the vibrational coherence, induced by the laser pulse would
include multiple rotational states. In the rigid rotor and harmonic oscillator (RRHO) approximation, the induced
rovibrational transition frequency will be given as ω = ω01 + δω, where δω denotes the difference in the rotational
frequencies of the pair of the coherent states. We approximate the rotational states of the asymmetric top by those of
a spherical top: Each state |JKM⟩ with total momentum J = 0, 1, 2, . . ., and projections of the total momentum on
the molecular and lab frames K,M = −J,−J + 1, . . . , 0, . . . , J − 1, J has an energy of hBJ(J + 1), where B = ℏ

4πI is

the rotational constant, dependent on the moment of inertia I. The rotational energy levels for each J are (2J + 1)2

times degenerate. We take the levels to be occupied according to Boltzmann distribution and assume that the classical
regime is applicable, i.e., thermal fluctuations kBT are more prominent than the difference between nearest quantum
levels. With these assumptions, the predicted signal for the molecule in the specific initial and final rotational states
will be given by

I = A · sin( ω01t︸︷︷︸
X=X(t)

+δωt) = A · sin(X + δωt) .

Vibrational-rotational spectra of nonlinear molecules in the electric dipole approximation consist of three branches
of transitions with different frequency shifts due to rotational state change:

� P-branch with ∆J = −1 (|J⟩ → |J − 1⟩): δωP = −4πBJ ,

� Q-branch with ∆J = 0 (|J⟩ → |J⟩): δωQ = 0 ,



� R-branch with ∆J = +1 (|J⟩ → |J + 1⟩): δωR = 4πB(J + 1) .

For the Raman transition, the P- and R-branches have to be replaced by the O-branch (|J⟩ → |J − 2⟩) and S-branch
(|J⟩ → |J + 2⟩) but in the classical limit (∆EJ→J′ ≈ J) this will not change the final result.
The final signal will be a combination of interfering signals from each of the three branches,

I =
1

3

AZ
+∞∑
J=0

wJ sin(X − 4πBJt)︸ ︷︷ ︸
IP

+
A

Z
sin(X)

Z︷ ︸︸ ︷
+∞∑
J=0

wJ︸ ︷︷ ︸
IQ

+
A

Z

+∞∑
J=0

wJ sin(X + 4πB(J + 1)t)︸ ︷︷ ︸
IR

 =
1

3

IP + IR +A · sin(X)︸ ︷︷ ︸
IQ

 .

In this approximation, the signal from the Q-branch does not depend on J , whilst the frequencies of the P- and
R-branches depend linearly on J . To estimate IP + IR, we take the classical limit, replacing the sum

∑+∞
J=0 by an

integral
∫ +∞
0

dJ and assuming J to be large enough such that J(J + 1) ≈ J2, (2J + 1)2 ≈ 4J2 and J + 1 ≈ J . This
gives

IP + IR ≈ 4A

Z

∫ +∞

J=0

J2 exp

(
− hB

kBT
J2

)
sin(X − 4πBJt)dJ +

4A

Z

∫ +∞

0

J2 exp

(
− hB

kBT
J2

)
sin(X + 4πBJt)dJ

=
4A

Z

∫ +∞

−∞
J2 exp

(
− hB

kBT
J2

)
sin(X + 4πBJt)dJ =

4A

Z

(I+ − I−)

2i

with

I+ =

∫ +∞

−∞
J2 exp

(
− hB

kBT
J2 + iX + i4πBJt

)
dJ , I− =

∫ +∞

−∞
J2 exp

(
− hB

kBT
J2 − iX − i4πBJt

)
dJ .

All the three integrals needed (Z, I±) are easy to calculate:

Z ≈ 4

∫ +∞

J=0

J2 exp

(
− hB

kBT
J2

)
dJ =

√
π ·
(
kBT

hB

)3/2

.

I± = exp (±iX) · Z · exp
(
−2πkBTBt

2

ℏ

)
·
(
1

2
− (2πBt)2

)
,

where for I± we have used the substitution J → j± = J ∓ ikBTt
ℏ . When combining all the terms, we obtain

I(t) =
1

3
(IP (t) + IR(t) + IQ(t)) = A · sin(ω0t︸︷︷︸

X

) · 1
3

(
1 + 4 exp

(
−2πkBTBt

2

ℏ

)
·
(
1

2
− (2πBt)2

))
︸ ︷︷ ︸

Ξ(t)

. (23)

The maximal value of Ξ(t) is one (for t = 0)), and the t = +∞ limit is Ξ(+∞) = 1/3, which corresponds to a
cancelation of the signals between P and R branches with only the Q branch left. A plot of Ξ(t) for the different
rotational As an estimate of the rotational decoherence times, we can use the time of the half-decay τrot,1/2 for the
Ξ(t), defined through the equation Ξ(τrot,1/2) = 2/3.

The Figure S7 shows the dependence of the τrot,1/2 for COF35Cl molecule at the different rotational temperatures.
A signal lasting longer than 1 ps is expected for rotational temperatures below 70K. Such temperatures are easily
achieved in molecular beam experiments. In the proposed experiment, they are needed also to ensure negligible
thermal population in the excited vibrational level of the electronic ground state. We therefore conclude that rotational
dephasing will not be relevant.

