X-ray absorption and x-ray magnetic dichroism study on Ca3CoRhO6 and Ca3FeRhO6

T. Burnus,1 Z. Hu,1 Hua Wu,1 J. C. Cezar,2 S. Niitaka,3,4 H. Takagi,3,4,5 C. F. Chang,1 N. B. Brookes,2 H.-J. Lin,6 L. Y. Jang,6 A. Tanaka,7 K. S. Liang,6 C. T. Chen,6 and L. H. Tjeng1

1 II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
2 European Synchrotron Radiation Facility, BP 220, 38043 Grenoble CEDEX, France
3 Institute of Physical and Chemical Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
4 CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
5 Department of Advanced Materials Science, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
6National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
7Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

[Abstract][References]

Abstract

By using x-ray absorption spectroscopy at the Rh-L2,3, Co-L2,3, and Fe-L2,3 edges, we find a valence state of Co2+/Rh4+ in Ca3CoRhO6 and of Fe3+/Rh3+ in Ca3FeRhO6. X-ray magnetic circular dichroism spectroscopy at the Co-L2,3 edge of Ca3CoRhO6 reveals a giant orbital moment of about 1.7μB, which can be attributed to the occupation of the minority-spin d0d2 orbital state of the high-spin Co2+ (3d7) ions in trigonal prismatic coordination. This active role of the spin-orbit coupling explains the strong magnetocrystalline anisotropy and Ising-type magnetism of Ca3CoRhO6.

