Aligning spins in antiferromagnetic films using antiferromagnets

Szilárd I. Csiszar,1 Maurits W. Haverkort,2 Tobias Burnus,2 Zhiwei Hu,2 Arata Tanaka,3 Hui-Huang Hsieh,4 Hong-Ji Lin,5 Chien-Te Chen,5 Tjipke Hibma1 and Liu Hao Tjeng2

1 MSC, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
2 II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
3 Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
4 Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan
5 National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30077, Taiwan

[Abstract][References][Citations]

Abstract

We have explored the possibility to orient spins in antiferromagnetic thin films with low magnetocrystalline anisotropy via the exchange coupling to adjacent antiferromagnetic films with high magnetocrystalline anisotropy. We have used MnO as a prototype for a system with negligible single-ion anisotropy. We were able to control its spin direction very effectively by growing it as a film on antiferromagnetic CoO films with different predetermined spin orientations. This result may pave the way for tailoring antiferromagnets with low magnetocrystalline anistropy for applications in exchange bias systems. Very detailed information concerning the exchange coupling and strain effects was obtained from the Mn L2,3 soft x-ray absorption spectroscopy.

References

  1. See for review: J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
  2. See for review: A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).
  3. J. B. Goodenough, Magnetism and the Chemical Bond (Wiley, New York, 1963).
  4. S. Altieri et al., Phys. Rev. Lett. 91, 137201 (2003).
  5. M. Finazzi and S. Altieri, Phys. Rev. B 68, 054420 (2003).
  6. C. A. Ramos, D. Lederman, A. R. King, and V. Jaccarino, Phys. Rev. Lett. 65, 2913 (1990).
  7. A. S. Carri¸co and R. E. Camley, Phys. Rev. B 45, 13117 (1992).
  8. R. W. Wang and D. L. Mills, Phys. Rev. B 46, 11681 (1992).
  9. D. Lederman, C. A. Ramos and V. Jaccarino, and J. L. Cardy, Phys. Rev. B, 48, 8365 (1993).
  10. J. A. Borchers, M. J. Carey, R. W. Erwin, C. F. Majkrzak, and A. E. Berkowitz, Phys. Rev. Lett. 70, 1878 (1993).
  11. M. J. Carey, A. E. Berkowitz, J. A. Borchers, and R. W. Erwin, Phys. Rev. B 47, 9952 (1993).
  12. E. N. Abarra, K. Takano, F. Hellman, and A. E. Berkowitz, Phys. Rev. Lett. 77, 3451 (1996).
  13. S. I. Csiszar et al. (submitted Phys. Rev. Lett.). [Published: Phys. Rev. Lett. 95, 187205 (2005)]
  14. S. I. Csiszar and T. Hibma (in preparation).
  15. R. Nakajima, J. Stöhr and Y. U. Idzerda, Phys. Rev. B, 59, 6421 (1999).
  16. See review by F. M. F. de Groot, J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).
  17. P. Kuiper, B. G. Searle, P. Rudolf, L. H. Tjeng, and C. T. Chen, Phys. Rev. Lett. 70, 1549 (1993).
  18. D. Alders et al., Phys. Rev. B 57, 11623 (1998).
  19. A. Tanaka and T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994).
  20. Parameters for MnO6 cluster [eV]: Δ=8.0, Udd = 5.5, Ucd = 7.2, Veg = −2.1, Tpp = 0.7, 10Dq = 0.5, ζ = 0.066, Hex = 0.0135; Slater integrals 80% of Hartree-Fock values; MnO/CoO/MnO/Ag(100): Ds = 0.0093, Dt = 0.0026; MnO/CoO/Ag(100): Ds = 0.0486, Dt = 0.0111. Hex from G. Pepy, J. Phys. Chem. Solids 35, 433 (1974).
  21. M. W. Haverkort et al., Phys. Rev. B 69, 020408 (2004)
  22. C. G. Shull, W. A. Strauser, E. O. Wollan, Phys. Rev. 83, 333 (1951).

This article is cited by

(This list might be incomplete; order as found; as of 23 August 2006)