C. Vibrational excitation intramolecular vibrational energy redistribution lifetime

Coupling of the degree of interest, the OOP vibration, to other vibrational modes will lead to intramolecular vibrational
energy redistribution (IVR) and decay of the desired signal. To estimate the rate with which excitation in the OOP
vibration decays into other vibrations due to anharmonic couplings, we have performed ab initio molecular dynamics
(AIMD) simulations for COFCl. We have taken the ⟨0|ξ|1⟩ average structure obtained at the B3LYP/cc-pVTZ level of
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rotational dephasing function Ξ(t) (Equation (23)), as a function of rotational temperature for the COF35Cl molecule with
rotational constants A = 11830MHz, B = 5287MHz, and C = 3649MHz (values taken from Ref. [49]).

theory, cf. Table S1, as the initial structure for the simulations. Then, 28 AIMD trajectories with velocities generated
from a Maxwell-Boltzmann distribution at 300K were calculated for a duration of 0.5 ps with a time step of 0.1 fs, such
that the trajectories covered approximately ten periods of OOP vibration in COFCl. The gradients were obtained at
the B3LYP-D3/def2-SVP level of theory. From each trajectory, the evolution of the carbon displacement from the
ab-plane,

ξ =
rOC · [rOF × rOCl]

||[rOF × rOCl]||
, (24)

was extracted. The results are shown in Figure S8. The average time dependence of this coordinate was fitted to a
function describing an harmonic oscillator with friction,

ξ(t) = Aξ · sin(ω01t+ ϕ) · exp(−t/τIVR) (25)

with Aξ the vibrational amplitude, ϕ the phase and τIVR an estimate of the IVR relaxation time, also shown in
Figure S8. The latter was found to be τIVR = 3.6± 0.2 ps. This suggests that IVR in COFCl is about two orders of



Figure S8 Decay of the vibrational amplitude due to vibrational energy redistribution: Average displacement of
the ξ out-of-plane coordinate in COFCl (solid blue line) obtained with AIMD trajectory simulations at the
B3LYP-D3/def2-SVP level of theory, cf. Equation (24). The average is fitted to Equation (25) (thick red line) which resuls in
an estimated IVR time of τIVR = 3.6± 0.2 ps. The light-blue area corresponds to the standard deviation of the ensemble of
trajectories. The narrow red lines show the exponential decay of the vibrational amplitude.

magnitude larger than the period of the desired chiral vibrational dynamics and should thus not obstruct observation
of the chiral signal.



IV. NUMERICAL DETAILS OF QUANTUM-CHEMICAL CALCULATIONS

Table S1 Equilibrium geometry of the COFCl at the B3LYP/cc-pVTZ level of theory and the geometry of the turning point
for the vibrational wavepacket (⟨0|ξ|1⟩). The geometries are reported in XYZ file format with coordinates are given in
Ångström.

4
Equilibrium structure at B3LYP/cc-pVTZ level

Cl 1.2424559624 0.0064155674 0.0000000000
C -0.4970547972 0.1473235259 0.0000000000
F -1.0346338274 -1.0679815724 0.0000000000
O -1.1144924363 1.1439709190 0.0000000000

4
<0|xi|1> turning point structure

Cl 1.2424559624 0.0064155674 0.0000000000
C -0.4970547972 0.1473235259 0.0498566330
F -1.0346338274 -1.0679815724 0.0000000000
O -1.1144924363 1.1439709190 0.0000000000

Table S2 The ground and excited potential energy surfaces of the neutral COFCl (Vg and Ve) and ground state potential of
the COFCl cation (Vi) along the out-of-plane vibrational coordinate ξ (see also figure S9) at the B3LYP/cc-pVTZ and
TDA-B3LYP/cc-pVTZ levels of theory. The approximation is made using polynomial given in Equation 17. Coefficients Vn

are given in cm−1.

n Vg,n Ve,n Vi,n

0 -5.225 50203.464 98399.653

1 0.000 0.000 0.000

2 65964.258 -217734.795 16016.701

3 0.000 0.000 0.000

4 37689.075 2212090.458 2872.946

5 0.000 0.000 0.000

6 -27411.772 -14788725.875 2005.847

7 0.000 0.000 0.000

8 -256582.066 62737810.703 -9781.540

9 0.000 0.000 0.000

10 894591.518 -154205083.960 17659.820

11 0.000 0.000 0.000

12 -1299431.830 200002541.361 -19097.394

13 0.000 0.000 0.000

14 726023.329 -105709357.157 9364.166

15 0.000 0.000 0.000



Table S3 The ground state dipole moment dependence of the COFCl along the out-of-plane vibrational coordinate ξ at the
B3LYP/cc-pVTZ level of theory. The approximation is made using polynomial given in Equation 17. Coefficients
µi
g,n, i = a, b, c are given in debyes (D).