References

  1. H. Fjellvåg, E. Gulbrandsen, S. Aasland, A. Olsen, and B. C. Hauback, J. Solid State Chem. 124, 190 (1996).
  2. S. Aasland, H. Fjellvåg, and B. Hauback, Solid State Commun. 101, 187 (1997).
  3. H. Kageyama, K. Yoshimura, K. Kosuge, H. Mitamura, and T. Goto, J. Phys. Soc. Jpn. 66, 1607 (1997).
  4. H. Kageyama, K. Yoshimura, K. Kosuge, M. Azuma, M. Takano, H. Mitamura, and T. Goto, J. Phys. Soc. Jpn. 66, 3996 (1997).
  5. S. Niitaka, H. Kageyama, M. Kato, K. Yoshimura, and K. Kosuge, J. Solid State Chem. 146, 137 (1999).
  6. A. Maignan, C. Michel, A. C. Masset, C. Martin, and B. Raveau, Eur. Phys. J. B 15, 657 (2000).
  7. S. Niitaka, H. Kageyama, K. Yoshimura, K. Kosuge, S. Kawano, N. Aso, A. Mitsuda, H. Mitamura, and T. Goto, J. Phys. Soc. Jpn. 70, 1222 (2001).
  8. S. Niitaka, K. Yoshimura, K. Kosuge, M. Nishi, and K. Kakurai, Phys. Rev. Lett. 87, 177202 (2001).
  9. B. Martínez, V. Laukhin, M. Hernando, J. Fontcuberta, M. Parras, and J. M. González-Calbet, Phys. Rev. B 64, 012417 (2001).
  10. E. V. Sampathkumaran and A. Niazi, Phys. Rev. B 65, 180401(R) (2002).
  11. B. Raquet, M. N. Baibich, J. M. Broto, H. Rakoto, S. Lambert, and A. Maignan, Phys. Rev. B 65, 104442 (2002).
  12. V. Hardy, M. R. Lees, A. Maignan, S. Hébert, D. Flahaut, C. Martin, and D. Mc K. Paul, J. Phys.: Condens. Matter 15, 5737 (2003).
  13. X. Yao, S. Dong, K. Xia, P. Li, and J.-M. Liu, Phys. Rev. B 76, 024435 (2007).
  14. A. Maignan, V. Hardy, S. Hébert, M. Drillon, M. R. Lees, O. Petrenko, D. Mc K. Paul, and D. Khomskii, J. Mater. Chem. 14, 1231 (2004).
  15. V. Hardy, D. Flahaut, M. R. Lees, and O. A. Petrenko, Phys. Rev. B 70, 214439 (2004).
  16. H. Wu, M. W. Haverkort, Z. Hu, D. I. Khomskii, and L. H. Tjeng, Phys. Rev. Lett. 95, 186401 (2005).
  17. T. Burnus, Z. Hu, M. W. Haverkort, J. C. Cezar, D. Flahaut, V. Hardy, A. Maignan, N. B. Brookes, A. Tanaka, H. H. Hsieh, H.-J. Lin, C.-T. Chen, and L. H. Tjeng, Phys. Rev. B 74, 245111 (2006).
  18. M. J. Davis, M. D. Smith, and H.-C. zur Loye, J. Solid State Chem. 173, 122 (2003).
  19. S. Niitaka, K. Yoshimura, K. Kosuge, K. Mibu, H. Mitamura, and T. Goto, J. Magn. Magn. Mater. 260, 48 (2003).
  20. M.-H. Whangbo, D. Dai, H.-J. Koo, and S. Jobic, Solid State Commun. 125, 413 (2003).
  21. H. Wu, Z. Hu, D. I. Khomskii, and L. H. Tjeng, Phys. Rev. B 75, 245118 (2007).
  22. M. Loewenhaupt, W. Schäfer, A. Niazi, and E. V. Sampathkumaran, Europhys. Lett. 63, 374 (2003).
  23. K. Takubo, T. Mizokawa, S. Hirata, J.-Y. Son, A. Fujimori, D. Topwal, D. D. Sarma, S. Rayaprol, and E. V. Sampathkumaran, Phys. Rev. B 71, 073406 (2005).
  24. F. M. F. de Groot, Z. W. Hu, M. F. Lopez, G. Kaindl, F. Guillot, and M. Tronc, J. Chem. Phys. 101, 6570 (1994).
  25. Z. Hu, H. von Lips, M. S. Golden, J. Fink, G. Kaindl, F. M. F. de Groot, S. Ebbinghaus, and A. Reller, Phys. Rev. B 61, 5262 (2000).
  26. Z. Hu, M. S. Golden, S. G. Ebbinghaus, M. Knupfer, J. Fink, F. M. F. de Groot, and G. Kaindl, Chem. Phys. 282, 451 (2002).
  27. R. K. Sahu, Z. Hu, M. L. Rao, S. S. Manoharan, T. Schmidt, B. Richter, M. Knupfer, M. Golden, J. Fink, and C. M. Schneider, Phys. Rev. B 66, 144415 (2002).
  28. T. K. Sham, J. Am. Chem. Soc. 105, 2269 (1983).
  29. J.-H. Park, Ph.D. thesis, University of Michigan, 1994.
  30. F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459 (1990).
  31. See Theo Thole Memorial Issue, J. Electron Spectrosc. Relat. Phenom. 86, 1 (1997).
  32. C. T. Chen and F. Sette, Phys. Scr., T T31, 119 (1990).
  33. C. Mitra, Z. Hu, P. Raychaudhuri, S. Wirth, S. I. Csiszar, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 67, 092404 (2003).
  34. T. Burnus, Z. Hu, H. H. Hsieh, V. L. J. Joly, P. A. Joy, M. W. Haverkort, H. Wu, A. Tanaka, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 77, 125124 (2008).
  35. G. Ghiringhelli, L. H. Tjeng, A. Tanaka, O. Tjernberg, T. Mizokawa, J. L. de Boer, and N. B. Brookes, Phys. Rev. B 66, 075101 (2002).
  36. B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).
  37. P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).
  38. A. Tanaka and T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994).
  39. J. Okamoto, K. Mamiya, S.-I. Fujimori, T. Okane, Y. Saitoh, Y. Muramatsu, K. Yoshii, A. Fujimori, A. Tanaka, M. Abbate, T. Koide, S. Ishiwata, S. Kawasaki, and M. Takano, Phys. Rev. B 71, 104401 (2005).
  40. Parameters (in eV): U3d,3d=5, U2p[underaccent underbar [below] ,3d=6.5, Delta=4, Delta10ionic=0.65, Vmixionic=−0.2, Vpdsigma=−1.024, Hex=0.045. The Slater integrals were reduced to 80% of their Hartree-Fock value. Delta02ionic=0.4 (d0d2 scenario): Delta02ionic=1.4 (d2d−2). The simulated spectra have been broadend by a Gaussian with a half-width at half maximum (HWHM) of 0.2 eV and Lorentzian with a HWHM of 0.2 eV.
  41. E. Antonides, E. C. Janse, and G. A. Sawatzky, Phys. Rev. B 15, 1669 (1977).

This article is cited by

(This list might be incomplete; order as found; as of 15 May 2008)