n µa
g,n µb

g,n µc
g,n

0 -0.9314524903 -0.7624595494 0.0000000000

1 0.0000000000 0.0000000000 1.9073073452

2 -0.5087896375 1.3252089900 0.0000000000

3 0.0000000000 0.0000000000 -1.0960792347

4 0.8538036739 0.3899422020 0.0000000000

5 0.0000000000 0.0000000000 0.0820464672

6 0.3526400471 -0.4585282449 0.0000000000

7 0.0000000000 0.0000000000 0.8162906684

8 -1.6358233159 1.2532774805 0.0000000000

9 0.0000000000 0.0000000000 -0.6877409655

10 2.3283039851 -2.5396816022 0.0000000000

11 0.0000000000 0.0000000000 -0.2611082534

12 -2.2711754646 2.2187633865 0.0000000000

13 0.0000000000 0.0000000000 0.6187223861

14 0.7706536394 -0.7867363304 0.0000000000

15 0.0000000000 0.0000000000 -0.2737050963

Table S4 The ground to the first excited state transition dipole moment dependence of the COFCl along the out-of-plane
vibrational coordinate ξ at the TDA-B3LYP/cc-pVTZ level of theory. The approximation is made using polynomial given in
Equation 17. Coefficients µi

ge,n, i = a, b, c are given in debyes (D).

n µa
ge,n µb

ge,n µc
ge,n

0 0.0000000000 0.0000000000 0.1326949748

1 -3.3639023583 -0.5049714658 0.0000000000

2 0.0000000000 0.0000000000 -1.0422105702

3 40.7810786314 2.4622616344 0.0000000000

4 0.0000000000 0.0000000000 10.3628355130

5 -318.7583904805 -18.6065909522 0.0000000000

6 0.0000000000 0.0000000000 -54.1637848023

7 1393.0651368390 88.2305627304 0.0000000000

8 0.0000000000 0.0000000000 154.0605856734

9 -3483.7826186812 -233.5331157032 0.0000000000

10 0.0000000000 0.0000000000 -240.7596071527

11 4945.3954293408 345.2714224438 0.0000000000

12 0.0000000000 0.0000000000 194.7220465762

13 -3704.3036112783 -266.4104980060 0.0000000000

14 0.0000000000 0.0000000000 -63.7450060156

15 1136.1280526166 83.4342437049 0.0000000000
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V. CALCULATION OF THE CLASSICAL SELECTION RULES USING WXMAXIMA

Here, we provide the code in wxMaxima that was used to evaluate the selection rules for the enantiomeric signal, given
in section IB.

R1(phi):= matrix([cos(phi), -sin(phi), 0],
[sin(phi), cos(phi), 0],
[ 0 , 0, 1]);

R2(theta):= matrix([1, 0, 0],
[0, cos(theta), -sin(theta)],
[0, sin(theta), cos(theta)]);

R3(chi) :=matrix([cos(chi), -sin(chi), 0],
[sin(chi), cos(chi), 0],
[ 0 , 0, 1]);

R(phi,theta,chi) := ((R3(chi)).R2(theta)).(R1(phi));
J(theta):= sin(theta);

a1 : matrix([a1x,a1y,a1z]);
a2 : matrix([a2x,a2y,a2z]);
a3 : matrix([a3x,a3y,a3z]);
mu1 : matrix([m1x, m1y, m1z]);
mu2 : matrix([m2x, m2y, m2z]);
mu3 : matrix([m3x, m3y, m3z]);

Q1(phi,theta,chi):= (mu1.R(phi,theta,chi).a1);
integrate( integrate( integrate(Q1(phi,theta,chi)*J(theta), phi, 0, 2*\%pi ),

theta, 0, \%pi ) , chi, 0 , 2*\%pi );

Q2(phi,theta,chi):= Q1(phi,theta,chi)*(mu2.R(phi,theta,chi).a2);
integrate( integrate( integrate(Q2(phi,theta,chi)*J(theta), phi, 0, 2*\%pi ),

theta, 0, \%pi ) , chi, 0 , 2*\%pi );

Q3(phi,theta,chi):= Q2(phi,theta,chi)*(mu3.R(phi,theta,chi).a3);
integrate( integrate( integrate(Q3(phi,theta,chi)*J(theta), phi, 0, 2*\%pi ),

theta, 0, \%pi ) , chi, 0 , 2*\%pi );

VI. CALCULATION OF THE TRANSITION DIPOLE MOMENTS FROM THE ONE-DIMENSIONAL
SCHRÖDINGER EQUATION

Here, we provide the Python code that was used for solving the one-dimensional Schrödinger equation to obtain the
vibronic energy levels, the permanent dipole moments, and the transition dipole moments.

1 import numpy as np
2 import sys
3 import argparse
4 import s c ipy . i n t e r p o l a t e as sp i
5 from copy import deepcopy
6 import s c ipy . l i n a l g as sp l a
7

8 KinEnCoeff=33.7152313
9

10 de f sincD1 ( i , j ) :
11 i f i==j :
12 r e turn 0 .0
13 e l s e :
14 r e turn (=1.0) **( i=j ) /( i=j )
15

16 de f sincD2 ( i , j ) :
17 i f i==j :
18 r e turn =(np . p i **2) /3 .0



19 e l s e :
20 r e turn =2.0*(=1.0) **( i=j ) /( i=j ) **2
21

22

23 de f KinEnergy (X,M) :
24 #G = 0.5*KinEnCoeff /M
25

26 Nmat = len (X)
27 dx = np . average (X [ 1 : ] = X[ : =1 ] )
28

29 D2 = np . array ( [ [ sincD2 ( i , j ) f o r j in range (0 ,Nmat) ] f o r i in range (0 ,Nmat) ] ) /(dx**2)
30

31 pr in t ( ” dx = %15.10 f Angstroem” % dx)
32

33 Res = =D2*0 .5*KinEnCoeff /M
34

35 pr in t ( ”Deviat ion from Hermit iv i ty in T = %15.10 f ” % (np .max(np . abs ( Res . f l a t t e n ( ) = Res .T.
f l a t t e n ( ) ) ) ) )

36 r e turn Res
37

38 de f PotEnergy (V, Vmin=None ) :
39 i f Vmin i s None :
40 vmin = min (V)
41 e l s e :
42 vmin=Vmin
43 r e turn np . diag (V=vmin )
44

45 ########################################
46

47 par s e r = argparse . ArgumentParser ( )
48 par s e r . add argument ( ”=f ” , ”==f i l ename ” , he lp=” input f i l e name” , type=str , d e f au l t=” i n i . dat” )
49 par s e r . add argument ( ”=m” , ”==mass” , he lp=” reduced mass o f the v i b r a t i on in a .m. u . ” , type=f l o a t ,

d e f au l t =1.0)
50 par s e r . add argument ( ”==I n i S t a t e ” , he lp=” I n i t i a l s t a t e (>=0)” , type=int , d e f au l t =0)
51 par s e r . add argument ( ”==FinState ” , he lp=”Fina l State Number (>=0)” , type=int , d e f au l t =1)
52 par s e r . add argument ( ”==NGS2P” , he lp=”Number o f ground s t a t e s to p r i n t ” , type=int , d e f au l t =5)
53 par s e r . add argument ( ”==NES2P” , he lp=”Number o f excated s t a t e s to p r i n t ” , type=int , d e f au l t=None )
54 par s e r . add argument ( ”=n” , ”==NumOfPts” , he lp=” S i z e o f the Hamiltonian matrix ” , type=int , d e f au l t

=800)
55 par s e r . add argument ( ”==InterpolType ” , he lp=” i n t e r p o l a t i o n type” , type=st r , c ho i c e s =[ ’ l i n e a r ’ , ’

quadrat i c ’ , ’ cub ic ’ ] , d e f au l t=’ cubic ’ )
56 par s e r . add argument ( ’==SymmExc ’ , a c t i on=’ s t o r e t r u e ’ , he lp=”Flag to symmetrize the exc i t ed s t a t e . ”

)
57 par s e r . add argument ( ’==PrintPolTensors ’ , a c t i on=’ s t o r e t r u e ’ , he lp=”Flag to p r i n t the

p o l a r i z a b i l i t y t en s o r s . ” )
58

59

60 args = par s e r . p a r s e a r g s ( )
61

62

63

64 ########################################
65 pr in t ( ” F i l e to p roce s s : ”+args . f i l ename )
66 data = np . l oadtx t ( args . f i l ename )
67

68 X0 = data [ : , 0 ]
69 Vgr = sp i . in te rp1d (X0 , data [ : , 1 ] , kind=args . InterpolType )
70 Vex = sp i . in te rp1d (X0 , data [ : , 2 ] , kind=args . InterpolType )
71

72 x = np . l i n s p a c e (np . min (X0) ,np .max(X0) , args . NumOfPts)
73

74

75

76 ### Solve ground s t a t e problem
77 vg = Vgr (x )
78 ve = Vex(x )
79

80 Vmin = min( vg )
81

82 H = KinEnergy (x , args . mass ) + PotEnergy ( vg ,Vmin=Vmin)



83 Eg ,WFNg = np . l i n a l g . e igh (H)
84

85 f o r n in range (0 , l en (Eg) ) :
86 WFNg[ : , n]/=np . sq r t (np . dot (WFNg[ : , n ] ,WFNg[ : , n ] ) )
87

88

89 pr in t ( ”Groung e l e c t r o n i c s t a t e v i b r a t i o n a l l e v e l s :\n” )
90 f o r n in range (0 , args .NGS2P) :
91 pr in t ( ” %3i %15.10 f %15.10 f ” % (n , Eg [ n ] , Eg [ n]=Eg [ 0 ] ) )
92

93 np . save txt ( ”dump0 . wfn” , np . s tack ( [ x ] + [w f o r w in WFNg.T[ 0 : args .NGS2P] ] , ax i s==1) )
94

95 Vmin = min( ve )
96 H = KinEnergy (x , args . mass ) + PotEnergy ( ve ,Vmin=Vmin)
97

98 Ee ,WFNe = np . l i n a l g . e igh (H)
99

100 i f a rgs .SymmExc :
101 pr in t ( ” Started symmetr izat ion in the exc i t ed s ta t e s , %i s t a t e s in t o t a l ” % len (Ee) )
102

103 de f symmWFN(wfn , Coe f f =1.0) :
104 r e s = wfn + Coef f * np . f l i p (wfn )
105 r e s /= np . sq r t (np . dot ( res , r e s ) )
106 r e turn r e s
107

108 # symmetric r ep r e s en t a t i on
109 sWFNe = np . array ( [ symmWFN(wfn , Coe f f =1.0) f o r wfn in WFNe.T ] )
110

111 rank = np . l i n a l g . matr ix rank (sWFNe)
112 pr in t ( ”Symmetric WFNs : %i ” % rank )
113

114 mask = True + np . z e r o s (sWFNe. shape [ 0 ] , dtype=bool )
115 pr in t (mask [ mask ] . shape )
116 f o r i in range (1 ,sWFNe. shape [ 0 ] ) :
117 f o r j in range (0 , i ) :
118 i f np . abs (np . dot (sWFNe[ i ] , sWFNe[ j ] ) )>0.5 and mask [ j ] :
119 mask [ i ] = Fal se
120 pr in t (mask [ mask ] . shape )
121 sWFNe = sWFNe[ mask ]
122 np . save txt ( ” symmetric . wfn” , np . concatenate ( [ [ x ] , sWFNe ] ) .T )
123

124 sEe = np . array ( [ np . dot (wfn , np . dot (H, wfn ) ) f o r wfn in sWFNe ] )
125

126 # antisymmetr ic r ep r e s en t a t i on
127 aWFNe = np . array ( [ symmWFN(wfn , Coe f f==1.0) f o r wfn in WFNe.T ] )
128

129 rank = np . l i n a l g . matr ix rank (aWFNe)
130 pr in t ( ”Antisymmetric WFNs : %i ” % rank )
131

132 mask = True + np . z e r o s (aWFNe. shape [ 0 ] , dtype=bool )
133 f o r i in range (1 ,aWFNe. shape [ 0 ] ) :
134 f o r j in range (0 , i ) :
135 i f np . abs (np . dot (aWFNe[ i ] ,aWFNe[ j ] ) )>0.5 and mask [ j ] :
136 mask [ i ] = Fal se
137 pr in t (mask [ mask ] . shape )
138 aWFNe = aWFNe[mask ]
139 np . save txt ( ” ant isymmetr ic . wfn” , np . concatenate ( [ [ x ] ,aWFNe] ) .T )
140

141 aEe = np . array ( [ np . dot (wfn , np . dot (H, wfn ) ) f o r wfn in aWFNe] )
142

143 WFNe = np . concatenate ( [ sWFNe,aWFNe] )
144 Ee = np . concatenate ( [ sEe , aEe ] )
145 pr in t (WFNe. shape , Ee . shape )
146

147 inds = np . a r g s o r t (Ee)
148

149 WFNe = WFNe[ inds ] .T
150 Ee = Ee [ inds ]
151 pr in t (WFNe. shape , Ee . shape )
152



153

154 i f a rgs .NES2P i s None :
155 args .NES2P = len (Ee)
156

157

158 Ee += min( ve ) = min( vg )
159

160

161 f o r n in range (0 , l en (Ee) ) :
162 WFNe[ : , n]/=np . sq r t (np . dot (WFNe[ : , n ] ,WFNe[ : , n ] ) )
163

164

165 pr in t ( ”Excited e l e c t r o n i c s t a t e v i b r a t i o n a l l e v e l s :\n” )
166 f o r n in range (0 , args .NES2P) :
167 pr in t ( ” %3i %15.10 f %15.10 f %15.10 f ” % (n , Ee [ n ] , Ee [ n]=Ee [ 0 ] , Ee [ n]=Eg [ 0 ] ) )
168

169 np . save txt ( ”dump1 . wfn” , np . s tack ( [ x ] + [w f o r w in WFNe.T[ 0 : args .NES2P ] ] , ax i s==1) )
170

171 TrD=None
172 i f l en ( data [ 0 ] )>=6:
173 TrD=[ ]
174 TrD . append ( sp i . in te rp1d (X0 , data [ : , 3 ] , kind=args . InterpolType ) ( x ) )
175 TrD . append ( sp i . in te rp1d (X0 , data [ : , 4 ] , kind=args . InterpolType ) ( x ) )
176 TrD . append ( sp i . in te rp1d (X0 , data [ : , 5 ] , kind=args . InterpolType ) ( x ) )
177

178

179 D0=None
180 i f l en ( data [ 0 ] )>=9:
181 D0=[ ]
182 D0 . append ( sp i . in te rp1d (X0 , data [ : , 6 ] , kind=args . InterpolType ) (x ) )
183 D0 . append ( sp i . in te rp1d (X0 , data [ : , 7 ] , kind=args . InterpolType ) (x ) )
184 D0 . append ( sp i . in te rp1d (X0 , data [ : , 8 ] , kind=args . InterpolType ) (x ) )
185

186

187 np . s e t p r i n t o p t i o n s ( suppres s=True , p r e c i s i o n =12)
188

189

190 out f = open ( ” raman and stat i c . r e s ” , ”w” )
191 out f1 = open ( ” absorbt ion . sp” , ”w” )
192

193 i f a rgs . Pr intPolTensors :
194 out f2 = open ( ” p o l t e n s o r s . dat” , ”w” )
195

196

197 d00 = np . array ( [ np . dot (WFNg[ : , a rgs . I n i S t a t e ] ,D0 [ i ]*WFNg[ : , a rgs . I n i S t a t e ] ) f o r i in range (0 , 3 ) ] )
198 pr in t ( d00 )
199

200

201 f o r n , vState in enumerate (WFNe.T) :
202

203 E0v = Ee [ n]=Eg [ args . I n i S t a t e ]
204 Ev1 = Ee [ n]=Eg [ args . FinState ]
205

206 d0n = np . array ( [ np . dot ( vState ,TrD [ i ]*WFNg[ : , a rgs . I n i S t a t e ] ) f o r i in range (0 , 3 ) ] )
207 dn1 = np . array ( [ np . dot ( vState ,TrD [ i ]*WFNg[ : , a rgs . FinState ] ) f o r i in range (0 , 3 ) ] )
208

209

210 dV = np . dot ( d00 , np . c r o s s ( d0n , dn1 ) )
211 out f . wr i t e ( ” %15.2 f %15.2 f %15.10 f ” % (E0v , Ev1 , dV) )
212 out f . wr i t e ( ”\n” )
213

214 out f1 . wr i t e ( ” %15.3 f %15.3 f %15.10 f \n” % (E0v , 1 . 0 e7/E0v , np . dot (d0n , d0n ) ) )
215

216 i f a rgs . Pr intPolTensors :
217 out f2 . wr i t e ( ”\n\n |%i , g> => |%i , e> => |%i , g> : \n” % ( args . In iS ta t e , n , args . FinState ) )
218 pt = np . outer (d0n , dn1 )
219 out f2 . wr i t e ( s t r ( pt )+”\n\n” )
220

221 D2S = [ x , vg , ve ]
222 i f not TrD i s None :



223 D2S = D2S + TrD
224 i f not D0 i s None :
225 D2S = D2S + D0
226

227 np . save txt ( ” ex t r apo l a t ed va l u e s . dat” , np . s tack (D2S , ax i s==1))



 

 

REFERENCES AND NOTES 

1. D. P. Glavin, A. S. Burton, J. E. Elsila, J. C. Aponte, J. P. Dworkin, The search for chiral asymmetry 

as a potential biosignature in our solar system. Chem. Rev. 120, 4660–4689 (2020). 

2. M. Quack, J. Stohner, M. Willeke, High-resolution spectroscopic studies and theory of parity 

violation in chiral molecules. Annu. Rev. Phys. Chem. 59, 741–769 (2008). 

3. U. Raucci, H. Weir, C. Bannwarth, D. M. Sanchez, T. J. Martínez, Chiral photochemistry of achiral 

molecules. Nat. Commun. 13, 2091 (2022). 

4. C. Fábri, L. Horný, M. Quack, Tunneling and parity violation in trisulfane (HSSSH): An almost ideal 

molecule for detecting parity violation in chiral molecules. ChemPhysChem 16, 3584–3589 (2015). 

5. Y. Fujimura, L. González, K. Hoki, J. Manz, Y. Ohtsuki, Selective preparation of enantiomers by 

laser pulses: Quantum model simulation for H2POSH. Chem. Phys. Lett. 306, 1–8 (1999). 

6. D. Gerbasi, P. Brumer, I. Thanopulos, P. Král, M. Shapiro, Theory of the two step enantiomeric 

purification of 1,3 dimethylallene. J. Chem. Phys. 120, 11557–11563 (2004). 

7. E. F. Thomas, N. E. Henriksen, Phase-modulated nonresonant laser pulses can selectively convert 

enantiomers in a racemic mixture. J. Phys. Chem. Lett. 8, 2212–2219 (2017). 

8. M. Quack, G. Seyfang, G. Wichmann, Fundamental and approximate symmetries, parity violation and 

tunneling in chiral and achiral molecules. Adv. Quantum Chem. 81, 51–104 (2020). 

9. A. F. Ordonez, O. Smirnova, Generalized perspective on chiral measurements without magnetic 

interactions. Phys. Rev. A 98, 063428 (2018). 

10. B. Ritchie, Theory of the angular distribution of photoelectrons ejected from optically active 

molecules and molecular negative ions. Phys. Rev. A 13, 1411–1415 (1976). 

11. N. Böwering, T. Lischke, B. Schmidtke, N. Müller, T. Khalil, U. Heinzmann, Asymmetry in 

photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett. 

86, 1187–1190 (2001). 

12. C. Lux, M. Wollenhaupt, T. Bolze, Q. Liang, J. Köhler, C. Sarpe, T. Baumert, Circular dichroism in 

the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with 

femtosecond laser pulses. Angew. Chem. Int. Ed. 51, 5001–5005 (2012). 

13. A. Comby, S. Beaulieu, M. Boggio-Pasqua, D. Descamps, F. Légaré, L. Nahon, S. Petit, B. Pons, B. 

Fabre, Y. Mairesse, V. Blanchet, Relaxation dynamics in photoexcited chiral molecules studied by 



 

 

time-resolved photoelectron circular dichroism: Toward chiral femtochemistry. J. Phys. Chem. Lett. 

7, 4514–4519 (2016). 

14. S. Beaulieu, A. Comby, A. Clergerie, J. Caillat, D. Descamps, N. Dudovich, B. Fabre, R. Géneaux, 

F. Légaré, S. Petit, B. Pons, G. Porat, T. Ruchon, R. Taïeb, V. Blanchet, Y. Mairesse, Attosecond-

resolved photoionization of chiral molecules. Science 358, 1288–1294 (2017). 

15. V. Svoboda, N. B. Ram, D. Baykusheva, D. Zindel, M. D. J. Waters, B. Spenger, M. Ochsner, H. 

Herburger, J. Stohner, H. J. Wörner, Femtosecond photoelectron circular dichroism of chemical 

reactions. arXiv:2206.04099 [physics.chem-ph] (8 June 2022). 

16. K. Fehre, S. Eckart, M. Kunitski, M. Pitzer, S. Zeller, C. Janke, D. Trabert, J. Rist, M. Weller, A. 

Hartung, L. P. H. Schmidt, T. Jahnke, R. Berger, R. Dörner, M. S. Schöffler, Enantioselective 

fragmentation of an achiral molecule in a strong laser field. Sci. Adv. 5, eaau7923 (2019). 

17. D. Baykusheva, D. Zindel, V. Svoboda, E. Bommeli, M. Ochsner, A. Tehlar, H. J. Wörner, Real-

time probing of chirality during a chemical reaction. Proc. Natl. Acad. Sci. U.S.A. 116, 23923–23929 

(2019). 

18. S. S. Bychkov, B. A. Grishanin, V. N. Zadkov, H. Takahashi, Laser coherent control of molecular 

chiral states via entanglement of the rotational and torsional degrees of freedom. J. Raman Spectrosc. 

33, 962–973 (2002). 

19. D. V. Zhdanov, V. N. Zadkov, Coherent control of chirality in ensemble of randomly oriented 

molecules using a sequence of short laser pulses. Laser Physics 20, 107–118 (2010). 

20. A. F. Ordonez, O. Smirnova, Propensity rules in photoelectron circular dichroism in chiral 

molecules. I. Chiral hydrogen. Phys. Rev. A 99, 043416 (2019). 

21. C. P. Koch, M. Lemeshko, D. Sugny, Quantum control of molecular rotation. Rev. Mod. Phys. 91, 

035005 (2019). 

22. D. L. Andrews, T. Thirunamachandran, On three-dimensional rotational averages. J. Chem. Phys. 

67, 5026–5033 (1977). 

23. M. Leibscher, T. F. Giesen, C. P. Koch, Principles of enantio-selective excitation in three-wave 

mixing spectroscopy of chiral molecules. J. Chem. Phys. 151, 014302 (2019). 

24. I. Powis, in Photoelectron Circular Dichroism in Chiral Molecules, S. A. Rice, Ed. (John Wiley & 

Sons Ltd., 2008), chap. 5, pp. 267–329. 

25. M. H. M. Janssen, I. Powis, Detecting chirality in molecules by imaging photoelectron circular 

dichroism. Phys. Chem. Chem. Phys. 16, 856–871 (2014). 



 

 

26. C. Lux, M. Wollenhaupt, C. Sarpe, T. Baumert, Photoelectron circular dichroism of bicyclic ketones 

from multiphoton ionization with femtosecond laser pulses. ChemPhysChem 16, 115–137 (2015). 

27. A. Kastner, C. Lux, T. Ring, S. Züllighoven, C. Sarpe, A. Senftleben, T. Baumert, Enantiomeric 

excess sensitivity to below one percent by using femtosecond photoelectron circular dichroism. 

ChemPhysChem 17, 1119–1122 (2016). 

28. G. Meijer, in Molecular Beams in Physics and Chemistry: From Otto Stern’s Pioneering Exploits to 

Present-Day Feats, B. Friedrich, H. Schmidt-Böcking, Eds. (Springer International Publishing, 

2021), pp. 463–476. 

29. R. E. Goetz, C. P. Koch, L. Greenman, Quantum control of photoelectron circular dichroism. Phys. 

Rev. Lett. 122, 013204 (2019). 

30. R. E. Goetz, C. P. Koch, L. Greenman, Perfect control of photoelectron anisotropy for randomly 

oriented ensembles of molecules by XUV REMPI and polarization shaping. J. Chem. Phys. 151, 

074106 (2019). 

31. E. Ruch, Chiral derivatives of achiral molecules: Standard classes and the problem of a right-left 

classification. Angew. Chem. Int. Ed. 16, 65–72 (1977). 

32. G. Hartmann, M. Ilchen, P. Schmidt, C. Küstner-Wetekam, C. Ozga, F. Scholz, J. Buck, F. Trinter, 

J. Viefhaus, A. Ehresmann, M. S. Schöffler, A. Knie, P. V. Demekhin, Recovery of high-energy 

photoelectron circular dichroism through fano interference. Phys. Rev. Lett. 123, 043202 (2019). 

33. B. Friedrich, D. Herschbach, Enhanced orientation of polar molecules by combined electrostatic and 

nonresonant induced dipole forces. J. Chem. Phys. 111, 6157–6160 (1999). 

34. S. V. Krasnoshchekov, V. B. Laptev, S. A. Klimin, I. K. Gainullin, A. A. Makarov, Overtone 

spectroscopy of v(C=O) stretching vibration of hexafluoroacetone: Experimental and ab initio 

determination of peak positions, absolute intensities, and band shapes. Spectrochim. Acta A Mol. 

Biomol. Spectrosc. 238, 118396 (2020). 

35. S. Takeda, R. Tarao, The infrared spectra of alkylaluminum-ether complexes. Bull. Chem. Soc. Jpn. 

38, 1567–1574 (1965). 

36. H. Hoberg, S. Krause, The Al—Al bond as a readily accessible structural unit in organometallic 

compounds. Angew. Chem. Int. Ed. 15, 694–694 (1976). 

37. A. Kunicki, W. Kosińska, M. Bolesławski, S. Pasynkiewicz, The 1H NMR spectra of 

methylmethoxyaluminium chloride and methylmethoxyaluminium iodide. J. Organomet. Chem. 141, 

283–288 (1977). 



 

 

38. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 

98, 5648–5652 (1993). 

39. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a 

functional of the electron density. Phys. Rev. B 37, 785–789 (1988). 

40. S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for 

local spin density calculations: A critical analysis. Can. J. Phys. 59, 1200–1211 (1980). 

41. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab initio calculation of vibrational 

absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 

11623–11627 (1994). 

42. T. H. Dunning Jr., Gaussian basis sets for use in correlated molecular calculations. i. The atoms 

boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989). 

43. S. Hirata, M. Head-Gordon, Time-dependent density functional theory within the Tamm-Dancoff 

approximation. Chem. Phys. Lett. 314, 291–299 (1999). 

44. F. Neese, The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012). 

45. D. T. Colbert, W. H. Miller, A novel discrete variable representation for quantum mechanical 

reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 96, 1982–1991 (1992). 

46. I. Zanon, G. Giacometti, D. Picciol, The electronic spectrum of FCICO. Spectrochim. Acta A Mol. 

Biomol. Spectrosc. 19, 301-E7 (1963). 

47. N. Heineking, W. Jager, M. Gerry, Isotopic and vibrational satellites in the rotational spectrum of 

carbonyl chloride fluoride. J. Mol. Spectrosc. 158, 69–81 (1993). 

48. C. Maul, C. Dietrich, T. Haas, K.-H. Gericke, Photodissociation dynamics of carbonyl chloride 

fluoride and its implications for phosgene three body decay. Phys. Chem. Chem. Phys. 1, 1441–1446 

(1999). 

49. A. Perrin, J. Demaison, G. Toon, The ν1, ν2, and ν3 bands of carbonyl chlorofluoride (COFCl) at 5.3, 

9.1, and 13.1 μm: Position and intensity parameters and their use for atmospheric studies. J. Quant. 

Spectrosc. Radiat. Transf. 112, 1266–1279 (2011). 

50. H. Keller-Rudek, G. K. Moortgat, R. Sander, R. Sörensen, The MPI-Mainz UV/VIS spectral atlas of 

gaseous molecules of atmospheric interest. Earth Syst. Sci. Data 5, 365–373 (2013). 

51. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. 

Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. 

Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. H. l, A. Hesselmann, G. 



 

 

Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. 

McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. 

Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, 

MOLPRO, version 2012.1, a package of ab initio programs. 

52. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, Molpro: A general-purpose 

quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 242–253 (2012). 

53. R. A. Kendall, T. H. Dunning Jr., R. J. Harrison, Electron affinities of the first-row atoms revisited. 

Systematic basis sets and wave functions. J. Comp. Phys. 96, 6796–6806 (1992). 

54. F. A. Gianturco, R. R. Lucchese, N. Sanna, Calculation of low-energy elastic cross sections for 

electron-CF4 scattering. J. Chem. Phys. 100, 6464–6471 (1994). 

55. A. P. P. Natalense, R. R. Lucchese, Cross section and asymmetry parameter calculation for sulfur 1s 

photoionization of SF6. J. Chem. Phys. 111, 5344–5348 (1999). 

56. P. Hockett, M. Wollenhaupt, C. Lux, T. Baumert, Complete photoionization experiments via 

ultrafast coherent control with polarization multiplexing. II. Numerics and analysis methodologies. 

Phys. Rev. A 92, 013411 (2015). 

57. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density 

functional theory. J. Comput. Chem. 32, 1456–1465 (2011). 

58. F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta 

valence quality for h to rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–

3305 (2005). 

59. P. Atkins, J. Paula, Atkins’ Physical Chemistry (Oxford Univ. Press, 2008). 

60. M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, Consistent van der Waals 

radii for the whole main group. Chem. A Eur. J. 113, 5806–5812 (2009). 

 


	INTRODUCTION
	RESULTS
	DISCUSSION
	METHODS
	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments
	ade0311_coverpage
	ade0311_SupplementalMaterial_v4
	Supporting information for: Pump-probe spectroscopy of chiral vibrational dynamics
	General considerations
	Geometry of the envisioned experiment
	Minimum number of fields to realize enantiomeric excess
	Magnitude of the induced enantiomeric excess
	Symmetry considerations

	Computational details for the COFCl molecule
	Electronic structure
	Vibrational structure
	Vibrationally averaged photoelectron angular distributions

	Dephasing and relaxation timescales
	Collisional dephasing
	Rotational dephasing
	Vibrational excitation intramolecular vibrational energy redistribution lifetime

	Numerical details of quantum-chemical calculations
	Calculation of the classical selection rules using wxMaxima
	Calculation of the transition dipole moments from the one-dimensional Schrödinger equation


	references
	sciadv.ade0311_sm.pdf
	ade0311_coverpage
	ade0311_SupplementalMaterial_v4
	Supporting information for: Pump-probe spectroscopy of chiral vibrational dynamics
	General considerations
	Geometry of the envisioned experiment
	Minimum number of fields to realize enantiomeric excess
	Magnitude of the induced enantiomeric excess
	Symmetry considerations

	Computational details for the COFCl molecule
	Electronic structure
	Vibrational structure
	Vibrationally averaged photoelectron angular distributions

	Dephasing and relaxation timescales
	Collisional dephasing
	Rotational dephasing
	Vibrational excitation intramolecular vibrational energy redistribution lifetime

	Numerical details of quantum-chemical calculations
	Calculation of the classical selection rules using wxMaxima
	Calculation of the transition dipole moments from the one-dimensional Schrödinger equation


	references


